Novel Materials Design Approach Achieves a Giant Cooling Effect and Excellent Durability in Magnetic Refrigeration Materials

— Achieving Highly Efficient and Sustainable Magnetic Refrigeration Materials Through Precise Control of Covalent Bond —

NIMS (National Institute for Materials Science)
Kyoto Institute of Technology
Japan Synchrotron Radiation Research Institute
University of Hyogo
Technical University of Darmstadt
Japan Science and Technology Agency(JST)

A joint research team from NIMS, Kyoto Institute of Technology (KIT), Japan Synchrotron Radiation Research Institute (JASRI), University of Hyogo, Tohoku University, and the Technical University of Darmstadt, developed a novel materials design approach that achieves a giant cooling effect and excellent durability in magnetic cooling materials whose temperature changes when a magnetic field is switched on and off. The team found that, by precisely controlling the chemistry of covalent bonds within the unit cell can reshape the energy landscape of the phase transition, thereby eliminating hysteresis and its associated irreversible energy losses. Based on this finding, the team achieved a rare combination of giant cooling effect and excellent cyclic stability. This research result paves a new pathway toward energy-efficient magnetic cooling technology and was published in Advanced Materials on December 18, 2025.

Abstract

Background

Conventional vapor-compression refrigeration, used in air conditioners, refrigerators, and freezers, raises environmental concerns because it relies on refrigerants with high greenhouse-gas emissions. As a promising alternative, magnetic cooling has attracted attention because it can operate without such refrigerants. This technology uses magnetocaloric materials whose temperature changes when a magnetic field is switched on and off. However, advances in magnetic cooling have long faced a fundamental dilemma: a tradeoff between a giant cooling effect and durability. In materials that exhibit a giant cooling effect, hysteresis-related energy losses typically lead to performance degradation, making it difficult to sustain the giant effect under operating conditions (i.e., poor cyclic stability). Conversely, when materials are designed to suppress these losses and achieve good cyclic stability, the magnitude of cooling effect is often reduced, compromising cooling performance for durability (a decline in the cooling effect).

Key Findings

The research team developed a materials design approach for intermetallic compounds that can suppress irreversible energy losses by precisely tuning covalent bond through composition control. To demonstrate this approach, the team focused on an intermetallic Gd5Ge4 compound, composed of Gd (gadolinium) and Ge (germanium). Gd5Ge4 compound is a magnetic refrigeration material that warms up when a magnetic field is applied, as the Gd spins align. This magnetic ordering is coupled to a structural transition (i.e., a change in the unit-cell lattice parameters), so the crystal structure differs between the two phases (illustrated by the differently colored Gd spheres in Figure). The structural transition also changes the bond length between Ge atoms (brown spheres in Figure) that connect the two slabs in the structure, which contributes to hysteresis and performance degradation during repeated cycling. In this work, the team tuned the covalency by partially substituting Ge atoms with Sn (tin) atoms, thereby suppressing changes in the inter-slab distance during the transition. As a result, the material maintained a strong cooling response under repeated cycling, and the reversible adiabatic temperature change yielded a twofold increase from 3.8 K to 8 K. This achievement improves both the magnetic cooling effect and its durability of the material, providing a practical route toward sustainable high-performance magnetic refrigerants.

Figure. Schematic of the magnetocaloric material developed in this study. In the absence of an applied magnetic field (right), the spin moments of the Gd atoms (white arrows) in the upper and lower slabs, which are connected by inter-slab Ge atom, are not aligned. When a magnetic field is applied (left), the spins align, resulting in an increase in temperature.

Future Outlook

Because the magnetocaloric materials developed in this research operate in the cryogenic temperature range and exhibit characteristics well suited for hydrogen liquefaction, they are expected to support low-environmental-impact liquid-hydrogen technologies. In addition, the team has proposed a new design concept for magnetocaloric materials that enables the simultaneous achievement of desirable performance and durability. In the future, the team will extend this approach to other compounds and expand its scope to a wider range of cooling and gas-liquefaction technologies.

Other Information

  • This research was conducted by a team consisting of the following researchers: Tang Xin (Senior Researcher, Research Center for Magnetic and Spintronic Materials (CMSM), NIMS); Noriki Terada (Chief Researcher, CMSM, NIMS); Xiao Enda (Postdoctoral Researcher, CMSM, NIMS); Terumasa Tadano (Group Leader, CMSM, NIMS); Andres Martin-Cid (Postdoctoral Researcher, CMSM, NIMS); Tadakatsu Ohkubo (Deputy Director, CMSM, NIMS); Hossein Sepehri-Amin (Group Leader, CMSM, NIMS); Yoshitaka Matsushita (Unit Leader, Research Network and Facility Services Division (RNFS), NIMS); Kazuhiro Hono (Fellow, NIMS); Yoshio Miura (Professor, Kyoto Institute of Technology (KIT)); Takuo Ohkochi (Senior Scientist, Japan Synchrotron Radiation Research Institute (JASRI) (currently Professor, University of Hyogo)); Shogo Kawaguchi (Senior Scientist, JASRI); Shintaro Kobayashi (Research Scientist, JASRI); Tetsuya Nakamura (Professor, International Center for Synchrotron Radiation Innovation Smart, Tohoku University); Allan Döring (PhD Student, Technical University of Darmstadt (TU Darmstadt)); Konstantin Skokov (Senior Researcher, TU Darmstadt); and Oliver Gutfleisch (Professor, TU Darmstadt). The work was supported by the Japan Society for the Promotion of Science (JSPS) International Joint Research Program (JRP-LEAD with DFG; Program No. JPJSJRP20221608), the Japan Science and Technology Agency (JST) ERATO "Uchida Magnetic Thermal Management Materials" (Grant No. JPMJER2201) and Deutsche Forschungsgemeinschaft (DFG) within the CRC/TRR 270 (Project-ID 405553726).
  • This research result was published online in Advanced Materials on December 18, 2025.

