Ikumu Watanabe @ NIMS  
HOME PROFILE ACCOMPLISHMENT EDUCATION
ENGLISH

   NIMS Link

   ’}”g‘åŠw Link

  Šw‹¦‰ï Link

˜_•¶(‘ÛŽ)
  1. X. Zheng, I. Watanabe, J. Paik, J. Li, X. Guo, and M. Naito, Text-to-Microstructure generation using generative deep learning, Small (2024) 2402685 accepted.
    DOI: https://doi.org/10.1002/smll.202402685
  2. S. Kawai and I. Watanabe, Image-based finite element modeling of air flow and thermal transport in Al-fiber-sintered porous materials, Applied Thermal Engineering 249 (2024) 123375.
    DOI: https://doi.org/10.1016/j.applthermaleng.2024.123375
  3. J. Zhou, I. Watanabe, W. Song, K. Kambayashi, and T. Chen, Multi-objective topology optimization of porous microstructure in die-bonding layer of a semiconductor, Science and Technology of Advanced Materials: Methods 4 (2024) 2320691.
    DOI: https://doi.org/10.1080/27660400.2024.2320691
  4. S. Yanagawa and I. Watanabe, Multiscale finite element analysis of yield-point phenomenon in ferrite-pearlite duplex steels, ISIJ International 64 (2024) 874-880.
    DOI: https://doi.org/10.2355/isijinternational.ISIJINT-2023-470
  5. X. Zheng, I. Watanabe, S. Wang, T. Chen, and M. Naito, Minimal-surface-based multiphase metamaterials with highly variable stiffness, Materials & Design 237 (2024) 112548.
    DOI: https://doi.org/10.1016/j.matdes.2023.112548
  6. W. Weng, X. Zheng, M. Tenjimbayashi, I. Watanabe, and M. Naito, De-icing performance evolution with increasing hydrophobicity by regulating surface topography, Science and Technology of Advanced Materials (2024) 2334199.
    DOI: https://doi.org/10.1080/14686996.2024.2334199
  7. X. Zheng, T. Chen, X. Jiang, M. Naito, and I. Watanabe, Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices, Science and Technology of Advanced Materials 24 (2023) 2157682.
    DOI: https://doi.org/10.1080/14686996.2022.2157682
  8. T. Matsuno, T. Fujita, T. Matsuda, Y. Shibayama, T. Hojo, and I. Watanabe, Unstable stress-triaxiality development and contrasting weakening in two types of high-strength transformation-induced plasticity (TRIP) steels: Insights from a new compact tensile testing method, Journal of Materials Processing Technology 322 (2023) 118174.
    DOI: https://doi.org/10.1016/j.jmatprotec.2023.118174
  9. H. Wang, H. Zhang, R. Tamura, B. Da, S. A. Abdellatef, I. Watanabe, N. Ishida, D. Fujita, N. Hanagata, T. Nakagawa, and J. Nakanishi, Mapping stress inside living cells by atomic force microscopy in response to environmental stimuli, Science and Technology of Advanced Materials 24 (2023) 2265434.
    DOI: https://doi.org/10.1080/14686996.2023.2265434
  10. K. Kambayashi, N. Kogiso, I. Watanabe, and T. Yamada, Level-set-based topology optimization of a morphing flap as a compliant mechanism considering finite deformation analysis, Structural and Multidisciplinary Optimization 66 (2023) 223.
    DOI: https://doi.org/10.1007/s00158-023-03670-1
  11. I. Watanabe, T. Chen, S. Taniguchi, and H. Kitano, Heterogeneous microstructure of duplex multilayer steel structure fabricated by wire and arc additive manufacturing, Materials Characterization 191 (2022) 112159.
    DOI: https://doi.org/10.1016/j.matchar.2022.112159
  12. I. Watanabe and T. Amaishi, Three-dimensional finite element analysis of unintended deformation of polycrystalline billet in micro-extrusion, International Journal of Advanced Manufacturing Technology 120 (2022) 817-827.
    DOI: https://doi.org/10.1007/s00170-022-08726-y
  13. T. Chen and I. Watanabe, Data-driven estimation of plastic properties in work-hardening model combining power-law and linear hardening using instrumented indentation test, Science and Technology of Advanced Materials: Methods 2 (2022) 416-424.
    DOI: https://doi.org/10.1080/27660400.2022.2129508
  14. J. Zhou, I. Watanabe, and T. Yamada, Computational morphology design of duplex structure considering interface debonding, Composite Structures 302 (2022) 116200.
    DOI: https://doi.org/10.1016/j.compstruct.2022.116200
  15. X. Zheng, K. Uto, W.-H. Hu, T.-T. Chen, M. Naito, and I. Watanabe, Reprogrammable flexible mechanical metamaterials, Applied Materials Today 29 (2022) 101662.
    DOI: https://doi.org/10.1016/j.apmt.2022.101662
  16. T. Funazuka, K. Dohda, T. Shiratori, S. Horiuchi, and I. Watanabe, Effect of punch surface microtexture on the microextrudability of AA6063 micro backward extrusion, Micromachines 13 (2022) 2001.
    DOI: https://doi.org/10.3390/mi13112001
  17. K. Goto, K. Naito, K. Shirasu, and I. Watanabe, Numerical calculation and finite element analysis for anisotropic elastic properties of carbon fibers: Dependence of integration subinterval and mesh size on indentation-derived elastic modulus, SN Applied Sciences 4 (2022) 291.
    DOI: https://doi.org/10.1007/s42452-022-05183-w
  18. K. Goto, A. Ikeda, T. Osada, I. Watanabe, K. Kawagishi, and T. Ohmura, High-throughput evaluation of stress-strain relationships in Ni-Co-Cr ternary systems via indentation testing of diffusion couples, Journal of Alloys and Compounds 910 (2022) 164868.
