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the target range for DRAM applications (1–5 3 10 2 7 A cm 2 2). At
this composition, we find er ¼ 62:5 and the FOM is 24.3 mC cm−2.

These results should be contrasted with those of bulk crystalline
ZrxSnyTiz O4 (x þ y þ z ¼ 2) (ref. 12). A single homogeneous solid-
solution phase, isomorphous with the orthorhombic a-PbO2

structure, was found near the composition ZrTiO4, as indicated
in Fig. 2. The remainder of the ZrxSnyTizO4 phase diagram consists
of multiphase mixtures of the ternary phase and the endmembers.
Zr–Sn–Ti–O polycrystalline ceramics are well known for their
superior microwave properties, including a moderate dielectric
constant, very low dissipation factor, and low temperature coefficient
of permittivity13. The properties of Zr0.875Sn0.25Ti0.875O2, for example,
were studied carefully as a function of doping and sintering. A
permittivity of ,36 and values for the dissipation factor (tan
d,1=Q) as low as 7 3 10 2 5 were obtained. The indicated composi-
tion is typical of those used for applications, which are invariably
chosen to be within the homogeneous phase field. Note that the
optimum compositions in our amorphous films are outside this
composition field that yields homogeneous crystalline phases.

Amorphous thin films of (Zr, Sn)TiO4 with a particular but
unspecified Zr:Sn composition have been studied14: a value of
er ¼ 27 was inferred in amorphous films prepared by radio fre-
quency magnetron sputtering at 200 8C; a value of er ¼ 38 was
found in crystalline films, that is, the bulk value. For approximately
the same composition, however, we observe e,50. This is a very
substantial difference. At present we cannot explain the discrepancy
between our data and those described in ref. 14. We do observe a

decrease in the dielectric constant for deposition at higher tem-
peratures, namely for films with a presumably greater degree of local
order, so perhaps the films deposited by Nakagawara et al.14 also
have a higher degree of order than our films.

This work demonstrates the value of the CCS technique in the
search for metastable materials whose properties are sensitive to
preparation conditions. Many issues regarding the development of
this material for practical application remain to be addressed. For
example, fully optimized uniform films need to be made using a
single target with on-axis sputtering (or using CVD), and the
properties of films ,10–20 nm thick (one fifth the present
value) must be evaluated. Also, conditions that lead to a lower
leakage current must be found and capacitors made using standard
electrodes (for example, TiN) must be subjected to standard post-
processing and evaluated for reliability using accelerated testing.
Although Zr–Sn–Ti–O films must be further developed, our
preliminary results are encouraging. M
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Figure 2 Representation of the ternary phase diagram of Zr–Ti–Sn–O. Shown is

the region where single-phase crystalline material is obtained (horizontal

hatching) compared to the region where the best thin-film properties are

obtained (diagonal hatching), as inferred from Fig. 1b. The dark line indicates

the (Zr, Sn)TiO4 line composition, which reflects prior art shown in ref. 14.
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Figure 3 A typical current–voltage characteristic for a film with the approximate

composition Zr0.3Ti0.9Sn0.8O2. The dielectric constant in this film was er ¼ 62:5

(using the thickness determined by Rutherford backscattering, RBS, as 70 nm).

The FOM for this film was 24.3 mC cm−2.
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Although liquid water has been the focus of intensive research for
over 100 years, a coherent physical picture that unifies all of the
known anomalies of this liquid1–3 is still lacking. Some of these
anomalies occur in the supercooled region, and have been ratio-
nalized on the grounds of a possible retracing of the liquid–gas
spinodal (metastability limit) line into the supercooled liquid
region4–7 or alternatively the presence of a line of first-order
liquid–liquid phase transitions in this region which ends in a
critical point8–14. But these ideas remain untested experimentally,
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in part because supercooled water can be probed only above the
homogeneous nucleation temperature TH at which water sponta-
neously crystallizes. Here we report an experimental approach
that is not restricted by the barrier imposed by TH, involving
measurement of the decompression-induced melting curves of
several high-pressure phases of ice in small emulsified droplets.
We find that the melting curve for ice IV seems to undergo a
discontinuity at precisely the location proposed for the line of
liquid–liquid phase transitions8. This is consistent with, but does
not prove, the coexistence of two different phases of (supercooled)
liquid water. From the experimental data we calculate a possible
Gibbs potential surface and a corresponding equation of state for
water, from the forms of which we estimate the coordinates of the
liquid–liquid critical point to be at pressure Pc < 0:1 GPa and
temperature Tc < 220 K.

