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We present mass collision electron stopping powers (SPs) for 41 elemental solids (Li, Be, graphite, dia-
mond, glassy C, Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Cs, Gd,
Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi) that were calculated from experimental energy-loss-function
data with the full Penn algorithm for electron energies between 50 eV and 30 keV. Improved sets of

energy-loss functions were used for 19 solids. Comparisons were made of these SPs with SPs calculated
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with the single-pole approximation, previous SP calculations, and experimental SPs. Generally satisfac-
tory agreement was found with SPs from the single-pole approximation for energies above 100 eV, with
other calculated SPs, and with measured SPs.
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1. Introduction

In previous papers [1,2], we reported calculations of collision
electron stopping powers (SPs) over the 100 eV to 30 keV energy
range in 41 elemental solids from their “optical” energy-loss func-
tions (ELFs). These ELFs were obtained from experimental optical
data representing the dependence of the inelastic-scattering prob-
ability on energy loss and the theoretical Lindhard dielectric func-
tion [3] to represent the dependence of the scattering probability
on momentum transfer. SPs were calculated with Penn’s algorithm
that was originally developed for the calculation of electron inelas-
tic mean free paths (IMFPs) [4]. Our SPs were determined using the
single-pole approximation or so-called simple Penn algorithm
(SPA) that was expected to be satisfactory for electron energies
greater than about 100 eV [1,2]. We have extended this earlier
work in two ways. First, we have calculated SPs with the full Penn
algorithm (FPA) which should be valid for electron energies down
to about 50 eV [5]. Second, we have adopted better sets of optical
ELF data in recent IMFP calculations with the FPA for 19 of our
41 elemental solids [6], and we make use of the improved ELF data
in the present work.

We report mass collision SPs calculated with the FPA for 41 ele-
mental solids (Li, Be, graphite, diamond, glassy C, Na, Mg, Al, Si, K,
Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Cs,
Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi) over the 50 eV to
30 keV energy range with the same optical ELF data sets that were
used in the IMFP calculations [6]. We give a brief description of our

* Corresponding author.
E-mail address: cedric.powell@nist.gov (C.J. Powell).
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SP algorithm in the next section. The new SPs are presented in the
following section where we compare SPs from the new ELFs (and
the FPA) to SPs from the old ELFs (and the SPA) and compare SPs
from the FPA to SPs from the SPA. We then make comparisons of
our new SPs with values from previous SP calculations and
measurements.

We note that the collision electron SP is an important parame-
ter in radiation dosimetry [7] and in the modeling of electron
transport in matter for many other applications. The SP has been
used in Monte Carlo simulations of electron transport relevant to
electron-probe microanalysis [8-10], Auger-electron spectroscopy
[11,12], and dimensional metrology in the scanning electron
microscope [13]. The Bethe SP equation [14-16] has been used
extensively as a predictive tool for energies where it is expected
to be valid (i.e., at energies much larger than the largest K-shell
binding energy in the material of interest), but there is a scarcity
of SP data at lower energies, typically less than 10 keV. SPs calcu-
lated from the Bethe equation are available from a National Insti-
tute of Standards and Technology (NIST) database [17] and ICRU
Report 37 for electron energies of 10 keV and above [7]. It is thus
important to have SPs available for lower energies in order to de-
scribe electron-solid interactions for a variety of applications.

2. Calculation of electron stopping powers with the full Penn
algorithm

Penn developed an algorithm for the calculation of electron
IMFPs from a model dielectric function &(q,w), a function of
momentum transfer ¢ and energy loss hw [4]. The energy
dependence of the energy-loss function (ELF), Im[—1/¢(q, w)], can
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be obtained from experimental optical data for the material of
interest and the dependence of the ELF on g can be obtained from
the Lindhard model dielectric function [3]. IMFPs were determined
from a triple integration (the FPA) for energies down to about 50 eV,
while a simpler procedure involving a single integration (the SPA)
was judged satisfactory for electron energies larger than about
200 eV [4-6]. We utilized the SPA in our previous SP calculations,
but now use the FPA to extend the energy range down to 50 eV.

