[1] Shoichi Matsuda, Guillaume Lambard, Keitaro Sodeyama.
Data-driven automated robotic experiments accelerate discovery of multi-component electrolyte for rechargeable Li–O2 batteries.
Cell Reports Physical Science, 3[4](2022) P100832-1-100832-15.
doi: 10.1016/j.xcrp.2022.100832
[2] Bo Gao, Randy Jalem, Yoshitaka Tateyama.
Atomistic insight into the dopant impacts at the garnet Li7La3Zr2O12 solid electrolyte grain boundaries.
Journal of Materials Chemistry A, 10[18](2022) P10083-10091.
doi: 10.1039/d2ta00545j
[3] Tsuyoshi Ohnishi, Kazunori Takada.
Sputter-Deposited Amorphous Li3PO4 Solid Electrolyte Films.
ACS Omega, 7[24](2022) P21199-21206.
doi: 10.1021/acsomega.2c02104
[4] Tjaša Pavčnik, Matic Lozinšek, Klemen Pirnat, Alen Vizintin, Toshihiko Mandai, Doron Aurbach, Robert Dominko, and Jan Bitenc.
On the Practical Applications of the Magnesium Fluorinated Alkoxyaluminate Electrolyte in Mg Battery Cells.
ACS Applied Materials & Interfaces, 14[23](2022) P26766-26774.
doi: 10.1021/acsami.2c05141
[5] Yueying Peng, Kei Nishikawa, Kiyoshi Kanamura.
Effects of Carbonate Solvents and Lithium Salts in High-Concentration Electrolytes on Lithium Anode.
Journal of The Electrochemical Society, 169[6](2022) P060548-1-060548-9.
doi: 10.1149/1945-7111/ac797a
[6] Naoaki Kuwata, Yasutaka Matsuda, Tatsunori Okawa, Gen Hasegawa, Osamu Kamishima, Junichi Kawamura.
Ion dynamics of the LixMn2O4 cathode in thin-film solid-state batteries revealed by in situ Raman spectroscopy.
Solid State Ionics, 380(2022) P115925.
doi: 10.1016/j.ssi.2022.115925
[7] Hayato Takemitsu, Yoshihiro Hayashi, Hiroto Watanabe, Toshihiko Mandai, Shunsuke Yagi, Yuya Oaki, Hiroaki Imai.
Preparation of conductive Cu1.5Mn1.5O4 and Mn3O4 spinel mixture powders as positive active materials in rechargeable Mg batteries operative at room temperature.
Journal of Sol-Gel Science and Technology, 104[3](2022) P635-646.
doi: 10.1007/s10971-022-05891-0
[8] Raimu Endo, Tsuyoshi Ohnishi, Kazunori Takada, Takuya Masuda.
Electrochemical Lithiation and Delithiation in Amorphous Si Thin Film Electrodes Studied by Operando X-ray Photoelectron Spectroscopy.
The Journal of Physical Chemistry Letter, 13[31](2022) P7363-7370.
doi: 10.1021/acs.jpclett.2c01312
[9] Zizhen Zhou, Dewei Chu, Bo Gao, Toshiyuki Momma, Yoshitaka Tateyama, Claudio Cazorla.
Tuning the Electronic, Ion Transport, and Stability Properties of Li-rich Manganese-based Oxide Materials with Oxide Perovskite Coatings: A First-Principles Computational Study.
ACS Applied Materials & Interfaces, 14[32](2022) P37009-37018.
doi: 10.1021/acsami.2c07560
[10] Takane Kobayashi, Tsuyoshi Ohnishi, Takahiro Osawa, Andrew Pratt, Steve Tear, Susumu Shimoda, Hidetada Baba, Mikko Laitinen, Timo Sajavaara.
In‐Operando Lithium‐Ion Transport Tracking in an All‐Solid‐State Batter.
Small, 18[46](2022) P2204455-1-2204455-9.
doi: 10.1002/smll.202204455
[11] Toshihiko Mandai, Hidetoshi Somekawa.
Ultrathin Magnesium Metal Anode – An Essential Component for High-Energy-Density Magnesium Battery Materialization.