    DOI: https://doi.org/10.1016/j.jallcom.2022.164868
  19. W.-H. Hu, M. Ji, T. Chen, S. Wang, M. Tenjimbayashi, Y. Sekiguchi, I. Watanabe, C. Sato, and M. Naito, Light-induced topological programmability in shape-reconfigurable three-dimensional Origami, Small 18 (2022) 2107078.
    DOI: https://doi.org/10.1002/smll.202107078
  20. W. Hu, T. Chen, R. Tamura, K. Terayama, S. Wang, I. Watanabe, and M. Naito, Topological alternation from structurally adaptable to mechanically stable crosslinked polymer, Science and Technology of Advanced Materials 23 (2022) 66-75.
    DOI: https://doi.org/10.1080/14686996.2021.2025426
  21. T. Chen, I. Watanabe, and T. Funazuka, Characterization of the strain-rate-dependent plasticity of alloys using instrumented indentation tests, Crystals 11 (2021) 1316.
    DOI: https://doi.org/10.3390/cryst11111316
  22. X. Zheng, T. Chen, X. Guo, S. Samitsu and I. Watanabe, Controllable inverse design of auxetic metamaterials using deep learning, Materials & Design 211 (2021) 110178.
    DOI: https://doi.org/10.1016/j.matdes.2021.110178
  23. T. Chen, I. Watanabe, D. Liu, and K. Goto, Data-driven estimation of plastic properties of alloys using neighboring indentation test, Science and Technology of Advanced Materials: Methods 1 (2021) 143-151.
    DOI: https://doi.org/10.1080/27660400.2021.1959838
  24. X. Zheng, X. Guo, and I. Watanabe, A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties, Materials & Design 198 (2021) 109313.
    DOI: https://doi.org/10.1016/j.matdes.2020.109313
  25. E.A. Bonifaz and I. Watanabe, Anisotropic multiscale modelling in SAE-AISI 1524 gas tungsten arc welded joints, Crystals 11 (2021) 245.
    DOI: https://doi.org/10.3390/cryst11030245
  26. T. Tsumuraya, I. Watanabe, and T. Sawaguchi, Origin of phase stability in Fe with long-period stacking order as an intermediate phase in cyclic gamma-epsilon martensitic transformation, Physical Review Research 3 (2021) 033215.
    DOI: https://doi.org/10.1103/PhysRevResearch.3.033215
  27. T. Funazuka, K. Dohda, T. Shiratori, R. Hiramiya, and I. Watanabe, Effect of punch surface grooves on microformability of AA6063 backward microextrusion, Micromachines 12 (2021) 1299.
    DOI: https://doi.org/10.3390/mi12111299
  28. W.-H. Hu, M. Tenjimbayashi, S. Wang, Y. Nakamura, I. Watanabe, and M. Naito, Post-programmable network topology with broad gradients of mechanical properties for reliable polymer material engineering, Chemistry of Materials 33 (2021) 6876-6884.
    DOI: https://doi.org/10.1021/acs.chemmater.1c01715
  29. T. Matsuno, T. Hojo, I. Watanabe, A. Shiro, T. Shobu, and K. Kajiwara, Tensile deformation behavior of TRIP-aided bainitic ferrite steel in the post-necking strain region, Science and Technology of Advanced Materials: Methods 1 (2021) 56-74.
    DOI: https://doi.org/10.1080/27660400.2021.1922207
  30. J. Ruzic, K. Goto, I. Watanabe, T. Osada, L. Wu, and T. Ohmura, Temperature-dependent deformation behavior of gamma and gamma' single-phase nickel-based superalloys, Materials Science and Engineering A 818 (2021) 141439.
    DOI: https://doi.org/10.1016/j.msea.2021.141439
  31. H. Wang, H. Zhang, B. Da, D. Lu, R. Tamura, K. Goto, I. Watanabe, D. Fujita, N. Hanagata, J. Kano, T. Nakagawa, and M. Noguchi, Mechanomics biomarker for cancer cells unidentifiable through morphology and elastic modulus, Nano Letters 21-3 (2021) 1538-1545.
    DOI: https://doi.org/10.1021/acs.nanolett.1c00003
  32. R. Ando, T. Matsuno, T. Matsuda, N. Yamashita, H. Yokota, K. Goto, and I. Watanabe, Analysis of nano-hardness distribution near the ferrite-martensite interface in a dual phase steel with factorization of its scattering behavior, ISIJ International 61 (2021) 473-480.
    DOI: https://doi.org/10.2355/isijinternational.ISIJINT-2020-546
  33. A. Ikeda, K. Goto, T. Osada, I. Watanabe, and K. Kawagishi, High-throughput mapping method for mechanical properties, oxidation resistance, and phase stability in Ni-based superalloys using composition-graded unidirectional solidified alloys, Scripta Materialia 193 (2021) 91-96.
    DOI: https://doi.org/10.1016/j.scriptamat.2020.10.043
  34. L. Wu, T. Osada, I. Watanabe, T. Yokokawa, T. Kobayashi, and K. Kawagishi, Strength prediction of Ni-base disc superalloys: Modified gamma' hardening models applicable to commercial alloys, Materials Science and Engineering A 799 (2021) 140103.
    DOI: https://doi.org/10.1016/j.msea.2020.140103
  35. I. Watanabe, Z. Sun, H. Kitano, and K. Goto, Multiscale analysis of mechanical behavior of multilayer steel structures fabricated by wire and arc additive manufacturing, Science and Technology of Advanced Materials 21 (2020) 461-470.
    DOI: https://doi.org/10.1080/14686996.2020.1788908
  36. K. Goto, I. Watanabe, and T. Ohmura, Inverse estimation approach for elastoplastic properties using the load-displacement curve and pile-up topography of a single Berkovich indentation, Materials & Design 194 (2020) 108925.
