LOGO Mark
Water Polyamorphism

PVT-Phase Diagram waterPVT
PVT-Phase Diagram of Liquid Water

Publications (Water and Amorphous Ices)
The following articles may be downloaded for personal use only. Any other use requires prior permission of the author and the respective publishers. These articles may be found at the respective web cites in the right colume.
50. Transformation process of ice crystallized from a glassy dilute trehalose aqueous solution.
Y. Suzuki & S. Takeya Phys. Chem. Chem. Phys., 24, 26659-26667 (2022).
49. Raman spectroscopy of isotopically pure and diluted high- and low-density amorphous ices.
S. Ishihara, T. Takayama, M. Sakaguchi, T. Otosu, T. Yagasaki, Y. Suzuki, S. Yamaguchi J Raman Spectrosc, 53, 1773-1784 (2022).
48. Direct observation of reversible liquid-liquid transition in a trehalose aqueous solution.
Y. Suzuki Proc. Natl. Acad. Sci. U.S.A., 119, e2113411119 (2022)
47. Polyamorphism of polyol aqueous solutions. (in Japanese)
Y. Suzuki Netsu Sokutei, 49(1), 2-8 (2022)
46. Liquid-Phase Transition in Water.
O. Mishima NIMS Monographs, Springer (2021)
45. Slow Crystal Growth of Cubic Ice with Stacking Faults in a Glassy Dilute Glycerol Aqueous Solution.
Y. Suzuki & S. Takeya J. Phys. Chem. Lett., 11, 9432-9438 (2020)
44. Non-segregated crystalline state of dilute glycerol aqueous solution. (1.2MB)
(Copyright(2016) American Institute of Physics)
Y. Suzuki J. Chem. Phys., 152, 144501 (2020)
43. Effect of OH groups on the polyamorphic transition of polyol aqueous solutions. (0.9MB)
(Copyright(2016) American Institute of Physics)
Y. Suzuki J. Chem. Phys., 150, 224508 (2019)
42. Experimental estimation of the location of liquid-liquid critical point for polyol aqueous solutions. (1.9MB)
(Copyright(2016) American Institute of Physics)
Y. Suzuki J. Chem. Phys., 149, 204501 (2018)
41. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions. (2.8MB)
(Copyright(2016) American Institute of Physics)
Y. Suzuki J. Chem. Phys., 147, 064511 (2017)
40. Effect of water polyamorphism on the molecular vibrations of glycerol in its glassy aqueous solutions. (1.0MB)
(Copyright(2016) American Institute of Physics)
Y. Suzuki, O. Mishima J. Chem. Phys., 145, 024501 (2016)
39. Experimentally proven liquid-liquid critical point of dilute glycerol-water solution at 150 K. (1.1MB)
(Copyright(2014) American Institute of Physics)
Y. Suzuki, O. Mishima J. Chem. Phys., 141, 094505 (2014)
38. Polyamorphism in water.
A slightly revised version of Proc. Jpn. Acad., Ser. B 86, 165 (2010)
O. Mishima Adv. Chem. Phys., 152, 355 (2013)
37. Sudden switchover between the polyamorphic phase separation and the glass-to-liquid transition in glassy LiCl aqueous solutions. (1.1MB)
(Copyright(2013) American Institute of Physics)
Y. Suzuki, O. Mishima J. Chem. Phys., 138, 084507 (2013)
36. Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water(2.0MB)
[COVER of J.Phys.Chem.B]
O. Mishima J. Phys. Chem. B 115, 14064-14067 (2011)
35. Water polyamorphism and foreseen perspective (in Japanese)(1.6MB) Y. Suzuki OYO BUTURI 80(10), 890-893 (2011)
34. Polarized Raman spectroscopic study on the solvent state of glassy LiCl aqueous solution and the state of relaxed high-density amorphous ices. (0.5MB)
(Copyright(2011) American Institute of Physics)
Y. Suzuki, Y. Tominaga J. Chem. Phys., 134, 244511 (2011)
33. Polarized Raman spectroscopic study of relaxed high density amorphous ices under pressure. (0.5MB)
(Copyright(2010) American Institute of Physics)
Y. Suzuki, Y. Tominaga J. Chem. Phys., 133, 164508 (2010)
32. Volume of supercooled water under pressure and the liquid-liquid critical point. (0.7MB) Typo is corrected.
[Supplimental material (0.9MB) for the rotation of the 3D figures and the numerical values (Fig. 1). ]
O. Mishima J. Chem. Phys., 133, 144503 (2010)
31. Polyamorphism in water. (0.7MB)
A slightly revised version : Adv. Chem. Phys. 152, 355 (2013)
O. Mishima Proc. Jpn. Acad., Ser. B 86, 165-175 (2010)
30. Differences between pressure-induced densification of LiCl-H2O glass and polyamorphic transition of H2O. (1.0MB) Y. Suzuki, O. Mishima J. Phys.: Condens. Matter 21, 155105 (2009)
29. Explanation of "the Mysteries of Water" by a Liquid-Liquid Critical Point. (in Japanese) (1.5MB) O. Mishima Review of High Pressure Science and Technology 17, 352-356 (2007)