We give here a summary of our implementation of the full Penn
algorithm for SP calculations. We will use Hartree atomic units
(m. = e = h=1) where m, is the electron rest mass, e is the ele-
mentary charge, and h is the reduced Planck constant.

The relativistic differential cross section (DCS) for inelastic scat-
tering can be expressed as the sum of a longitudinal DCS and a
transverse DCS [42]. For electron energies less than about
0.5 MeV, the transverse DCS can be neglected [18]. The relativistic
inelastic DCS can then be written as [42]:

2 2 2 _
d’c s, 1 1+Qj/c 1Im< 1>7

dwdQ ~ dwdQ ~v2 Q(1 +Q/2c2) N \&(Q, )

where Q is the recoil energy given by Q(Q + 2¢?) = (cq)* [19,42],
v is the electron velocity, c is the speed of light, and N is the number
of atoms or molecules per unit volume. The last factor in Eq. (1) is
the ELF expressed here as a function of energy loss o and recoil en-
ergy Q. The relativistic DCS in Eq. (1) can be conveniently written as
a function of momentum transfer q:

(1)

do 2 (11 2)
dodg ™ ©mNVZ \&(q,m)) q

Stopping powers can be calculated with the FPA from the prob-
ability p(T, w) for energy loss @ per unit distance traveled by an

electron with relativistic kinetic energy T. This probability can be
calculated from Eq. (2):

2 (% dq -1
Pro) =m0z | 4 Ls(q,a»}
_(4T/)? 1 qoedg [ -1
“14T/2) 7T J, ElmL(qﬁw)}’ )

where q,. = /T2 +T/c%) £ /(T — @)(2 + (T — w)/c?). The collision
stopping power, S, can be calculated from the following equation
[20]:

S= /O wp(T, w)dw, (4)

where wmax = T — Ef and Ef is the Fermi energy.
The ELF in the FPA can be expressed as:

M)~ desonm | o) (5a)

where ¢! denotes the Lindhard model dielectric function of the free
electron gas with plasmon energy w,(= v4mnn), n is the electron
density, g(w,) is a coefficient introduced to satisfy the condition
Im[-1/¢(q = 0,w)] = Im[-1/¢(w)], and Im[-1/&(w)] is the optical
energy-loss function. The coefficient g(w)) is then given by

g(w) = 2 Im [%} : (5b)

The Lindhard ELF, &' = &} + ig}, can be written as [3,21]:
-1 &5

m\-7 . = 2 N2°

e (q, 0y p)]  (eb)? + (&b)

e R )

8’{((]7({); (’UP) =1+

Slé(q,w; wP)
; X for 0<x<4z(1-2)
A< 1- (- (x/4z))* for |4z(1—2)| < x < 4z(1 +2),
: 0 otherwise

(6¢0)

where F(t) = (1 - t*)In|(t +1)/(t — 1)|, x = w/E;, z = q/2kr, and ke
is the Fermi wave vector corresponding to a given w,, .

We used the following expressions for the real and imaginary
parts of the Lindhard dielectric function in our numerical calcula-
tions to reduce numerical errors at the limiting conditions of
w/qks(=u) < landu>z+ 1. When u < 1, & and & can be writ-
ten as:

1 (1 1 z+1
L ) o S 2 42
&(q, m;0mp) =1 +—Tfk1:22 {2 +4Z{(1 z°—u*)In P
2u?z
+(Z-ur-1)— 7a
( ) 1)2}] (72)
and
& (q, w; w,) -t (7b)
DT T k2
When u >z + 1, & and & can be expressed as:

w? 3\ 1
8§(q7a);a)p):1—w—§{1+<zz+§>m} (8a)
land
&(q, ;) = 0. (8b)

The energy-loss function in Eq. (5) from the FPA can be de-
scribed as the sum of two contributions, one associated with the
plasmon pole and the other with single-electron excitations
[3,21,22]. That is,

e R R e o

The plasmon-pole contribution can be expressed as:

Im{_—l} = g(wo) ~
6, ) 108k (q. ; wy) 0wy |,

0O(q™ (w; o) —q),

=y

(10a)
where
dek(qm;w,) 1 Y- +1 Y, +1]

T T ALl ARl et LD

and Y. =z + x/4z. To reduce calculation errors for z/x < 1 and for
z/x > 1, we use the following equations:

ln|y’+1
Y- -1

~ —63—42a2{3 +48(1 +2%)a® + 256(3 + 2)(1 + 32%)a*},

Y, +1]
Y, -1

‘+ln

(10c)

where a = z/x when z/x < 1, and
Y- +1 Y. +1
Inly——3 Y, -1

‘-&-ln

z+1 2 2 2\ 1.2 1 2 2\ 1.4
~In P +4zb"{1+ (1+2z°)b +§(3+z)(l+3z )b*},
(10d)

where b = x/(z(z> — 1) when z/x > 1.
The single-electron-excitation contribution in Eq. (9) is given
by:
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m| o] = [ donsonm | el i)

- q)0(q - q (w; wp)),

(11a)

where

q* (0; 0p) = +ke(wp) + 1/ ke (@) + 200

Finally, when Y_ = +1 (corresponding to quadratic curves in
the (q,w) plane separating single-electron excitations), we note
that F(+1) is theoretically zero.

Several factors limit the reliability of SPs calculated from our
model [2]. First, the Lindhard dielectric function model used in
the FPA is expected to provide a useful approximation for the g-
dependence of valence-electron excitations in free-electron-like
materials but may be less reliable for non-free-electron-like solids.
Second, use of the Lindhard model for describing the g-dependence
of core-electron excitations is unlikely to be correct. Third, no ac-
count has been taken of exchange effects in inelastic scattering.
Nevertheless, IMFPs calculated from optical ELFs with the FPA
and the SPA are in good agreement with IMFPs determined exper-
imentally by elastic-peak electron spectroscopy (EPES) in many
elemental solids (including non-free-electron-like solids) for elec-
tron energies between 100 eV and 5 keV [23-25]. It is difficult to
extend these comparisons to energies less than 100 eV due to lim-
itations of the EPES technique [26].

(11b)

3. Results
3.1. Stopping powers from the full Penn algorithm

We calculated values of the mass collision SP, S/p, where p is
the mass density of the solid. Values of S/p were determined for
41 elemental solids (Li, Be, graphite, diamond, glassy C, Na, Mg,
Al Si, K, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y, Nb, Mo, Ru, Rh, Pd, Ag,
In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi) from the
FPA. We utilized the same sets of optical ELFs as those used in
our recent calculations of IMFPs for the same solids over the same
energy range [6]. For 19 of our 41 solids (Ti, V, Cr, Fe, Ni, Y, Nb, Mo,
Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, and Au), we adopted improved
sets of optical ELF data [6] compared to those used for our previous
SP results [1,2]. We note that the new ELF data sets for Mg and Cu
utilized in our recent IMFP calculations [6] had also been employed
in our previous SP calculations for these solids [2]. Although we
previously reported SPs for Zr [2], further analysis of its optical
ELF data showed what we considered to be excessive errors in val-
ues of the f-sum and KK-sum [6] that we used to evaluate the inter-
nal consistency of a given ELF data set. Our SP values for Zr should
therefore be considered only as rough estimates.

Values of S/p were calculated for relativistic electron kinetic
energies between 10 eV and 30 keV (with respect to the Fermi le-
vel) at equal intervals on a logarithmic energy scale corresponding
to increases of 10%. Table 1 shows the S/p values for our 41 ele-
mental solids at electron energies between 50eV and 30 keV.
These SPs are given in units of MeVcm?/g. The mass collision SPs
can be converted to collision SPs (e.g., in eV/A or eV/nm units) by
multiplying by the material densities given in Table 1 of Ref. [6].