    DOI: https://doi.org/10.1016/j.matdes.2020.108925
  37. A. Yamanaka, R. Kamijyo, K. Koenuma, I. Watanabe, and T. Kuwabara, Deep neural network approach to estimate biaxial stress-strain curves of sheet metals, Materials & Design 195 (2020) 108970.
    DOI: https://doi.org/10.1016/j.matdes.2020.108970
  38. T. Matsuno, R. Ando, N. Yamashita, H. Yokota, K. Goto, and I. Watanabe, Analysis of preliminary local hardening close to the ferrite-martensite interface in dual-phase steel by a combination of finite element simulation and nano-indentation test, International Journal of Mechanical Sciences 180 (2020) 105663.
    DOI: https://doi.org/10.1016/j.ijmecsci.2020.105663
  39. K. Koenuma, A. Yamanaka, I. Watanabe, and T. Kuwabara, Estimation of texture-dependent stress-strain curve and r-value of aluminum alloy sheet using deep learning, Materials Transactions 61 (2020) 2276-2283.
    DOI: https://doi.org/10.2320/matertrans.P-M2020853
  40. H. Wang, H. Zhang, K. Goto, I. Watanabe, H. Kitazawa, M. Kawai, H. Mamiya, and D. Fujita, Stress mapping reveals extrinsic toughening of brittle carbon fiber in polymer matrix, Science and Technology of Advanced Materials 21 (2020) 267-277.
    DOI: https://doi.org/10.1080/14686996.2020.1752114
  41. I. Watanabe and A. Yamanaka, Voxel coarsening approach on image-based finite element modeling of representative volume element, International Journal of Mechanical Sciences 150 (2019) 314-321.
    DOI: https://doi.org/10.1016/j.ijmecsci.2018.10.028
  42. K. Goto, I. Watanabe, and T. Ohmura, Determining suitable parameters for inverse estimation of plastic properties based on indentation marks, International Journal of Plasticity 116 (2019) 81-90.
    DOI: https://doi.org/10.1016/j.ijplas.2018.12.007
  43. J. Ruzic, I. Watanabe, K. Goto, and T. Ohmura, Nano-indentation measurement for heat resistant alloys at elevated temperatures in inert atmosphere, Materials Transactions 60 (2019) 1411-1415.
    DOI: https://doi.org/10.2320/matertrans.MD201909
  44. T. Matsuno, T. Yoshioka, I. Watanabe, and J.L. Alves, Three-dimensional finite element analysis of representative volume elements for characterizing the effects of martensite elongation and banding on tensile strength of ferrite-martensite dual-phase steels, International Journal of Mechanical Sciences 163 (2019) 105133.
    DOI: https://doi.org/10.1016/j.ijmecsci.2019.105133
  45. H. Wang, H. Zhang, D. Tang, K. Goto, I. Watanabe, H. Kitazawa, M. Kawai, H. Mamiya, and D. Fujita, Stress dependence of indentation modulus for carbon fiber in polymer composite, Science and Technology of Advanced Materials 20 (2019) 412-420.
    DOI: https://doi.org/10.1080/14686996.2019.1600202
  46. T. Onishi, T. Kadohira, and I. Watanabe, Relationship extraction with weakly supervised learning based on process-structure-property-performance reciprocity, Science and Technology of Advanced Materials 19 (2018) 649-659.
    DOI: https://doi.org/10.1080/14686996.2018.1500852
  47. H. Kondo, M. Wakeda, and I. Watanabe, Atomic study on the interaction between superlattice screw dislocation and gamma-Ni precipitate in gamma'-Ni3Al intermetallics, Intermetallics 102 (2018) 1-5.
    DOI: https://doi.org/10.1016/j.intermet.2018.08.008
  48. J. Ruzic, S. Emura, X. Ji, and I. Watanabe, Mo segregation and distribution in Ti Mo alloy investigated using nanoindentation, Materials Science and Engineering A 718 (2018) 48-55.
    DOI: https://doi.org/10.1016/j.msea.2018.01.098
  49. A. Ibrahim, K. Nakahata, H. Yamawaki, and I. Watanabe, One dimensional EFIT modeling and experimental validation of dynamic interfacial bonding, Mechanical Engineering Letters, Bulletin of the JSME 3 (2017) No.16-00605, 1-9.
    DOI: https://doi.org/10.1299/mel.16-00605
  50. I. Watanabe and D. Setoyama, Multiscale characterization of a polycrystalline aggregate subjected to severe plastic deformation with the finite element method, Materials Transactions 57 (2016) 1404-1410.
    DOI: https://doi.org/10.2320/matertrans.MH201514
  51. V.A. de Souza, I. Watanabe, and A. Yanagida, Numerical estimation of frictional effects in equal channel angular extrusion, Materials Transactions 57 (2016) 1399-1403.
    DOI: https://doi.org/10.2320/matertrans.MH201513
  52. S.K. Vajpai, H. Yu, M. Ota, I. Watanabe, G. Dirras, and K. Ameyama, Three-dimensionally gradient and periodic harmonic structure for high performance advanced structural materials, Materials Transactions 57 (2016) 1424-1432.
    DOI: https://doi.org/10.2320/matertrans.MH201509
  53. S. Bidhar, O. Kuwazuru, Y. Shiihara, Y. Hangai, M. Nomura, T. Utsunomiya, I. Watanabe, and N. Yoshikawa, Empirical formulation of stress concentration factor around an arbitrary-sized spherical dual-cavity system and its application to aluminum die castings, Applied Mathematical Modelling 39 (2015) 5707-5723.
    DOI: https://doi.org/10.1016/j.apm.2015.01.032
  54. S. Bidhar, O. Kuwazuru, Y. Shiihara, Y. Hangai, T. Utsunomiya, I. Watanabe, and N. Yoshikawa, Practical application of empirical formulation of the stress concentration factor around equally sized dual spherical cavities to aluminum die cast, Applied Mathematical Modelling 39 (2015) 881-893.
