ホーム > ニュース・プレス > プレスリリース > 機械学習を用いて熱電材料の大幅な出力向上に成功

機械学習を用いて熱電材料の大幅な出力向上に成功

~従来の実験では探索範囲外の組成で実現 汎用元素による熱電材料の実用化加速に期待~

国立研究開発法人 物質・材料研究機構
国立大学法人 東京大学大学院 新領域創成科学研究科
国立研究開発法人 科学技術振興機構

NIMSと東京大学の共同研究グループは、機械学習を用いて、アルミニウム、鉄、シリコンという汎用元素のみでできた熱電材料の発電特性を大幅に向上させることに成功しました。従来の実験では探索範囲外であった最適な組成を機械学習で発見し、その組成に従って合成したところ、同じ元素でできた従来材料に比べ40%もの出力性能の向上に至りました。今後、機械学習を用いることによって、汎用元素を使った熱電材料の実用化に向けた研究開発が飛躍的に加速することが期待されます。

概要

  1. NIMSと東京大学の共同研究グループは、機械学習を用いて、アルミニウム、鉄、シリコンという汎用元素のみでできた熱電材料の発電特性を大幅に向上させることに成功しました。従来の実験では探索範囲外であった最適な組成 (元素の混合比) を機械学習で発見し、その組成に従って合成したところ、同じ元素でできた従来材料に比べ40%もの出力性能の向上に至りました。今後、機械学習を用いることによって、汎用元素を使った熱電材料の実用化に向けた研究開発が飛躍的に加速することが期待されます。
  2. モノ同士がインターネットでつながる社会 (IoT社会) を支える膨大なセンサやウエアラブルデバイス用の小型自立電源として、熱を電気に直接変換できる熱電材料が注目されています。わずかな温度差でも発電できること、小型化が可能であること、メンテナンスフリーであること等の優れた特徴を有しています。一方で、資源量の少ない元素や毒性のある元素が使われていたり、使用できる温度域が狭く環境ごとに材料を変えなければいけなかったり等の課題がありました。NIMSでは、熱電材料の本格的な普及を目指し、無害かつ資源的制約の少ない元素を用いた材料研究開発に注力しており、室温から200℃までの温度域で使用ができるアルミニウム、鉄、シリコンのみからなる新材料開発に近年成功していました (特許出願済) 。
  3. 今回さらに、機械学習 (ベイズ最適化) と実験を組み合わせることにより、NIMSが開発したアルミニウム - 鉄 - シリコン系新規熱電材料において、400℃までのより広い温度域での利用を可能とする新たな組成を発見しました。数限られた実験データ (組成、出力性能、温度) を学習させた結果、これまでの実験では探索範囲外であった組成が中温域 (200℃~400℃) での出力特性を向上させるという結果が導かれました。実際に、予測された組成で材料を合成したところ、従来と比較して40%も出力性能を向上させることに成功しました。また、その前後の組成では出力性能が減少したことから、最適な組成を発見したことになります。
  4. 本成果により、熱電材料の開発における機械学習の有用性が明らかになったことで、今後は実験のみでは探索が困難な、より複雑な組成を有する新規材料の発見にも期待がもたれます。これにより、様々なセンサの自立電源としての応用が有力視されている熱電発電が、IoT社会を支える技術としてさらに発展すると期待されます。
  5. 本研究は、物質・材料研究機構 統合型材料開発・情報基盤部門 情報統合型物質・材料研究拠点 伝熱制御・熱電材料グループの高際良樹 主任研究員、同拠点データプラットフォームZhufeng Hou 特別研究員、同拠点・グループおよびエネルギー・環境材料研究拠点 熱電材料グループの篠原 嘉一 グループリーダー、同拠点 データプラットフォームの徐 一斌 プラットフォーム長、東京大学大学院 新領域創成科学研究科の津田 宏治 教授の研究グループによって、物質・材料研究機構 情報統合型物質・材料研究拠点における科学技術振興機構 (JST) のイノベーションハブ構築支援事業「情報統合型物質・材料開発イニシアティブ (MI2I)」の一環として行なわれたものです。
  6. 本研究成果は、アメリカ化学会が刊行するACS Applied Materials & Interfaces誌オンライン版にて、2019年3月18日午前11時 (米国東部時間) に掲載されます。

「プレスリリース中の図 :  (左) 機械学習を取り入れた材料研究開発の流れ (右) 機械学習を取り入れることにより中温域での出力因子を40%程度向上させることに成功」の画像

プレスリリース中の図 :
(左) 機械学習を取り入れた材料研究開発の流れ
(右) 機械学習を取り入れることにより中温域での出力因子を40%程度向上させることに成功



掲載論文

題目 : Machine-Learning-Assisted Development and Theoretical Consideration for the Al2Fe3Si3 Thermoelectric Material
著者 :Zhufeng Hou*, Yoshiki Takagiwa*, Yoshikazu Shinohara, Yibin Xu, and Koji Tsuda
        *These authors contributed equally to this work.
雑誌 : ACS Applied Materials & Interfaces
掲載日時 : 2019年3月18日午前11時 (米国東部時間)
DOI : 10.1021/acsami.9b02381


本件に関するお問合せ先

(研究内容に関すること)
国立研究開発法人 物質・材料研究機構
統合型材料開発・情報基盤部門
情報統合型物質・材料研究拠点
伝熱制御・熱電材料グループ、
エネルギー環境材料研究拠点
熱電材料グループ
主任研究員
高際 良樹 (たかぎわ よしき)
〒305-0047 茨城県つくば市千現1-2-1
TEL: 029-859-2811
E-Mail: TAKAGIWA.Yoshiki=nims.go.jp
([ = ] を [ @ ] にしてください)
東京大学大学院 新領域創成科学研究科 
メディカル情報生命専攻
教授 津田 宏治 (つだ こうじ)
〒277-8561
千葉県柏市柏の葉5-1-5基盤棟CB02
TEL: 04-7136-3983
E-Mail: tsuda=k.u-tokyo.ac.jp
([ = ] を [ @ ] にしてください)
(報道・広報に関すること)
国立研究開発法人 物質・材料研究機構
経営企画部門 広報室
〒305-0047 茨城県つくば市千現1-2-1
TEL: 029-859-2026
FAX: 029-859-2017
E-Mail: pressrelease=ml.nims.go.jp
([ = ] を [ @ ] にしてください)
東京大学大学院 新領域創成科学研究科
広報室
〒277-8561 千葉県柏市柏の葉5-1-5
Tel: 04-7136-5450
E-Mail: taguchi.yumie=edu.k.u-tokyo.ac.jp
([ = ] を [ @ ] にしてください)
国立研究開発法人 科学技術振興機構
広報課
〒102-8666 東京都千代田区四番町5-3
TEL: 03-5214-8404
FAX: 03-5214-8432
E-Mail: jstkoho=jst.go.jp
([ = ] を [ @ ] にしてください)
(JST事業に関する問い合わせ先)
国立研究開発法人 科学技術振興機構
イノベーション拠点推進部 COIグループ
〒102-0076
東京都千代田区五番町7 K’s五番町
TEL: 03-6267-4752
FAX: 03-5214-8496
E-Mail: ihub=jst.go.jp
([ = ] を [ @ ] にしてください)

似たキーワードを含む プレスリリース

2018.08.24
2018.06.16
2018.05.15
Get ADOBE® READER®

PDFファイルの閲覧には、Adobe® Readerが必要です。