Joint Workshop LANL/NIMS Quantum and Functional Materials and MANA International Symposium 2024


Session 1-3

Title

Fermiology of iron-based superconductors via quantum-oscillation measurements

Author's photo

Authors

Taichi Terashima

Affiliations

Research Center for Materials Nanoarchitectonics (MANA)

URL

https://www.nims.go.jp/mana/research/j4phan00000006ev.html

Email

Terashima.taichi@nims.go.jp

Abstract

Since the discovery of superconductivity at Tc = 26 K in LaFeAs(O1-xFx) in 2008 [1], iron-based superconductors have been studied extensively. Tc can be raised up to 56 K by substituting La with smaller rare-earth elements in this original 1111 structure. There are now various structure types of iron-based superconductors: the 122-type (e.g., BaFe2As2); 111-type (e.g., LiFeAs); 11-type (e.g., FeSe) structures and so on (see for a review [2]).
Since superconducting pairing occurs on the Fermi surface, detailed knowledge of the Fermi surface is a prerequisite for the elucidation of pairing mechanisms in superconductors. We have employed quantum-oscillation measurements to study the fermiology of iron-based superconductors and their parent compounds, i.e., KFe2As2 [3], BaFe2As2 [4], FeSe [5], FeS [6], and CaFeAsF [7]. In this talk, I will review those researches. Intriguingly, standard band-structure calculations fail to give satisfactory description of the Fermi surface in some compounds such as KFe2As2 and FeSe. 


Reference

  1. Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008). DOI: 10.1021/ja800073m
  2. H. Hosono et al., Sci. Technol. Adv. Mater. 16, 033503 (2015). DOI: 10.1088/1468-6996/16/3/033503
  3. T. Terashima et al., J. Phys. Soc. Jpn. 79, 053702 (2010). DOI: 10.1143/JPSJ.79.053702; Phys. Rev. B 87, 224512 (2013). DOI: 10.1103/PhysRevB.87.224512
  4. T. Terashima et al., Phys. Rev. Lett. 107, 176402 (2011). DOI: 10.1103/PhysRevLett.107.176402
  5. T. Terashima et al., Phys. Rev. B 90, 144517 (2014). DOI: 10.1103/PhysRevB.90.144517
  6. T. Terashima et al., Phys. Rev. B 99, 134501 (2019). DOI: 10.1103/PhysRevB.99.134501
  7. T. Terashima et al., Phys. Rev. X 8, 011014 (2018). DOI: 10.1103/PhysRevX.8.011014