    DOI: https://doi.org/10.1016/j.apm.2014.07.005
  55. M. Muramatsu, M. Koyama, and I. Watanabe, Tensile testing with cyclic strain holding to analyze dynamic recrystallization of pure lead, Advances in Materials Science and Engineering 2014 (2014) No.498674, 1-8.
    DOI: https://doi.org/10.1155/2014/498674
  56. V.A. de Souza, L. Kirkayak, I. Watanabe, K. Suzuki, H. Ando, H. Sueoka, and H. Darama, Experimental and numerical analysis of container multiple stacks dynamics using a scaled model, Ocean Engineering 74 (2013) 218-232.
    DOI: https://doi.org/10.1016/j.oceaneng.2013.05.013
  57. I. Watanabe, D. Setoyama, N. Nagasako, N. Iwata, and K. Nakanishi, Multiscale prediction of mechanical behavior of Ferrite-Pearlite steel with Numerical Material Testing, International Journal for Numerical Methods in Engineering 89 (2012) 829-845.
    DOI: https://doi.org/10.1002/nme.3264
  58. I. Watanabe, D. Setoyama, N. Iwata, and K. Nakanishi, Characterization of yielding behavior of polycrystalline metals with single crystal plasticity based on representative characteristic length, International Journal of Plasticity 26 (2010) 570-585.
    DOI: https://doi.org/10.1016/j.ijplas.2009.09.005
  59. I. Watanabe and K. Terada, A method of predicting macroscopic yield strength of polycrystalline metals subjected to plastic forming by micro-macro de-coupling scheme, International Journal of Mechanical Science 52 (2010) 343-355.
    DOI: https://doi.org/10.1016/j.ijmecsci.2009.10.006
  60. I. Watanabe, K. Terada, E. A. de Souza Neto, and D. Peric, Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis, Journal of Mechanics and Physics in Solids 56 (2008) 1105-1125.
    DOI: https://doi.org/10.1016/j.jmps.2007.06.001
  61. K. Terada and I. Watanabe, Computational aspects of tangent moduli tensors in rate-independent crystal elastoplasticity, Computational Mechanics 40 (2007) 497-511.
    DOI: https://doi.org/10.1007/s00466-006-0123-0
  62. K. Terada, I. Watanabe, and M. Akiyama, Effects of shape and size of crystal grains on the strengths of polycrystalline metals, International Journal for Multiscale Computational Engineering 4 (2006) 445-460.
    DOI: https://doi.org/10.1615/IntJMultCompEng.v4.i4.30
  63. I. Watanabe, K. Terada, and M. Akiyama, Two-scale analysis for deformation-induced anisotropy of polycrystalline metals, Computational Materials Science 32-2 (2005) 240-250.
    DOI: https://doi.org/10.1016/j.commatsci.2004.08.002
˜_•¶(‘“àŽ)
  1. –öì^”V—T, “n粈疲, ƒtƒFƒ‰ƒCƒg-ƒp[ƒ‰ƒCƒg•¡‡‘gD|‚É‚¨‚¯‚é~•š“_Œ»Û‚̃}ƒ‹ƒ`ƒXƒP[ƒ‹—LŒÀ—v‘f‰ðÍ, “S‚ƍ| 110 (2024) 333-341.
    DOI: https://doi.org/10.2355/tetsutohagane.TETSU-2023-080
  2. ˆÀ“¡—批, ¼–쐒, ¼“c’mŽq, ŽR‰º“T—’j, ‰¡“cG•v, Œã“¡Œ’‘¾, “n粈疲, Dual Phase|‚É‚¨‚¯‚éƒtƒFƒ‰ƒCƒgEƒ}ƒ‹ƒeƒ“ƒTƒCƒgŠE–Ê‹ß–T‚̃iƒmd‚³•ª•z‚Æ‚»‚̃oƒ‰‚‚«ˆöŽq, “S‚ƍ| 106 (2020) 944-952.
    DOI: https://doi.org/10.2355/tetsutohagane.TETSU-2020-037
  3. ”ìÀN‘¾, ŽR’†W“¿, “n粈疲, ŒKŒ´—˜•F, [‘wŠwK‚ð—p‚¢‚½ƒAƒ‹ƒ~ƒjƒEƒ€‡‹à”‚̏W‡‘gD‚Ɉˑ¶‚µ‚½‰ž—͂Ђ¸‚݋Ȑü‚Ær’l‚̐„’è, ‘Y«‚ƉÁH 61 (2020) 48-55.
    DOI: https://doi.org/10.9773/sosei.61.48
  4. “n粈疲, Šâ“c“¿—˜, ~•š“_Œ»Û‚Ì—LŒÀ‚Ђ¸‚Ý’e‘Y«\¬ƒ‚ƒfƒŠƒ“ƒO, “S‚ƍ| 100 (2014) 1232-1237.
    DOI: https://doi.org/10.2355/tetsutohagane.100.1232
  5. ’琬ˆê˜Y, ‘å˜a^ª, Œã“¡_“ñ, “n粈疲, Fionn Dunne, Œ‹»‘Y«FE‰ðÍ‚É‚æ‚鋐Ž‹“I’e«‰ž—͉º‚ÌŒJ•Ô‚µ“‹““®, ƒXƒ}[ƒgƒvƒƒZƒXŠw‰ïŽ 2 (2013) 123-127.
    DOI: https://doi.org/10.7791/jspmee.2.123
  6. “n粈疲, ã˜H—Ñ‘¾˜Y, •¡‡‘gD|‚Ì”ñ‹ÏŽ¿‘gD‚ÉŠî‚­—ÍŠw‹““®ƒ‚ƒfƒŠƒ“ƒOŽè–@, “S‚ƍ| 98 (2012) 283-289.