In the liquid–liquid hypothesis for the anomalies of supercooled
water8, the liquid can exist in two phases of different densities, here
denoted the high-density liquid (HDL) and low-density liquid
(LDL) by analogy with the known high-density amorphous
(HDA) and low-density amorphous (LDA) phases of ice15. To
explore the region of the phase diagram in which this transition is
supposed to occur, we have studied water confined to droplets with
diameters of the order of 1–10 mm and exposed to high pressures
(Fig. 1a). In such small volumes, nucleation of secondary ice phases
following melting in the supercooled regime is kinetically sup-
pressed. This procedure is especially useful in detecting metastable
melting curves (Fig. 1b, c) and, as it is not affected by the presence of
the line of homogeneous nucleation temperatures TH(P) (ref. 16)
(below which melting is immediately followed by freezing), can be
applied to provide a partial test for the hypothesis that there exists a
line L1 of liquid–liquid first-order phase transitions somewhere in
the region of the P–T plane below the line TH(P). Any metastable
melting line that crosses L1 should display discontinuous behaviour
at L1 (such as ice IV shown in Fig. 1d) because the melting behaviour
of the ice would be different for the two liquids that coexist at L1.

We confine 1 cm3 of water emulsion in an indium capsule and we
compress (and decompress) it at a constant rate by a piston cylinder
apparatus (Fig. 1a). We measure T using a thermocouple through-
out the compression and decompression cycle. As an endothermic
(or exothermic) transition results in a change in temperature (Fig.
1b), we can determine with high accuracy the location of the CIM
(compression-induced melting) and DIM (decompression-induced
melting) lines16. The present experiments reveal that discontinuous
behaviour does occur on melting (Fig. 2). In the region of overlap,
the DIM lines agree with the previously reported melting lines17,18,
confirming that they are indeed the equilibrium stable melting line
and the equilibrium metastable melting line. Moreover, they dis-
appear when we compress an emulsion-carrier sample without
water. We confirm the production of the supercooled liquid on
further decompression by finding an exothermic transition at the
TH line below 0.2 GPa, which indicates freezing of the liquid19.
Crystalline ice appears, probably due to immediate freezing after
melting occurs (below TH, the transition to another crystalline
phase should occur on the DIM line because the liquid produced
by DIM should crystallize homogeneously below this temperature).

We extend the TH line to 1.5 GPa by compressing the supercooled
liquid and detecting its freezing on the TH (Fig. 2a, centre panel). We
also observe the CIM line for ice Ih, consistent with previous results16

(note that we replace the nominal pressure reported in ref. 16 by the
real pressure). We find the crystallization line, TX, of emulsified
HDA is higher by ,20 K than that of bulk HDA around 1.5 GPa;
only the results are shown in Fig. 2a, right panel. The long-dashed
line and the horizontal ‘error bar’ around 0.2 GPa in Fig. 2a, right
panel, indicate the proposed20 and the experimentally obtained21

location of the LDA/HDA ‘equilibrium’ boundary. The long-
dashed line around 0.5 GPa indicates the extrapolated Ih/HDA
‘equilibrium’ boundary.