28. Phase separation in dilute LiCl-H2O solution related to the polyamorphism of liquid water. (1.1MB)
(Copyright(2007) American Institute of Physics)
O. Mishima J. Chem. Phys., 126, 244507 (2007)
27. Water polyamorphism - Experimental verification of the validity. (in Japanese) (2.2MB) Y. Suzuki Butsuri: The Physical Society of Japan, 61, 318-324 (2006)
26. Application of a water polyamorphism to an aqueous solution system. (in Japanese) (0.7MB) Y. Suzuki Low temperature science, 64, 103-113 (2006)
25. Application of polyamorphism in water to spontaneous crystallization of emulsified LiCl-H2O solution. (0.3MB)
(Copyright(2005) American Institute of Physics)
O. Mishima J. Chem. Phys., 123, 154506 (2005)
24. Evidence of pressure-induced amorphization of tetrahydrofuran clathrate hydrate. Y. Suzuki Phys. Rev. B, 70, 172108 (2004)
23. The glass-to-liquid transition of the emulsified high-density amorphous ice made by pressure-induced amorphization. (0.7MB)
(Copyright(2004) American Institute of Physics)
O. Mishima J. Chem. Phys., 121, 3161 (2004)
22. Raman study of the annealing effect of low-density glassy waters. Y. Suzuki, O. Mishima J. Phys. Soc. Jpn., 72, 3128 (2003)
21. Pressure-induced amorphization of ice and polyamorphism in water --Relationship between liquid water and amorphous ices. (in Japanese) (0.2MB) O. Mishima Review of High Pressure Science and Technology 13, 165-172 (2003)
20. Propagation of the polyamorphic transition of ice and the liquid-liquid critical point. (0.5MB) O. Mishima & Y. Suzuki Nature 419, 599-603 (2002)
19. Raman spectroscopic study of glassy water in dilute lithium chloride aqueous solution vitrified under pressure. Y. Suzuki, O. Mishima J. Chem. Phys., 117, 1673 (2002)
18. Vitrification of emulsified liquid water under pressure. O. Mishima, Y. Suzuki J. Chem. Phys., 115, 4199 (2001)
17. Raman spectroscopic study of hyperquenched glassy water in the presence of different non-ionic solute. Y. Suzuki Chem. Phys. Lett., 335, 357 (2001)
16. Low-frequency Raman spectra of amorphous ices. Y. Suzuki, Y. Takasaki, Y. Tominaga, O. Mishima Chem. Phys. Lett., 319, 81 (2000)
15. Liquid-Liquid Critical Point in Heavy Water. O. Mishima Phys. Rev. Lett., 85, 334 (2000)
14. Two distinct Raman profiles of glassy dilute LiCl solution. Y. Suzuki, O. Mishima Phys. Rev. Lett., 85, 1322 (2000)
13. The relationship between liquid,supercooled and glassy water. (0.5MB) O. Mishima & H.E Stanley Nature 396, 329-335 (1998)
12. Decompression-induced melting of ice IV and the liquid-liquid transition in water. (0.4MB) O. Mishima & H.E Stanley Nature 392, 164-168 (1998)
11. Raman spectra of low- and high-density amorphous ices. H. Kanno, K. Tomikawa, O. Mishima Chem. Phys. Lett., 293, 412 (1998)
10. Local structural heterogeneities in liquid water under pressure. M. Canpolat, F. W. Starr, A. Scala, M. R. Sadr-Lahijany, O. Mishima, S. Havlin, H. E. Stanley Chem. Phys. Lett., 294, 9 (1998)
09. Metastable melting lines of ice phases at low temperatures. O. Mishima, H. E. Stanley Rev. High Pressure Sci. Technol., 7, 1103 (1998)
08. Relationship between melting and amorphization of ice.(3.0MB) O. Mishima Nature 384, 546-549 (1996)
07. Reversible first-order transition between two H2O amorphs at `0.2 GPa and `135 K. O. Mishima J. Chem. Phys., 100, 5910 (1994)
06. Visual observation of the amorphous-amorphous transition in H2O under pressure. O. Mishima, K. Takemura, K. Aoki Science, 254, 406 (1991)
05. High-density amorphous ice. IV. Raman spectrum of the uncouple O-H and O-D oscillators. D. D. Klug, O. Mishima, E. Whalley J. Chem. Phys., 86, 5323 (1987)
04. High-density amorphous ice. III. Thermal properties. Y. P. Handa, O. Mishima, E. Whalley J. Chem. Phys., 84, 2766 (1986)
03. Raman Spectrum of high-density amorphous ice. D. D. Klug, O. Mishima, E. Whalley Physica B+C, 139 & 140, 475 (1986)
02. An apparently first-order transition between two amorphous phases of ice induced by pressure.(2.6MB) O. Mishima, L.D. Calvert
& E. Whalley
Nature 314, 76-78 (1985)
01. 'Melting' ice I at 77 K and 10 kbar: a new method of making amorphous solids.(2.5MB) O. Mishima, L.D. Calvert
& E. Whalley
Nature 310, 393-395 (1984)
Top


LAST UP DATE:2022.11.10

NIMS Home Page