    DOI: https://doi.org/10.2355/tetsutohagane.98.283
  7. £ŒËŽR‘åŒá, “n粈疲, Šâ“c“¿—˜, ƒtƒFƒ‰ƒCƒg-ƒp[ƒ‰ƒCƒg•¡‡‘gD|‚Ì‘gDŒ`‘Ô‚Æ—ÍŠw“Á«‚ÉŠÖ‚·‚éŽÀŒ±‚Ɛ”’l‰ðÍ‚Ì”äŠrŒ¤‹†, “S‚ƍ| 98 (2012) 290-295.
    DOI: https://doi.org/10.2355/tetsutohagane.98.290
  8. “n粈疲, Ž›“cŒ«“ñ˜Y, ƒ~ƒNƒ-ƒ}ƒNƒ”ñ˜A¬‰ðÍ‚É‚æ‚鑽Œ‹»‹à‘®‚̉ÁHŒã~•š‹­“x‚Ì•]‰¿Žè–@, “ú–{‹@ŠBŠw‰ï˜_•¶WA•Ò 76 (2010) 752-760.
    DOI: https://doi.org/10.1299/kikaia.76.752
  9. “n粈疲, Šâ“c“¿—˜, ’†¼L‹g, ƒeƒ“ƒ\ƒ‹“à•”•Ï”‚ðŽ‚Â—LŒÀ‚Ђ¸‚Ý’e‘Y«\¬ƒ‚ƒfƒ‹‚̒莮‰», “ú–{ŒvŽZHŠw‰ï˜_•¶W, ˜_•¶”ԍ†20100005 (2010).
    DOI: https://doi.org/10.11421/jsces.2010.20100005
  10. “n粈疲, Ž›“cŒ«“ñ˜Y, ŽOŽŸŒ³‘Y«‰ÁH–â‘è‚É‚¨‚¯‚éƒ~ƒNƒ-ƒ}ƒNƒ”ñ˜A¬‰ðÍ, ‰ž—p—ÍŠw˜_•¶W 11 (2008) 123-131.
    DOI: https://doi.org/10.2208/journalam.11.123
  11. “n粈疲, Ž›“cŒ«“ñ˜Y, HŽR‰ë‹`, Œ‹»‘Y«E‘¹ƒ}ƒ‹ƒ`ƒXƒP[ƒ‹‰ðÍ‚É‚æ‚鑽Œ‹»‹à‘®‚̈ø’£‹­“x‚ÌŒ‹»—±Œa‚ւ̈ˑ¶«•]‰¿, “ú–{‹@ŠBŠw‰ï˜_•¶WA•Ò 74 (2008) 412-418.
    DOI: https://doi.org/10.1299/kikaia.74.412
  12. “n粈疲, Ž›“cŒ«“ñ˜Y, E. A. de Souza Neto and D. Peric, ‘½Œ‹»‹à‘®‚̃}ƒ‹ƒ`ƒXƒP[ƒ‹‰ðÍ‚É‚æ‚éƒ}ƒNƒÞ—¿“Á«•]‰¿‚É‚¨‚¯‚é—LŒÀ—v‘f‚̐«”\, ‰ž—p—ÍŠw˜_•¶W 10 (2007) 167-174.
    DOI: https://doi.org/10.2208/journalam.10.167
  13. “n粈疲, Ž›“cŒ«“ñ˜Y, Œ‹»—±‚Ì‘¹‚ðl—¶‚µ‚½‘½Œ‹»‹à‘®‚̃}ƒ‹ƒ`ƒXƒP[ƒ‹‰ðÍŽè–@, “y–ØŠw‰ï˜_•¶W A 62 (2006) 772-781.
    DOI: https://doi.org/10.2208/jsceja.62.772
  14. “n粈疲, Ž›“cŒ«“ñ˜Y, ”ñüŒ`‹ÏŽ¿‰»—˜_‚É‚¨‚¯‚é2•Ï”‹«ŠE’l–â‘è‚̃~ƒNƒ-ƒ}ƒNƒ”ñ˜A¬‹ßŽ—‰ð–@, ‰ž—p—ÍŠw˜_•¶W 8 (2005) 277-285.
    DOI: https://doi.org/10.2208/journalam.8.277
  15. “n粈疲, Ž›“cŒ«“ñ˜Y, Œ‹»‘Y«\¬ƒ‚ƒfƒ‹‚É‚¨‚¯‚鉞—͐ϕª‚ƐüŒ`‰»‚̈êlŽ@, “ú–{ŒvŽZHŠw‰ï˜_•¶W, ˜_•¶”ԍ†20050014 (2005).
    DOI: https://doi.org/10.11421/jsces.2005.20050014
  16. “n粈疲, Ž›“cŒ«“ñ˜Y, HŽR‰ë‹`, ‹ÏŽ¿‰»–@‚É‚æ‚鑽Œ‹»‹à‘®‚Ì—U“±ˆÙ•û«‚Ì•]‰¿, “ú–{‹@ŠBŠw‰ï˜_•¶WA•Ò 70 (2004) 8-15.
    DOI: https://doi.org/10.1299/kikaia.70.1558
  17. “n粈疲, ŠÛŽR“ÖŽu, Ž›“cŒ«“ñ˜Y, HŽR‰ë‹`, ‹ÏŽ¿‰»–@‚ÉŠî‚­ƒ}ƒ‹ƒ`ƒXƒP[ƒ‹ƒ‚ƒfƒŠƒ“ƒO‚É‚æ‚鑽Œ‹»‹à‘®‚ÌŒ‹»—±Œ`ó‚̉e‹¿•]‰¿, ‰ž—p—ÍŠw˜_•¶W 7 (2004) 365-371.
    DOI: https://doi.org/10.2208/journalam.7.365
  18. “n粈疲, Ž›“cŒ«“ñ˜Y, ¼ˆä˜aŒÈ, HŽR‰ë‹`, ªÎ –L, ‘½Œ‹»‹à‘®‚̃}ƒ‹ƒ`ƒXƒP[ƒ‹‰ðÍ, ‰ž—p—ÍŠw˜_•¶W 6 (2003) 239-246.