We also find what appear to be two ‘possible new phases’ (PNP),
denoted PNP-XIII and PNP-XIV. The DIM line for PNP-XIV is
useful because it serves as a ‘control’ for the discontinuous
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Figure 1 Overall logic of the present experiment. This experiment is designed to

probe the region of the temperature–pressure phase diagram—below the

nucleation temperature TH and above the crystallization temperature Tx—where

the line L1 of liquid–liquid phase transtions might exist separating a low-density

liquid phase from a high-density liquid phase. a, The experimental set-up. The

sample, of volume ,1 cm3, consists of 40% v/v of deionized water in a

methylcyclohexane/methylcyclopentane mixture and surface stabilizer (sorbitan

tristearate) and forms a water emulsion with drop diameter 1–10 mm (ref. 19).

Pressure P is applied, keeping the cylinder at a nearly constant low temperature,

using an automatic hydraulic pump with a relative error of ,2MPa at 0.1 GPa, and

10MPa at 1GPa. The temperature T of the sample is monitored by an alumel–

chromel thermocouple with a relative accuracy of 60.02K (ref. 21). The compres-

sion (and decompression) rate is held constant at dP=dt < 0:2GPamin2 1 even

during transitions. Also shown is a diagram illustrating the case of compression-

induced melting from crystal (X) to liquid (L). b, The endothermic temperature

response of the sample during CIM (compression-induced melting) and DIM

(decompression-induced melting). During both CIM and DIM, the crystal X is

forced to melt by the pressure, which reduces the sample temperature because

the melt absorbs the latent heat quasi-adiabatically. The cooled sample melts by

further compression (or decompression). The diagram shows this endothermic

temperature response to a sequence of four infinitesimal pressure increments

during CIM (and a corresponding temperature response to a sequence of four

infinitesimal pressure decrements during DIM). After the entire sample is trans-

formed, the temperature returns to the cylinder temperature. c, Typical phase

diagram showing two stable melting lines (solid curves, denoted s) separating

two stable crystallinephases X1 and X2 from the stable liquid (the hatched region).

Also shown are two metastable melting lines (dashed curves, denoted ms), one

of which can be located using DIM and the other using CIM. Use of an emulsion

suppresses the direct X1/X2 transitions. d, Schematic illustration of the present

experiments. We measure the DIM line of ice IV, and search for a kink. We choose

ice IV (ref. 29) because its metastable melting line is readily measurable by DIM; it

appears to extrapolate to the region of the hypothesized line L1 of liquid–liquid

(LDL/HDL) transitions located between TH and TX and terminating at an apparent

critical point (the black point).
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behaviour shown by the DIM line of ice IV. We obtain PNP-XIII by
the decompression-induced transition of the PNP-XIV emulsion
annealed around 250 K. We obtain PNP-XIV (1) by heating emul-
sified HDA above TX around 1.5 GPa, (2) by compressing super-
cooled liquid beyond the TH line around 230 K, or (3) by cooling the
liquid below TH above ,1 GPa.

The smoothness of the PNP-XIV DIM line above TX implies that
L1, if it exists, lies in a different region of the P–T diagram traversed
by the DIM line of PNP-XIV. PNP-XIV may have a rather ordered
structure because of the endothermic nature of the melting and
immediate freezing transition below TH (Fig. 2b, left panel) which
indicates that the transition is apparently from a relatively ordered

crystalline phase to a more disordered crystalline phase with net
heat absorption.

We note that the DIM line of ice IV shows a sharp kink at 0.1 GPa
and 215 K. To interpret this sharp kink, we calculate the Gibbs
potential surface for liquid water, GL(P, T), and we consider if this
surface is consistent with the possible existence of L1. We shall see
that the kink in the DIM line of ice IV may occur precisely at the line
L1 of the hypothesized liquid–liquid transition. As with all phase-
transition data, our data are also consistent with the possibility22 of
no singularity at all, but rather a sharp but continuous change in the
behaviour of the relevant quantities—as there must be experimen-
tal error bars on data points (and since the number of data points is
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Figure 2 Data obtained in the present experiment. a, The left panel shows the

measured DIM temperature response of the ice emulsion during each

decompression; the centre panel shows the measured CIM temperature

response during each compression. The colour-highlighted traces correspond

to the characteristic sudden changes in the sample temperature. The right panel

shows the melting lines that are extracted from the data shown. The DIM line of

ice IV shows a kink at P < 0:1GPa and T < 215K, and is followed by the line of

broad exothermic transitions (the vertical hatched region). We note also that this

kink appears well below the homogeneous nucleation line TH(P), so the possibility

that the kink is due to TH(P) seems unlikely. The right panel also shows the melting

lines of the other ices and the LDA/HDA and Ih/HDA transition lines20 (the long-

dashed lines). The horizontal bar indicates the range of metastability found for the