Published Paper

Title : Control of Covalent Bond Enables Efficient Magnetic Cooling
Authors : Xin Tang, Yoshio Miura, Noriki Terada, Enda Xiao, Shintaro Kobayashi, Allan Döring, Terumasa Tadano, Andres Martin-Cid, Takuo Ohkochi, Shogo Kawaguchi, Yoshitaka Matsushita, Tadakatsu Ohkubo, Tetsuya Nakamura, Konstantin Skokov, Oliver Gutfleisch, Kazuhiro Hono and Hossein Sepehri-Amin
Journal : Advanced Materials
DOI : 10.1002/adma.202514295
Publication Date : December 18, 2025

Related File/Link

Contact information

Regarding This Research

Tang Xin
Senior Researcher
Green Magnetic Materials Group
Research Center for Magnetic and Spintronic Materials
National Institute for Materials Science
E-Mail: TANG.Xin=nims.go.jp (Please change "=" to "@")
TEL: +81-29-859-2739
Hossein Sepehri-Amin
Group Leader
Green Magnetic Materials Group
Research Center for Magnetic and Spintronic Materials
National Institute for Materials Science
E-Mail: H.SEPEHRIAMIN=nims.go.jp (Please change "=" to "@")
TEL: +81-29-859-2739
Tadakatsu Ohkubo
Deputy Director
Research Center for Magnetic and Spintronic Materials
National Institute for Materials Science
E-Mail: OHKUBO.Tadakatsu=nims.go.jp (Please change "=" to "@")
TEL: +81-29-859-2716
Yoshio Miura
Professor
Electrical Engineering and Electronics
Kyoto Institute of Technology
E-Mail: miura=kit.ac.jp (Please change "=" to "@")
TEL: +81-75-724-7405
URL: https://www.liaison.kit.ac.jp/researchers_db/ (Researcher Handbook* | Kyoto Institute of Technology)*Japanese
Shintaro Kobayashi
Research Scientist
Diffraction and Scattering Division
Japan Synchrotron Radiation Research Institute
E-Mail: kobayashi.shintaro=spring8.or.jp (Please change "=" to "@")
TEL: +81-50-3496-8688
Takuo Ohkochi
Professor
Laboratory of Advanced Science and Technology for Industry
University of Hyogo
E-Mail: o932t023=guh.u-hyogo.ac.jp (Please change "=" to "@")
TEL: +81-791-58-0017
Konstantin Skokov
Senior Researcher
Functional Materials Group
Technical University of Darmstadt
E-Mail: konstantin.skokov=tu-darmstadt.de (Please change "=" to "@")
TEL: +49-6151-16-22151

Media Inquiries

Public Relations Office
Division of International Collaborations and Public Relations
National Institute for Materials Science
1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
E-Mail: pressrelease=ml.nims.go.jp (Please change "=" to "@")
TEL: +81-29-859-2026
FAX: +81-29-859-2017
Public Relations
General Affairs and Planning Office
Kyoto Institute of Technology
Hashikamicho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
E-Mail: kit-kisya=jim.kit.ac.jp (Please change "=" to "@")
TEL: +81-75-724-7016
Information and Outreach Section
User Administration Division
Japan Synchrotron Radiation Research Institute
1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
E-Mail: kouhou=spring8.or.jp (Please change "=" to "@")
TEL: +81-791-58-2785
Laboratory of Advanced Science and Technology for Industry
University of Hyogo
Masakazu Sasaki
E-Mail: sasaki=lasti.u-hyogo.ac.jp (Please change "=" to "@")
TEL: +81-791-58-0249
Science Communication Center
Technische Universität Darmstadt
Residenzschloss 1, 64283 Darmstadt, Germany
E-Mail: presse=tu-darmstadt.de (Please change "=" to "@")
TEL: +49-6151-16-20018

Regarding JST Funding Programs

Ryoji Nakamura
Green Innovation Group
Department of Research Project
Japan Science and Technology Agency
K's Gobancho, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076, Japan
E-Mail: eratowww=jst.go.jp (Please change "=" to "@")
TEL: +81-3-3512-3528