    DOI: https://doi.org/10.2208/journalam.6.239
  19. “n粈疲, —L”öˆê˜Y, ’n‰º‹óŠÔ‚É‚¨‚¯‚é‹…‘̃tƒ‰[ƒŒƒ“\‘¢‚Ì—LŒÀ•ÏˆÊ‰ðÍ, \‘¢HŠw˜_•¶W 47-AIII (2001) 1565-1572.
‰ðàE‘à
  1. X. Zheng, X. Zhang, T. Chen, and I. Watanabe, Deep Learning in Mechanical Metamaterials: From Prediction and Generation to Inverse Design, Advanced Materials 35 (2023) 2302530.
    DOI: https://doi.org/10.1002/adma.202302530
  2. “n粈疲, ‘Y«‰ÁH‚É‚¨‚¯‚é—LŒÀ—v‘fƒ‚ƒfƒŠƒ“ƒO‚ÌŠî‘b, ‚Õ‚ç‚·‚Æ‚· 21-2 (2021) 106-110.
    DOI: https://doi.org/10.32277/plastos.4.38_106
  3. “n粈疲, ”Šw“I‹ÏŽ¿‰»–@‚ÉŠî‚­ƒ~ƒNƒ-ƒ}ƒNƒƒXƒP[ƒ‹˜A¬—LŒÀ—v‘f‰ðÍ, ƒgƒ‰ƒCƒ{ƒƒWƒXƒg 65-11 (2020) 659-664.
    DOI: https://doi.org/10.18914/tribologist.65.11_659
  4. “n粈疲, ŒvŽZ‹@Žx‰‡Þ—¿ÝŒv, ‹à‘® 89, No.1 (2019) 54-59.
  5. ‘呺Fm, Œ´“O, “n粈疲, ŠE–Ê‚Ì”÷Ž‹“I‘gDE—ÍŠw‰ðÍ‚ƃ}ƒNƒ“Á«—\‘ª, ‹à‘® 87, No.1 (2017) 37-44.
  6. “n粈疲, ˜A‘±‘Ì—ÍŠw‚ÉŠî‚­‰„«”j‰ó‚̐”’l‰ðÍŽè–@, “S‚ƍ| 101 (2015) 465-470.
    DOI: https://doi.org/10.2355/tetsutohagane.TETSU-2015-022
  7. N. Iwata, I. Watanabe, D. Setoyama, and T. Iwata, Computational prediction of macroscopic mechanical behavior in multi-constituent steels, R&D Review of TOYOTA CRDL 45-4 (2014) 1-10.
  8. “n粈疲, \‘¢Þ—¿‚̃}ƒ‹ƒ`ƒXƒP[ƒ‹—LŒÀ—v‘fƒ‚ƒfƒŠƒ“ƒO, ‚Ó‚¥‚ç‚Þ 19-11 (2014) 82-87.
  9. “n粈疲, ‰„«”j‰ó‚̐”’l‰ðÍŽè–@‚Æ‹óŠÔƒXƒP[ƒ‹‚ÌŠK‘w«, “ú–{“S|‹¦‰ïg“S|Þ—¿‚Ì‘gD‚Ɖ„«”j‰ó Œ¤‹†‰ïh•ñ‘ (2014) 109-116.
  10. “n粈疲, ×ì–¾G, ’琬ˆê˜Y, —LŒÀ—v‘f‰ðÍ‚É‚æ‚é•¡‡‘gD|‚Ì—ÍŠw‹““®•]‰¿, ƒXƒ}[ƒgƒvƒƒZƒXŠw‰ïŽ 2 (2013) 119-122.
    DOI: https://doi.org/10.7791/jspmee.2.119
  11. “n粈疲, ‹ÏŽ¿‰»–@‚ÌŠî‘b‚Ɖž—p, “ú–{“S|‹¦‰ïgŒvŽZHŠw‚É‚æ‚é‘gD‚Æ“Á«—\‘ª‹ZpII Œ¤‹†‰ïh•ñ‘ (2013) 81-92.
  12. ã˜H—Ñ‘¾˜Y, ‘d˜ar, “n粈疲, •¡‡‘gD|‚̃‚ƒfƒŠƒ“ƒOŽè–@‚ÌŠî–{“I‚ȍl‚¦•û‚Æ“K—p—á, “ú–{“S|‹¦‰ïg‰ÁHd‰»“Á«‚Æ‘gD Œ¤‹†‰ïh•ñ‘(‰ü’ù”Å), 5. •¡‡‘gD|‚̉ÁHd‰»‹““® (2012) 205-209.
  13. ã˜H—Ñ‘¾˜Y, ‘d˜ar, “n粈疲, •¡‡‘gD|‚̃‚ƒfƒŠƒ“ƒOŽè–@‚ÌŠî–{“I‚ȍl‚¦•û‚Æ“K—p—á, “ú–{“S|‹¦‰ïg‰ÁHd‰»“Á«‚Æ‘gD Œ¤‹†‰ïh•ñ‘, 5. •¡‡‘gD|‚̉ÁHd‰»‹““® (2011) 205-209.
  14. Ž›“cŒ«“ñ˜Y, “n粈疲, HŽR‰ë‹`, ƒ~ƒNƒ‘½Œ‹»‘̍\‘¢‚©‚ç—\‘ª‚·‚éƒ}ƒNƒ•ÏŒ`E‹­“x“Á« |Œ‹»—±Œ`ó‚ÆŒ‹»—±Œa‚Ì‹y‚Ú‚·‰e‹¿|, “ú–{“S|‹¦‰ïh~•š‹­“x‚Æ‘gDŒ¤‹†‰ïh•ñ‘, 1. ‰ðàEƒŒƒrƒ…[•Ò 3Í ‘gDE—ÍŠw“Á«‚̃‚ƒfƒŠƒ“ƒOEƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“ (2006) 121-130.
