[1] Huu Duc Luong, Chenchao Xu, Randy Jalem, Yoshitaka Tateyama.
Evaluation of battery positive-electrode performance with simultaneous ab-initio calculations of both electronic and ionic conductivities.
J. Power Sources, 569(2023) P232969-1-232969-9.
doi: 10.1016/j.jpowsour.2023.232969
[2] Toshihiko Mandai, Hiroko Naya, Hyuma Masu.
Comparative Studies on [B(HFIP)4]‑Based Electrolytes with Mono and Divalent Cations.
The Journal of Physical Chemistry C, 127[17](2023) P7987-7997.
doi: 10.1021/acs.jpcc.3c01160
[3] Toshihiko Mandai, Mariko Watanabe.
Oxygen – a fatal impurity for reversible magnesiumdeposition/dissolution.
Journal of Materials Chemistry A, 11(2023) P9755-9761.
doi: 10.1039/d3ta01286g
[4] G. Hasegawa, N. Kuwata, K. Hashi, Y. Tanaka, K. Takada.
Lithium-Ion Diffusion in Perovskite-Type Solid Electrolyte Lithium Lanthanum Titanate Revealed by Pulsed-Field Gradient Nuclear Magnetic Resonance.
Chemistry of Materials, 35[10](2023) P3815-3824.
doi: 10.1021/acs.chemmater.2c03340
[5] Go Kamesui, Kei Nishikawa, Mikito Ueda, Hisayoshi Matsushima.
In situ observation of the formation and relaxation processes of concentration gradients in a lithium bis(fluorosulfonyl) amide–tetraglyme solvate ionic liquid using digital holographic interference microscopy.
Electrochemistry Communications, 151(2023) P107506-1-107506-5.
doi: 10.1016/j.elecom.2023.107506
[6] Toshihiko Mandai, Masaru Yao, Keitaro Sodeyama, Akiko Kagatsume, Yoshitaka Tateyama, Hiroaki Imai.
Toward Improved Anodic Stability of Ether-Based Electrolytes for Rechargeable Magnesium Batteries.
The Journal of Physical Chemistry C, 127(2023) P10419-10433.
doi: 10.1021/acs.jpcc.3c01452
[7] Yoshiharu Mukouyama, Shotaro Hanada, Terumi Goto, Shuji Nakanishi.
Finite Element Modeling of the Cycle Characteristics of Li–O2 Secondary Batteries Considering Surface- and Solution-Route Discharge Reactions.
The Journal of Physical Chemistry C, 127[22](2023) P10459-10469.
doi: 10.1021/acs.jpcc.3c01940
[8] Seongjae Ko, Norio Takenaka, Atsushi Kitada, Atsuo Yamada.
Electrolyte science, what's next?.
Next Energy, 1(2023) P100014-1-100014-3.
doi: 10.1016/j.nxener.2023.100014
[9] Shoichi Matsuda, Shin Kimura, Kohei Uosaki.
Hidden Macroscopic Degradation Behavior in Rechargeable Lithium–Oxygen Batteries under Lean Electrolyte and High Areal Capacity Conditions.
J. Phys. Chem. C , 127[25](2023) P11822-11828.
doi: 10.1021/acs.jpcc.3c01094
[10] Seong-Hoon Jang, Randy Jalem, Yoshitaka Tateyama.
EwaldSolidSolution: A High-Throughput Application to Quickly Sample Stable Site Arrangements for Ionic Solid Solutions.
J. Phys. Chem. A, 127(2023) P5734-5744.
doi: 10.1021/acs.jpca.3c00076
[11] Yoshitaka Tateyama, Akiko Kagatsume, Masaru Yao, Shoichi Matsuda, Kohei Uosaki.
Exploration of Organic Cathode Active Materials with High Energy Densities for Li-Ion Batteries via First-Principles Calculations.
J. Phys. Chem. C, 127(2023) P12867-12873.
doi: 10.1021/acs.jpcc.3c02131
[12] Tomooki Hosaka, Tatsuo Matsuyama, Ryoichi Tatara, Zachary T. Gossage, Shinichi Komaba.
Impact of electrolyte decomposition products on the electrochemical performance of 4 V class K-ion batteries.
Chemical Science, 14(2023) P8860-8868.
doi: 10.1039/D3SC02111D
[13] Masahito Ikeda, Randy Jalem, Gen Hasegawa, Naoaki Kuwata, Qiumin Liu, Takafumi Yamamoto, Kei Shigematsu, Yoshitaka Tateyama, and Masaki Azuma.
Theoretical Prediction and High-Pressure Synthesis of New LISICON-Type Solid-State Electrolyte Li2.75[B0.625P0.125S0.25]O3.375.
J. Phys. Chem. C, 127(2023) P14117-14124.
doi: 10.1021/acs.jpcc.3c02842
[14] Fumihiko Ichihara, Kodai Niitsu, Yoshinori Tanaka, Yasuhiro Niwa, Kazutaka Mitsuishi, Shogo Miyoshi, Takahisa Ohno, Takuya Masuda.
