3次元アトムプローブ(APT: atom probe tomography, or 3DAP; three-dimentional atom probe)は、曲率半径~ 50 nmの針状試料に高い電圧を印可することで試料先端に高電界を形成し、電界蒸発(イオン化)のトリガーとしてレーザーパルス(もしくは電圧パルス)を照射します。試料先端からイオン化された原子が検出器に到達するまでの飛行時間(Time-of-Flight)と検出位置(x, y)を連続的(z)に計測することにより、100万倍以上の倍率での原子分布を3次元に可視化できる唯一の手法です。例えば、ナノスケールのデバイス中の元素分布、材料中の元素の不均一な分布、半導体ドーパントなどの微量添加元素を精度良く解析することができます。
Atom probe tomography (APT, or 3DAP; three-dimentional atom probe) is the only method to visualize the distribution of atoms as 3D map at a magnification ratio of over 1 million by simultaneously measuring the mass and position of atoms ionized with laser pulses (or voltage pulses) from the needle-shaped specimens with the radius of curvature ~ 50 nm. For example, this method can precisely analyze the 3D distribution of elements within nanoscale devices or the uneven elemental distributions within materials.
Microstructural analysis using the atom probe tomography (APT) can be broadly divided into three steps: (1) preparation of needle-shaped APT specimens, (2) APT measurement, and (3) APT data analysis. In recent years, dramatic advances in both the hardware and measurement programs of commercial APT instruments have led to the automation of "(2) APT measurement", making APT operation more accessible and user-friendly. On the other hand, "(1) preparation of needle-shaped APT specimens", which requires experience and skill, and "(3) APT data analysis", which demands a high level of specialized knowledge covering everything from APT fundamentals to materials science, remain as the main barriers to the effective utilization of APT. Therefore, to support "(3) APT data analysis", we plan to publish typical APT datasets for various materials as needed.