  15. Ž›“cŒ«“ñ˜Y, “n粈疲, ‹ÏŽ¿‰»–@‚ÉŠî‚­”ñüŒ`ƒ}ƒ‹ƒ`ƒXƒP[ƒ‹‰ðÍ-Œ»ó‚Ɖۑè, ŒvŽZ”—HŠwƒŒƒrƒ…[ 2004-1 (2004) 1-22.
‘Û‰ï‹cEƒZƒ~ƒi[ (invited&keynote)
  1. I. Watanabe, T. Chen, and D. Liu, Characterization of mechanical properties of alloys using instrumented indentation test, XVII International Conference on Computational Plasticity, Barcelona, Spain, September, 2023 (keynote).
  2. I. Watanabe, Characterization of material properties from microscopic heterogeneity using Numerical Material Testing, ZCCE seminar, Swansea, Wales, U.K., July, 2023 (invited).
  3. I. Watanabe, T. Chen, and D. Liu, Characterization of mechanical properties using instrumented indentation test, International Conference on Processing and Manufacturing of Advanced Materials, Vienna, Austria, July, 2023 (invited).
  4. I. Watanabe, J. Ruzic, K. Goto, and T. Ohmura, Nano-indentation measurement for heat resistant alloys at elevated temperatures in inert atmosphere, International Conference on Processing and Manufacturing of Advanced Materials, Vienna, Austria, May, 2021 (invited).
  5. I. Watanabe, K. Goto, and T. Ohmura, Estimation of stress-strain curve using indentation and its computational simulation, NU/NIMS Materials Genome Workshop, Evanston, U.S.A., March, 2019 (invited).
  6. I. Watanabe, A formulation of mean-field constitutive model based on optimization problem, International Symposium on Plasticity, Panama city, Panama, January, 2019 (keynote).
  7. I. Watanabe, G. Nakamura, and K. Yuge, Maximization of morphological strengthening effect in duplex microstructure, International Conference on Processing and Manufacturing of Advanced Materials, Paris, France, July, 2018 (invited).
  8. I. Watanabe, Multiscale finite element modeling of ductile fracture in metals, NU/NIMS Materials Genome Workshop, Evanston, U.S.A., March, 2018 (invited).
  9. I. Watanabe, T. Onishi, and T. Kadohira, Computer Aided Material Development (CAMaD) using text mining, NU/NIMS Materials Genome Workshop, Evanston, U.S.A., March, 2017 (invited).
  10. I. Watanabe, Scale-coupling approaches using finite element analysis of microstructure in structural materials, International Symposium on Plasticity, Puerto Vallarta, Mexico, January, 2017 (keynote).
  11. I. Watanabe, Y. Han, K. Ameyama, D. Setoyama, and N. Iwata, Study of strengthening effect of microscopic morphology using finite element analysis of periodic microstructure, Asia-Pacific Symposium on Engineering Plasticity and Its Applications 2016, Higashi-Hiroshima, Japan, December, 2016 (invited).
  12. I. Watanabe, Finite element modeling of microstructure as an interface between deformation mechanisms and bulk properties, 3mE seminar, Delft, Netherlands, June, 2016 (invited).
  13. I. Watanabe, Multi-scale finite element modeling in structural materials, ZCCE seminar, Swansea, Wales, U.K., June, 2016 (invited).
  14. I. Watanabe, Maximization of strengthening effect of microscopic morphology in duplex steels, NU/NIMS Materials Genome Workshop, Evanston, U.S.A., March, 2016 (invited).
  15. I. Watanabe, Characterization of strength-ductility relationship with finite element analysis of periodic microstructure, International Symposium on Plasticity, Hawaii, U.S.A., January, 2016 (keynote).
  16. I. Watanabe, Multi-scale finite element modeling in structural materials, Taishan Scholar Forum, Qingdao, China, October, 2015 (invited).
  17. I. Watanabe, D. Setoyama, and N. Iwata, Multi-scale modeling and characterization in multi-constituent steels, International Workshops on Advances in Computational Mechanics, Tokyo, Japan, October, 2015 (invited).
  18. I. Watanabe, Multi-scale finite element modeling in structural metals, CHiMaD seminar, Evanston, U.S.A., August, 2015 (invited).
  19. I. Watanabe, Control of heterogeneous microstructure to improve mechanical properties in structural materials, NIST seminar, Gaithersburg, U.S.A., July, 2015 (invited).
  20. I. Watanabe, Application of computational micromechanics to material R&D, NU/NIMS Materials Genome Workshop, Evanston, U.S.A., March, 2015 (invited).
  21. I. Watanabe, G. Nakamura, K. Ameyama, and K. Yuge, Maximization of morphological strengthening effect in dual-component microstructure, International Symposium on Plasticity, Montego Bay, Jamaica, January, 2015 (keynote).
  22. I. Watanabe, Multi-scale finite element modeling in structural materials, Seminar series Numerical Mathematics and Mechanics of University of Cologne and University of Duisburg-Essen, Essen, Germany, July, 2014 (invited).
  23. I. Watanabe, Homogenization analysis based on finite element method at continuum scale, NU/NIMS Materials Genome Workshop, Evanston, U.S.A., March, 2014 (invited).
  24. I. Watanabe, V.A. de Souza, and A. Yanagida, Finite element analysis of deformed microstructure after multiple-path of equal channel angular extrusion, International Symposium on Plasticity, Freeport, Bahamas, January, 2014 (keynote).
  25. I. Watanabe, Two-scale finite element analysis of equaled channeling angular extrusion of polycrystalline metal, International Conference on Processing and Manufacturing of Advanced Materials, Las Vegas, U.S.A., December, 2013 (invited).
  26. I. Watanabe, Multi-scale finite element modeling of structural materials, Swansea university C2EC seminar, Swansea, U.K., December, 2012 (invited).
  27. I. Watanabe, Deformed microstructure prediction with two-scale FEA, NU/NIMS Materials Genome Workshop, Evanston, U.S.A., March, 2012 (invited).
