## Na 含有複合窒化物評価における NMR 利用

極限計測ユニット 強磁場 NMR グループ 丹所 正孝

## 1. 背景・目的

固体 NMR 法による測定はターゲットとなる核種の周りの電 子状態の影響でスペクトルが変化するため、局所構造の解析の ために主に用いられる。ここでは代表例として Na 含有複合窒 化物評価における NMR 利用の例をとりあげる。

新規に合成された物質において、結晶部分が単一相であるか どうかは粉末エックス線回折測定と Rietveld 解析の組み合わせ などにより評価が可能であるが、非晶質部分が含まれている場 合の評価には不十分である事が多い。他方、固体 NMR 測定に おいては、非晶質部分と結晶性部分の測定感度に大きな違いは ないため、合成試料中の非晶質部分の検出に威力を発揮する事 が多い。本研究では Na 含有α'-サイアロンと同様の結晶構造を 持つと思われる Na-Ge-Ga-O-N 系新物質について、固体<sup>23</sup>Na NMR 測定により、新物質中の非晶質部分を評価した。<sup>1)-3)</sup>

#### 2. 研究成果

試料の合成は Na<sub>2</sub>CO<sub>3</sub>, GeO<sub>2</sub>, Ga<sub>2</sub>O<sub>3</sub> 粉末の混合物の窒素ガ ス還元法により行い、Na<sub>x</sub>Ge<sub>12-(m+n</sub>)Gam+nOnN<sub>16-n</sub> (ターゲット 組成は  $x = m = 0.50 \sim 2.00$ 、 n=0) を得た。得られた試料及び その後洗浄処理を行った組成の異なる試料について、日本電子 製固体高分解 NMR 装置 ECA500 (<sup>1</sup>H の周波数換算で 500MHz) 及び ECA800 (<sup>1</sup>H の周波数換算で 800MHz) によ り <sup>23</sup>Na MAS NMR 測定を行った。また、比較のため、Na 周 りの配位数の異なると思われる NaGe<sub>2</sub>N<sub>3</sub>についても測定した。

ECA500の測定結果の一部を図1に示す。いずれの組成にお いても2本と思われる信号がNaGe2N3より高磁場側に現れた。 このことから Na に対する N 配位数は NaGe2N3とは異なるこ とがわかる。エックス線構造解析では単一相であるとの結果で あった事から、メインピークまたは右肩の成分のいずれかが非 晶質部分である可能性が高い。

さらに詳細に分析するため ECA800 で測定した。いずれの組 成においても同様の傾向が観らたが、そのうち、x = m = 1.50の組成のケースについて図2に示す。磁場の向上による高分解



化学シフト(ppm)

図1 ECA500 で測定した NaxGe12-(m+n)Gam+nOnN16-n の<sup>23</sup>Na MAS NMR 測定結 果。

(上)比較のため測定した NaGe<sub>2</sub>N<sub>3</sub>

(中)組成ターゲット x = m
= 1.00、n=0の試料
(下)組成ターゲット x = m
= 1.50、n=0の試料

能化の効果で図1の右肩のピークはよりはっきりと分離できた。ここで、洗浄処理前試料の通常測定(繰り返し時間30秒)では強度比の大きく異なる2本の<sup>23</sup>Naの信号が観測された

(上)が、繰り返し時間を0.5秒に短くした測定では、右側の 信号の相対強度が増加した(中)。通常、緩和時間(結晶部分)
緩和時間(非晶質部分)である事から、相対信号強度が増加 した右側の信号が非結晶相であり、減少した左側の信号が結晶 部分であると推測される。洗浄処理後の試料の測定では、右側 の緩和時間の短い部分の信号が殆ど消えた(下)事から、洗浄 後は結晶部分のみがほぼ単一相として残ったことがわかる。<sup>1)-3)</sup>

## 3. 展望

中期計画期間の途中から固体高分解能 800MHzNMR 装置が動き始めた事により、通常より高い分解能での測定成果が得られ始めている。とはいえ、元々溶液用の装置であったものを導入したため、固体測定の一部にしか現状で対応していない。今後の装置の改善によって、応用が広がる事が期待される。

# 参考文献

1) Xue, X.; Stebbins, J. F. *Phys. Chem. Minerals* 1993, *20*, 297.

Koller, H.; Engelhardt, G.; Kentgens, A. P. M.; Sauer, J. J.
 *Phys. Chem.* 1994, *98*, 1544.

3) Suehiro, T.; Tansho, M.; Shimizu, T. *Inorg. Chem.* 2016, *55*, 2355.



図2 ECA800 で測定した Na<sub>x</sub>Ge<sub>12-(m+n</sub>)Gam+nOnN<sub>16</sub>-n (組成ターゲットはx=m= 1.50、n=0)の<sup>23</sup>Na MAS NMR 測定結果。 (上)洗浄処理前試料の通常 測定 (中)洗浄処理前試料の非晶 質部分をクローズアップし た測定 (下)洗浄後試料の通常測定