LDA/HDA transition. b, Enlargement of the region of a in which the kink in the DIM

curve of ice IVoccurs (compiling the temperature responses forms the DIM lines

of ices).
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finite, not infinite) there is no a priori way to distinguish a function
with a sharp discontinuous ‘step’ from a continuous function with a
sharp but still continuous behaviour that merely resembles a step.
An example of such a function is y ¼ tanh 100x which appears to
jump discontinuously from −1 for negative x to +1 for positive x, yet
in fact is a continuous function.

The general procedure we shall follow is based on the fact that
along the melting line of any solid ice phase (ice Ih, or any of the
high-pressure ice phases), the Gibbs potentials of the coexisting ice
and liquid phases must be identical. Hence we can obtain the Gibbs
potential of the liquid phase along the melting line of each ice phase
by evaluating the Gibbs potential of that ice phase along its melting
line.

The Gibbs potential has no natural zero; in this study, we
construct DGL [ GL 2 GIh

, the Gibbs potential of the liquid relative
to that of ice Ih (Fig. 3a). Hence the slope of this surface with respect
to P must be the difference in specific volumes of the liquid
and ice Ih, and the slope with respect to T must be the
difference in entropies of the liquid and ice Ih. One advantage of this
construction is that the melting line of ice Ih is a curve that is
constrained to lie in the plane DGL ¼ 0 (Fig. 3a).

We now consider the Gibbs potential of one of the high-pressure
ices relative to that of ice Ih, DGHP [ GHP 2 GIh

(Fig. 3b). We can

obtain the DGHP surface by noting that to a good approximation it is
a plane, because (1) the difference in specific volume between the
high-pressure ice and ice Ih, V HP 2 V Ih

[ ½]ðGHP 2 GIh
Þ=]PÿT is

roughly constant over the relevant parameter range (0–1.5 GPa
and 77–300 K), and (2) the difference in entropy between the high-
pressure ice and ice Ih—that is, SHP 2 SIh

[ 2 ½]ðGHP 2 GIh
Þ=]TÿP —

is relatively small23 (so the pressure at the phase boundary between
the high-pressure ice and ice Ih is roughly constant and independent
of temperature, and hence the line of intersection with the basal
plane is approximately parallel to the T axis). This plane can be
determined by knowing any three points or, equivalently, by
knowing one point—say, the pressure at the plane’s intersection
with the basal plane—and the slopes of the plane in the temperature
and pressure directions. We therefore calculate the DGHP plane from
its slope and the pressure at the intersection; we take the slope,
½]ðDGHPÞ=]PÿT ¼ VHP 2 V Ih

, from ref. 24, and the pressure from
that at the intersection between the melting line of the high-pressure
ice and that of ice Ih (Fig. 2a, right panel); this is the pressure of the
triple point at which three phases (liquid, ice Ih, and the high-
pressure ice) coexist.