Plots of calculated mass collision SPs from the FPA as a function
of energy are shown as solid lines in Figs. 1-7. SPs are included in
these plots for energies less than 50 eV to illustrate trends, but
these data are not considered as reliable [2]. The solid circles in
Figs. 1-7 are SPs calculated with the SPA [1,2]. The SPs calculated
with the FPA and SPA show similar systematic trends with atomic
number. Sometimes, a single maximum is observed in the SP-ver-
sus-energy curves, sometimes secondary structures or multiple

maxima are observed, and there are varying widths of the main
maximum that generally occurs at energies between 10 eV and
300 eV. These trends have been discussed previously and are due
to the varying contributions of valence-electron and different in-
ner-shell excitations to the SP [2,27]. We also see in Figs. 1-7 that
SPs from the SPA are larger than those from the FPA at energies in
the vicinity of the maximum in each SP-versus-energy curve. On
the other hand, SPs from the SPA are smaller than the correspond-
ing SPs from the FPA for very low energies (typically less than
30 eV). This result is mainly due to differences in the ELF models
used in each algorithm and will be discussed in more detail later.

The dashed lines in Figs. 1-7 show mass collision SPs calculated
from the relativistic Bethe equation [2,14-16]:

S/p = 7784';?‘2 In(T/1? + In(1 + 7/2)

+G(1)] (in MeVem®g™), (12a)
where
Gt)=(1-pH1+7%/8-(21+1)In2], (12b)

Z is the atomic number of the target, 8 is the electron velocity di-
vided by the velocity of light, ¢, T = T/m,.c? is the ratio of the elec-
tron relativistic kinetic energy to its rest energy, and I is the mean
excitation energy (MEE). Eq. (12) omits a density-effect correction
which has been assumed here to be zero since its contribution is
very small (less than 0.3% for our energy range [7]). SPs were calcu-
lated from Eq. (12) using MEEs listed in Table 4.3 of Ref. [7] except
for the three carbon allotropes. SPs for glassy C, graphite and dia-
mond were calculated with MEEs from our previous analysis [2].
SPs from Eq. (12) are shown in Figs. 1-7 from the minimum ener-
gies for which S is positive to 30 keV. As expected, we see generally
good agreement between SPs from the FPA and those from Eq. (12)
for energies larger than 10 keV. The root-mean-square (RMS) rela-
tive deviations between these calculated SPs and those from the
Bethe equation were 9.1% and 8.7% at energies of 9.897 and
29.733 keV, respectively. These RMS deviations are almost the same
as the corresponding deviations of 9.8% and 8.5% found previously
between our SPs from the SPA and those from the Bethe equation

[2].

3.2. Comparisons of stopping powers from new and old energy-loss
functions

The energy-loss function (ELF) is the critical material-depen-
dent parameter in our SP calculations. These ELFs were obtained
from experimental optical data or ELF measurements for each so-
lid. Sources of ELF data were given and details of our ELF analyses
were described in a previous paper [6]. We comment now on dif-
ferences between ELFs for 19 solids (Ti, V, Cr, Fe, Ni, Y, Nb, Mo,
Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, and Au) used here and the ELFs
used for our previous SP calculations [1,2].