  28. I. Watanabe, Numerical prediction of deformed microstructure subjected to plastic forming with two-scale finite element analysis, MPIE seminar, Dusseldorf, Germany, March, 2012 (invited).
  29. I. Watanabe, Numerical prediction of deformed microstructure subjected to plastic forming and its macroscopic strength, Japan-China Nano-Structure Research Workshop, Shiga, Japan, October, 2011 (invited).
  30. I. Watanabe, D. Setoyama, and N. Iwata, Multi-scale modelling for Ferrite-Pearlite composite steel., XI International Conference on Computational Plasticity, Barcelona, Spain, September, 2011 (invited).
  31. I. Watanabe and N. Iwata, Thermodynamic formulation of elastoplastic constitutive model with subloading surface at finite strain, International Symposium on Plasticity, Puerto Vallarta, Mexico, January, 2010 (keynote).
  32. I. Watanabe, N. Iwata, K. Nakanishi, and K. Terada, Numerical modeling of material behavior of steel, Symposium in Memory of Professor Toshio Mura, Evanston, U.S.A., May, 2010 (invited).
  33. I. Watanabe, K. Terada, N. Iwata, and K. Nakanishi, Numerical material testing of polycrystalline metals for strength evaluation, International Workshops on Advances in Computational Mechanics, Yokohama, Japan, March 2010 (invited).
  34. I. Watanabe, K. Terada, E. A. de Souza Neto, and D. Peric, A study of intragranular deformation effect on macroscopic strength in two-scale finite element analysis for polycrystalline metals, International Conference on Computational Methods, Hiroshima, Japan, April, 2007 (invited).
  35. I. Watanabe, K. Terada, K. Matsui, M. Akiyama, and Y. Neishi, Two-scale characterization of deformation induced anisotropy of polycrystalline metals, 8th International Conference on Numerical Methods in Industrial Forming Processes, Columbus, U.S.A., June, 2004 (special student scholarship).
Proceedings
  1. L. Wu, T. Osada, I. Watanabe, T. Yokokawa, T. Kobayashi, and K. Kawagishi, A new approach to strength prediction of Ni-base disc superalloys with dual phase gamma/gamma', Superalloys 2020 (2020) 651-658.
    DOI: https://doi.org/10.1007/978-3-030-51834-9_63
  2. H. Yu, I. Watanabe, and K. Ameyama, Deformation behavior analysis of harmonic structure materials by multi-scale finite element analysis, Advanced Materials Research 1088 (2015) 853-857.
    DOI: https://doi.org/10.4028/www.scientific.net/AMR.1088.853
  3. I. Watanabe, Two-scale finite element analysis of equaled channeling angular extrusion of polycrystalline metal, Materials Science Forum 783-786 (2014) 2713-2719.
    DOI: https://doi.org/10.4028/www.scientific.net/MSF.783-786.2713
  4. I. Watanabe and K. Terada, Two-scale characterization of deformation-induced anisotropy of polycrystalline metals, AIP Conference Proceedings 712 (2004) 1595-1600.
    DOI: https://doi.org/10.1063/1.1766757
’˜‘E•Ò’˜
  1. I. Watanabe, G. Nakamura, K. Yuge, D. Setoyama, and N. Iwata, Maximization of strengthening effect of microscopic morphology in duplex steels, in "From Creep Damage Mechanics to Homogenization Methods", H. Altembach, T. Matsuda and D. Okumura eds., Advanced Structured Materials, Springer, Ch.24 (2015) 541-555.
    DOI: https://doi.org/10.1007/978-3-319-19440-0_24
  2. ”ñüŒ`—LŒÀ—v‘f–@-’e‘Y«‰ðÍ‚Ì—˜_‚ÆŽÀ‘H (Ž›“cŒ«“ñ˜Y ŠÄ–ó), Žå‚É‘æ3•”—LŒÀ‚Ђ¸‚Ý, X–ko”Å (2012).
  3. K. Terada, I. Watanabe, M. Akiyama, S. Kimura, and K. Kuroda, A homogenization-based prediction method of macroscopic yield strength of polycrystalline metals subjected to cold-working, in "Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques", M. Vaz Jr., E.A. de Souza Neto, P.A. Munoz-Rojas eds., Wiley & Sons Inc., Ch.10 (2010) 379-412.
    DOI: https://doi.org/10.1002/9783527632312.ch10
  4. “n粈疲, ‰ªàVdM, Ž›“cŒ«“ñ˜Y, ‘æ4˜b ƒƒbƒLƒ“ƒO‚Ì“¦‚ê•û, g‚¢‚Ü‚³‚ç•·‚¯‚È‚¢ ŒvŽZ—ÍŠw‚̏펯h, “y–ØŠw‰ï‰ž—p—ÍŠwˆÏˆõ‰ïŒvŽZ—ÍŠw¬ˆÏˆõ‰ï, ŠÛ‘P (2008) 51-68.
  5. ƒLƒ…ƒŠƒAƒXEƒ}ƒCƒ“ƒh, ƒWƒ‡ƒ“EƒuƒƒbƒNƒ}ƒ“(’˜), ‚Ó‚È‚Æ ‚悵Žq(–|–óEŠÄC), gCurious Minds: How a Child Becomes a Scientisth‚Ì–|–ó, –|–󋦗Í, Œ¶“~ŽÉ (2008).
“Á‹–
  1. Šâ“c—²“¹, Šâ“c“¿—˜, “n粈疲, ¡—¢ŽõM: Œˆ‚߉Ÿ‚µ‰ðÍ•û–@AƒvƒƒOƒ‰ƒ€A‹L‰¯”}‘́A‹y‚сAŒˆ‚߉Ÿ‚µ‰ðÍ‘•’u (‘æ05254109†, 2013”N4ŒŽ26“ú“o˜^).
Code archive