Batteries & Supercaps, 5[9](2022) Pe202200153-1-e202200153-7.
doi: 10.1002/batt.202200153
[12] Seong-Hoon Jang, Yoshitaka Tateyama, Randy Jalem.
High-Throughput Data-Driven Prediction of Stable High-Performance Na-Ion Sulfide Solid Electrolytes.
Advanced Functional Materials, 32[48](2022) P2206036-1-2206036-10.
doi: 10.1002/adfm.202206036
[13] Naoto Kitamura, Yoichiro Konishi, Wenli Ma, Naoya Ishida, Toshihiko Mandai, Chiaki Ishibashi, Yasushi Idemoto.
Positive‑electrode properties and crystal structures of Mg‑rich transition metal oxides for magnesium rechargeable batteries.
Scientific Reports, 12[1](2022) P18097-1-18097-8.
doi: 10.1038/s41598-022-23022-1
[14] Eun Jeong Kim, Tomooki Hosaka, Kei Kubota, Ryoichi Tatara, Shinichi Kumakura, and Shinichi Komaba.
Effect of Cu Substitution in P′2- and P2-Type Sodium Manganese-Based Oxides.
ACS Applied Energy Materials, 5[10](2022) P12999-13010.
doi: 10.1021/acsaem.2c02581
[15] Kei Nishikawa, Keisuke Shinoda.
3D Structure Analysis for Understanding of Li Electrodeposition and Dissolution Mechanism.
Journal of The Electrochemical Society, 169[10](2022) P102507-1-102507-7.
doi: 10.1149/1945-7111/ac9761
[16] Go Kamesui, Kei Nishikawa, Mikito Ueda, Hisayoshi Matsushima.
Mass Transfer during Electrodeposition and Dissolution of Li Metal within Highly Concentrated Electrolytes.
ACS Energy Letters, 7[11](2022) P4089-4097.
doi: 10.1021/acsenergylett.2c02120
[17] Fumihiko Ichihara, Shogo Miyoshi, Takuya Masuda.
Co-sintering process of LiCoO2 cathodes and NASICON-type LATP solid electrolytes studied by X-ray diffraction and X-ray absorption near edge structure.
Physical Chemistry Chemical Physics, 24[42](2022) P25878-25884.
doi: 10.1039/d2cp01020h
[18] Asako Oishi, Ryoichi Tatara, Eiichi Togo, Hiroshi Inoue, Satoshi YasunoSatoshi Yasuno, and Shinichi Komaba.
Sulfated Alginate as an Effective Polymer Binder for High-Voltage LiNi0.5Mn1.5O4 Electrodes in Lithium-Ion Batteries.
ACS Applied Materials & Interfaces, 14[46](2022) P51808-51818.
doi: 10.1021/acsami.2c11695
[19] Ryota Tamate, Shoichi Matsuda.
Asymmetric Volume Expansion of the Lithium Metal Electrode in Symmetric Lithium/Lithium Cells under Lean Electrolyte and High Areal Capacity Conditions.
ACS Applied Energy Materials, 6[1](2022) P573-579.
doi: 10.1021/acsaem.2c03788
[20] Yasushi Idemoto, Mina Takamatsu, Chiaki Ishibashi, Naoya Ishida, Toshihiko Mandai, Naoto Kitamura.
Electrochemical properties and crystal and electronic structure changes during charge/discharge of spinel type cathode-materials Mg1.33V1.67-xMnxO4 for magnesium secondary batteries.
Journal of Electroanalytical Chemistry, 928(2022) P117064-1-117064-10.
doi: 10.1016/j.jelechem.2022.117064
[21] Shogo Yamazaki, Ryoichi Tatara, Hironori Mizuta, Kei Kawano, Satoshi Yasuno, Shinichi Komaba .
High-Performance SiO Electrode for Lithium-ion Batteries: Merged Effect of New Polyacrylate Binder and Electrode-Maturation Process.
Materials Advances, (2022) .
doi: 10.1039/D2MA01093C
[22] Yanan Gao, Hidenori Noguchi, and Kohei Uosaki.
Online Real-Time Detection of the Degradation Products of Lithium Oxygen Batteries.
ACS Energy Lett., 8[4](2022) P1811-1817.
doi: 10.1021/acsenergylett.3c00132
[23] Yanan Gao, Hidenori Noguchi and Kohei Uosaki.