We first point out that we utilized photoabsorption data for
these 19 solids at photon energies over 50 eV from Henke et al.
[28] that are more recent than the data used previously [1,2]. For
eight of these solids (Cr, Fe, Mo, Hf, Ta, W, Re, and Pt), it was nec-
essary to make interpolations between two photon-energy (or
electron energy-loss) regions, and we were guided in this process
by measured transmission and reflection electron energy-loss
spectroscopy (EELS) data. The resulting ELFs agreed better overall
with the energy-loss data and resulted in smaller sum-rule errors
for most of the solids than in our earlier SP and IMFP work
[1,2,5,29]. For Ti, we selected optical data from a recent analysis
of reflection EELS data by Werner et al. [30] for energy losses up
to 54 eV because the resulting ELF was in much better agreement
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Table 1
Calculated mass collision SPs (i.e., collision SPs divided by density) for the 41 elemental solids as a function of electron relativistic kinetic energy T.
T (eV) Collision stopping power/density (MeVcm?g~!)
Li Be C (glassy) C (graphite) C (diamond) Na Mg
54.6 439.6 361.6 217.0 259.7 141.7 187.2 240.0
60.3 422.3 366.0 227.8 286.5 166.1 180.9 235.2
66.7 404.6 366.8 236.6 307.7 192.0 175.0 2295
73.7 387.1 364.3 2433 3234 216.4 169.8 2234
81.5 369.8 359.1 247.9 3343 236.7 165.6 217.0
90.0 3533 351.8 250.5 340.8 251.6 163.0 210.5
99.5 3373 342.7 2513 343.4 261.8 161.6 204.1
109.9 3224 3323 250.5 342.8 267.8 160.9 198.0
121.5 308.3 320.8 248.2 3394 2703 160.7 192.2
1343 2954 308.6 2444 3338 270.0 160.7 187.4
148.4 284.8 296.0 239.4 326.3 267.4 160.9 183.6
164.0 276.7 283.2 2334 3173 262.9 160.9 180.5
181.3 270.0 270.2 226.4 307.0 256.8 160.8 1779
200.3 263.4 257.6 218.7 295.9 249.4 160.4 175.9
2214 256.6 2451 2105 284.1 2411 159.6 173.8
244.7 2494 233.0 2019 271.8 2321 158.2 171.5
2704 2419 2214 193.2 2593 222.6 156.3 169.0
298.9 233.7 2104 184.2 246.7 212.8 153.8 166.0
3303 2249 200.2 175.3 234.2 202.8 150.7 162.5
365.0 215.7 191.2 166.4 221.7 192.7 1471 158.6
403.4 206.2 182.9 157.7 209.6 182.8 1429 154.1
445.9 196.5 174.8 149.2 197.7 173.0 138.3 149.3
492.7 186.7 166.9 140.9 186.2 163.4 1334 144.0
544.6 177.0 159.0 133.0 175.2 154.1 128.1 138.6
601.8 167.3 151.2 1253 164.6 145.2 122.7 132.9
665.1 157.8 143.5 118.1 154.5 136.6 117.2 1271
735.1 148.6 135.9 111.2 145.0 128.4 111.5 1213
8124 139.6 1284 104.7 1359 120.7 105.9 115.5
897.8 130.9 1211 98.6 127.4 1134 100.3 109.7
992.3 122.6 114.0 92.9 119.5 106.6 94.8 103.9
1096.6 114.6 107.2 87.8 112.2 100.3 89.4 98.3
1212.0 1071 100.6 83.2 105.4 94.5 84.1 92.8
13394 99.9 94.2 78.8 99.0 88.9 791 87.4
1480.3 93.0 88.2 74.5 92.9 83.6 74.2 82.2
1636.0 86.6 824 70.3 87.1 78.6 69.5 77.2
1808.0 80.5 76.9 66.3 81.5 73.7 65.0 72.4
1998.2 74.8 71.7 62.4 76.3 69.1 60.7 67.8
2208.3 69.4 66.7 58.6 713 64.7 56.7 63.4
2440.6 64.4 62.1 55.0 66.5 60.5 529 59.3
2697.3 59.7 57.7 51.6 62.0 56.5 49.3 553
2981.0 55.3 53.6 48.3 57.8 52.7 459 515
3294.5 51.2 49.7 45.1 53.8 49.1 42.7 48.0
3640.9 47.4 46.1 421 50.0 45.7 39.7 44.7
4023.9 43.8 42.7 39.3 46.5 42.5 36.9 41.5
44471 40.5 39.6 36.6 43.2 395 343 38.6
4914.8 375 36.7 34.0 40.0 36.7 31.9 35.9
5431.7 34.6 339 31.7 371 34.1 29.7 333
6002.9 32.0 314 294 344 31.6 27.6 31.0
6634.2 295 29.0 273 319 293 25.7 28.8
7332.0 273 26.8 253 295 27.2 23.9 26.7
8103.1 25.2 24.8 235 273 25.2 22.2 24.8
8955.3 232 22.9 21.8 253 233 20.6 231
9897.1 214 21.2 20.2 234 21.6 19.1 214
10938.0 19.8 19.6 18.7 21.6 20.0 17.7 19.9
12088.4 183 181 173 20.0 18.5 16.5 18.5
13359.7 169 16.7 16.0 18.5 171 15.3 171
14764.8 15.6 15.4 14.9 17.1 15.8 14.2 159
16317.6 144 14.2 13.7 15.8 14.6 13.1 14.7
18033.7 133 13.1 12.7 14.6 135 12.2 13.7
19930.4 12.2 12.1 11.8 13.5 12.5 113 12.7
22026.5 113 11.2 10.9 125 11.6 10.5 11.8
24343.0 104 104 10.1 11.6 10.7 9.7 109
26903.2 9.65 9.60 9.36 10.7 9.92 9.01 10.1
29732.6 8.92 8.88 8.67 9.91 9.18 8.36 9.39
T (eV) Al Si K Sc Ti \'% Cr
54.6 220.1 227.7 156.8 152.7 1194 79.9 73.6
60.3 216.9 226.1 163.6 161.8 125.4 84.5 79.8
66.7 212.6 2229 170.4 170.6 130.4 88.6 85.1
73.7 207.3 218.4 175.9 1791 134.6 92.2 89.5
81.5 201.2 212.8 180.7 187.3 138.4 95.2 92.9
90.0 194.8 206.6 186.3 195.5 142.5 98.0 955