Structural Analysis of the LiCoPO4 Electrode/NASICON-Type Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Interface.
J. Phys. Chem. C, 127[31](2023) P15043-15050.
doi: 10.1021/acs.jpcc.3c02132
[15] Randy Jalem, Yoshitaka Tateyama, Kazunori Takada, Seong-Hoon Jang.
Multi-objective solid electrolyte design of tetragonal and cubic inverse-perovskites for all-solid-state lithium-ion batteries by high-throughput DFT calculations and AI-driven methods.
J. Phys. Chem. C, 127(2023) P17307-17323.
doi: 10.1021/acs.jpcc.3c02801
[16] Arghya Dutta, Emiko Mizuki, Shoichi Matsuda.
High-Rate Discharge Minimizes Volume Expansion of Lithium Metal Electrodes under Lean Electrolyte and High Areal Capacity Conditions.
Batteries & Supercaps, 6(2023) Pe202300309 -1-e202300309-8.
doi: 10.1002/batt.202300309
[17] Wenchong Zhou, Chenchao Xu, Bo Gao, Masanobu Nakayama, Shunsuke Yagi, Yoshitaka Tateyama.
Glyme Solvent Decomposition on Spinel Cathode Surface in Magnesium Battery.
ACS Energy Lett., 8(2023) P4113-4118.
doi: 10.1021/acsenergylett.3c01084
[18] Randy Jalem, Manas Likhit Holekevi Chandrappa, Ji Qi, Yoshitaka Tateyama, Shyue Ping Ong.
Lithium dynamics at grain boundaries of β-Li3PS4 solid electrolyte.
Energy Adv., 2(2023) P2029-2041.
doi: 10.1039/D3YA00234A
[19] Omar Falyouna, Toshihiko Mandai.
Molybdenum disulfide (MoS₂)−based cathode materials for magnesium (Mg2+) and Mg2+/Li+ hybrid-ion batteries: Progress and perspective.
Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), 9(2023) P34-42.
doi: 10.5109/7157941
[20] Seongjae Ko, Xiao Han, Tatau Shimada, Norio Takenaka, Yuki Yamada, Atsuo Yamada.
Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode.
Nat. Sustain., 6(2023) P1705-1714.
doi: 10.1038/s41893-023-01237-y
[21] Toshihiko Mandai, Tomooki Hosaka, Mirna Alhanash, Patrik Johansson.
2023 Roadmap on molecular modelling of electrochemical energy materials7. Liquid electrolytes for multivalent batteries.
J. Phys. Energy, 5(2023) P041501-041501.
doi: 10.1088/2515-7655/acfe9b
[22] Zizhen Zhou, Claudio Cazorla, Bo Gao, Huu Duc Luong, Toshiyuki Momma, Yoshitaka Tateyama.
First-Principles Study on the Interplay of Strain and State-of-Charge with Li-Ion Diffusion in the Battery Cathode Material LiCoO2.
ACS Appl. Mater. Interfaces , 15(2023) P53614-53622.
doi: 10.1021/acsami.3c14444
[23] Tsukasa IWAMA, Tsuyoshi OHNISHI, Takuya MASUDA .
Operando Observation of Lithiation and Delithiation Reactions of a LiCoO2-Li3BO3 Composite Electrode Formed on a Li6.6La3Zr1.6Ta0.4O12 Solid Electrolyte Sheet by Laboratory-based Hard X-ray Photoelectron Spectroscopy.
Electrochemistry, 91[11](2023) P117005-1-117005-5.
doi: 10.5796/electrochemistry.23-00090
[24] Ridwan P. Putra, Kyosuke Matsushita, Tsuyoshi Ohnishi, Takuya Masuda.
Operando Nanomechanical Mapping of Amorphous Silicon Thin Film Electrodes in All-Solid-State Lithium-Ion Battery Configuration during Electrochemical Lithiation and Delithiation.
J. Phys. Chemistry Letters, 15[2](2023) P490-498.
doi: 10.1021/acs.jpclett.3c03012
[25] Masayoshi Matsuzaki, Ryoichi Tatara, Kei Kubota, Kazutoshi Kuroki, Tomooki Hosaka, Kazuteru Umetsu, Nobuhiro Okada, Shinichi Komaba.
Application of Na2CO3 as a Sacrificial Electrode Additive in Na-ion Batteries to Compensate for the Sodium Deficiency in Na2/3[Fe1/2Mn1/2]O2.
Batteries & Supercaps, 7(2023) Pe202400009-1-e202400009-9.
doi: 10.1002/batt.202400009
[26] Toshihiko Mandai, Umi Tanaka, Mariko Watanabe.
Mg–Zn–Cl-integrated functional interface for enhancing the cycle life of Mg electrodes.
Energy Storage Materials, 67(2023) P103302-103302.
doi: 10.1016/j.ensm.2024.103302