Real time monitoring of generation and decomposition of degradation products in lithium oxygen batteries during discharge/charge cycles by an online cold trap pre-concentrator-gas chromatography/mass spectroscopy system.
RSC Adv., 13(2022) P5467-5472.
doi: 10.1039/D2RA07670E
[24] Hijiri OIKAWA, Yuta YOSHIDA, Yoshinori ARACHI , Kazutaka MITSUISHI.
Preparation of Li4Mn5O12 on Porous Li0.29La0.57TiO3 via Liquid Sintering for Oxide-based All-solid-state Li-ion Secondary Battery.
Electrochemistry, 20[8](2022) P1-8.
doi: 10.5796/electrochemistry.22-00064
[25] Shota Ishikawa, Xuanchen Liu, Tae Hyoung Noh, Magnus So, Kayoung Park, Naoki Kimura, Gen Inoue, Yoshifumi Tsuge.
Simulation to estimate the correlation of porous structure properties of secondary batteries determined through machine learning.
J. Power Sources Advances, 15(2022) P10094-1-10094-11.
doi: 10.1016/j.powera.2022.100094
[26] Magnus So, Gen Inoue, Kayoung Park, Keita Nunoshita, Shota Ishikawa, Yoshifumi Tsuge.
Simulation of the compaction of an all-solid-state battery cathode with coated particles using the discrete element method.
J. Power Sources Advances, 530(2022) P101857-1-101857-12.
doi: 10.1016/j.jpowsour.2022.231279
[27] S. LI, S. ISHIKAWA, J. LIU, K. UENO, K. DOKKO, G. INOUE, M. WATANABE.
Importance of Mass Transport in High Energy Density Li-S Batteries Under Lean Electrolyte Conditions.
Batteries & Supercaps, 5[5](2022) P202100409-1-202100409-10.
doi: 10.1002/batt.202100409
[28] N. NUNOSHITA, R. HIRATE, X. LIU, K. PARK, M. SO, N. KIMURA, G. INOUE, Y. TSUGE.
Simulation of All-Solid-State Lithium-Ion Batteries with Fastening Stress and Volume Expansio.
J. Electrochemical Energy Conversion and Storage, 19[2](2022) P021022-1-021022-10.
doi: 10.1115/1.4054015
[29] G. INOUE, S. ABE, R. GAO, K. PARK, M. SO, Y. MATSUKUMA, N. KIMURA, Y. TSUGE.
Design of Porous Metal Collector via Bubble Template-Assisted Electrochemical Deposition using Numerical Simulation.
Chemical Engineering Journal Advances, 10(2022) P100266-1-100266-12.
doi: 10.1016/j.ceja.2022.100266
[30] Chiyuri Komori, Shota Ishikawa, Keita Nunoshita, Magnus So, Naoki Kimura, Gen Inoue,Yoshifumi Tsuge.
Stress prediction of the particle structure of all-solid-state batteries by numerical simulation and machine learning.
Front.CE, 4(2022) P836282-1-836282-10.
doi: 10.3389/fceng.2022.836282
[31] Magnus So; Shinichiro Yano; Agnesia Permatasari; Thi Dung Pham; Kayoung Park; Gen Inoue.
Mechanism of Silicon Fragmentation in All-Solid-State Battery Evaluated by Discrete Element Method.
J. Power Sources, 546(2022) P231956-1-231956-11.
doi: 10.1016/j.jpowsour.2022.231956
[32] Magnus So, Gen Inoue, Kayoung Park, Keita Nunoshita, Shota Ishikawa, Yoshifumi Tsuge.
Contact Model for DEM Simulation of Compaction and Sintering of All-Solid-State Battery Electrodes.
MethodsX, 9(2022) P231279-1-231279-10.
doi: 10.1016/j.mex.2022.101857
[33] Kazufumi Otani, Takahisa Muta, Terumi Furuta, Takuhiro Miyuki, Tomohiro Kaburagi, Gen Inoue.
Ionic conductivity prediction model for composite electrodes and quantification of ionic conductivity reduction factors in sulfide-based all-solid-state batteries.
Journal of Energy Storage, 58(2023) P106279-1-106279-6.
doi: 10.1016/j.est.2022.106279