Figure 3c shows how we calculate DGL along the melting line from
the known DGHP plane and the known melting line of a given high-
pressure ice phase—because GL ¼ GHP along this line. We can
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potentials at corresponding temperatures at 1 bar. The LDA Gibbs
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the DGL at high pressure with that at 1 bar, a rapid slope change

(corresponding to a possible liquid–liquid phase transition, labelled
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this critical point—which in turn arises because below the line of
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repeat this procedure for each of the high-pressure ice phases, and
thereby obtain values of the Gibbs potential along an entire family of
lines (Fig. 3d). Using this family of lines, we then construct the DGL

surface (Fig. 3d) by interpolation between the known values of DGL

along this family of lines.
Figure 4a shows a portion of the DGL surface. As an accuracy

check, we note that this surface includes on it the previously
reported25,26 line at 1 bar. Also shown are the DG surfaces of LDA
and HDA. Thus we can calculate the entire DGL surface by
connecting these individual lines, and taking the slopes of the
LDA phase and the hypothesized LDL phase to be similar (compare
the hatched area of Fig. 4a). In this way, we find the LDA and HDA
Gibbs potential surfaces, assuming that they are planes and that the
Ih–HDA ‘equilibrium’ transition pressure is 0.5 GPa and the LDA/
HDA ‘equilibrium’ pressure is 0.2 GPa (refs 20, 21; Fig. 2a, right
panel). The slope ½]ðG 2 GIh

Þ=]PÿT of LDA and HDA we obtain from
their known specific volumes15. We note that the LDA plane is
almost parallel to the basal plane because the specific volume of LDA
and that of ice Ih are about the same15. The thick solid lines in Fig. 4a
(except the line at 1 bar) are DGL along the melting lines of high-
pressure ices, and the thick broken lines (except the line at 1 bar) are
those of the PNP ices. The error in the Gibbs potential is much less
than 0.1 kJ mol−1.

Figure 4b shows the results of a detailed calculation of the DGL

surface for T between 80 and 270 K and P between 0 and 0.5 GPa. We
note that the intersection between the nearly flat LDL surface and
the slope of the HDL Gibbs potential makes a distinct ‘crease’ which
starts at the LDA/HDA boundary and continues to a point with
coordinates ,0.1 GPa and ,220 K. This behaviour is consistent
with the presence of a first-order transition line, as the specific
volume—the first derivative of the Gibbs potential—is discontin-
uous across the crease.

To further test this possibility, we show in Fig. 4c the pressure
dependence of DGL at fixed T. For T . 235 K, the DGL at high P
extrapolates smoothly to the independently calculated DGL at 1 bar.
For the 220 K isotherm, the slope changes rapidly around 0.1 GPa in
order to connect to the 1 bar value of DGL, while at 215 K, a crease in
the surface must occur if the values of DGL at 1 bar and 0.1 GPa are
to be on the same curve.

We note that this point (0.1 GPa, 215 K) is precisely the point
where the melting curve of ice IV undergoes a sharp discontinuity,
so DGL ¼ DGIV. Although this could be a coincidence, it could also
arise because of the presence of a line of first-order liquid–liquid
phase transitions.

In Fig. 4d we show a possible equation of state V ¼ VðP;TÞ that is
consistent with experimental data. The specific volumes of the two
liquid phases LDL and HDL appear to be continuous with the
specific volumes of LDA and HDA. Further, the anomalous beha-
viour of supercooled D2O water in terms of both liquid structure27

and molecular relaxation28 are also consistent with the existence of a
critical point with approximately the same coordinates. M
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The role of ozone in absorbing ultraviolet solar radiation is well
known. Ozone also makes a significant contribution to the
radiative balance of the upper troposphere and lower strato-
sphere, such that changes in the distribution of ozone in these
atmospheric regions will affect the radiative forcing of climate1,2.
Furthermore, tropospheric ozone is the source of the hydroxyl
radical which controls the abundance and distribution of many
atmospheric constituents, including greenhouse gases such as
methane and hydrochlorofluorocarbons. Tropospheric ozone is
produced photochemically in situ and is also transported down
from the stratosphere, but the relative importance of these two
sources to its global budget is poorly understood. High-quality
tropospheric and lower-stratospheric ozone profile measure-
ments are available from sondes and lidar techniques, but their
geographical sampling is very limited. Complementary satellite
measurements of the global ozone distribution in this height
region are therefore required to quantify ozone’s tropospheric
budget and its participation in climate-forcing and tropospheric
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