99.5 188.0 199.7 189.8 204.0 147.4 100.9 97.4
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Table 1 (continued)

T (eV) Al Si K Sc Ti \Y Cr
109.9 181.1 192.6 190.1 212.6 153.5 104.1 98.8
121.5 174.0 185.1 187.7 219.3 159.5 107.7 100.2
1343 167.1 177.6 183.1 2215 163.3 111.5 101.7
148.4 160.4 170.1 177.2 220.2 163.5 114.8 103.0
164.0 154.1 162.7 170.5 216.2 161.4 117.3 104.0
181.3 148.1 155.6 163.3 210.6 157.9 118.7 104.4
200.3 142.7 148.8 156.1 203.9 153.7 119.0 104.1
2214 138.1 142.3 148.8 196.4 148.9 1184 103.1
244.7 134.0 136.3 141.6 188.5 143.8 116.9 101.5
2704 130.5 130.7 134.6 180.3 1384 114.9 99.5
298.9 127.2 125.9 127.7 172.0 132.8 112.2 97.0
330.3 124.1 1221 121.0 163.7 127.2 109.1 94.3
365.0 121.0 118.7 114.6 155.5 1214 105.6 91.3
403.4 117.9 115.6 108.3 1474 115.7 101.7 88.2
445.9 114.6 112.6 102.3 139.5 110.0 97.6 84.9
492.7 111.2 109.7 96.6 131.8 104.4 93.5 81.5
544.6 107.7 106.6 91.1 124.3 98.9 89.2 78.1
601.8 104.0 103.5 86.0 117.1 93.6 85.0 74.6
665.1 100.2 100.1 81.1 110.2 88.4 80.8 71.1
735.1 96.3 96.5 76.4 103.7 83.4 76.6 67.7
8124 92.3 92.8 72.1 97.4 78.6 72.6 64.2
897.8 88.3 89.0 68.1 914 74.0 68.6 60.9
992.3 84.2 85.1 64.4 85.8 69.6 64.8 57.6

1096.6 80.1 81.1 61.1 80.5 65.4 61.1 54.5
1212.0 76.0 771 58.1 75.5 61.5 57.6 514
13394 72.0 73.1 55.4 70.8 57.7 54.2 48.5
1480.3 68.0 69.1 52.7 66.5 54.2 51.0 45.7
1636.0 64.1 65.3 50.2 62.5 51.0 48.0 43.0
1808.0 60.4 61.5 47.7 58.9 47.9 45.1 40.5
1998.2 56.7 57.8 452 55.5 452 42.5 38.1
2208.3 53.2 54.3 42.8 52.2 42.6 40.0 35.9
2440.6 49.9 50.9 40.5 49.2 40.2 37.8 33.9
2697.3 46.6 47.6 38.2 46.2 37.9 35.7 32.0
2981.0 43.6 44.5 35.9 434 35.7 33.7 30.3
3294.5 40.7 41.6 33.8 40.7 33.6 31.7 28.6
3640.9 37.9 38.8 31.7 38.1 315 29.8 27.0
4023.9 353 36.2 29.7 35.6 29.6 28.1 254
44471 329 33.7 27.8 333 27.7 26.3 239
4914.8 30.6 313 26.0 31.1 259 24.7 225
5431.7 28.5 29.1 243 29.0 243 23.1 21.1
6002.9 26.4 27.1 22.7 27.0 22.7 21.6 19.8
6634.2 24.6 25.2 21.1 25.2 21.1 20.2 18.5
7332.0 22.8 234 19.7 234 19.7 189 173
8103.1 21.2 21.7 18.3 21.8 184 17.6 16.2
8955.3 19.7 20.1 171 20.2 171 16.4 15.1
9897.1 183 18.7 15.9 18.8 15.9 153 141

10938.0 171 174 14.7 17.4 14.8 14.2 13.2

12088.4 15.8 16.1 13.7 16.2 13.7 13.2 12.3

13359.7 14.7 15.0 12.7 15.0 12.8 12.3 114

14764.8 13.7 139 11.8 139 119 114 10.6

16317.6 12.7 12.9 11.0 12.9 11.0 10.6 9.87

18033.7 11.8 12.0 10.2 12.0 10.2 9.87 9.18

19930.4 109 11.1 9.4 111 9.48 9.17 8.53

22026.5 10.2 10.3 8.8 103 8.80 8.52 7.93

24343.0 9.44 9.60 8.15 9.57 8.17 7.91 7.37

26903.2 8.76 8.92 7.58 8.88 7.59 7.35 6.86

29732.6 8.14 8.28 7.05 8.25 7.05 6.83 6.38

T (eV) Fe Co Ni Cu Ge Y

54.6 66.9 56.8 53.3 49.6 96.0 83.4
60.3 70.5 62.1 57.7 53.3 95.8 88.7
66.7 73.5 67.2 62.1 57.0 95.3 94.2
73.7 75.9 71.7 66.4 60.3 94.5 99.9
81.5 77.7 75.6 70.4 63.2 93.4 106.1
90.0 79.2 79.0 74.0 65.7 92.0 112.1
99.5 80.4 81.9 77.2 68.0 90.5 117.0
109.9 81.3 84.4 80.0 70.0 88.8 120.0
121.5 82.0 86.6 824 71.7 87.1 121.0
1343 82.5 88.6 84.5 73.1 85.5 120.2
148.4 83.5 90.7 86.3 743 83.8 118.0
164.0 84.8 93.7 87.7 75.2 82.2 114.9
181.3 85.8 96.2 89.0 75.9 80.7 111.0
200.3 86.2 97.7 90.3 76.4 79.3 106.7
2214 86.2 98.3 91.3 76.7 779 102.2
244.7 85.8 98.3 91.9 76.9 76.5 97.5

(continued on next page)
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Table 1 (continued)

T (eV) Fe Co Ni Cu Ge Y
2704 84.9 97.6 92.0 76.9 75.1 92.8
298.9 83.8 96.4 91.6 76.5 73.8 88.2
330.3 82.3 94.8 90.6 75.8 72.4 83.7
365.0 80.5 92.9 89.2 74.9 71.1 79.4
403.4 78.6 90.6 87.4 73.8 69.7 75.2
445.9 76.4 88.0 85.4 72.5 68.2 71.3
492.7 74.0 85.2 83.0 70.9 66.7 67.6
544.6 71.5 82.2 80.4 69.2 65.1 64.2
601.8 68.9 79.0 77.7 67.3 63.5 61.0
665.1 66.2 75.8 74.8 65.2 61.7 58.1
735.1 63.4 72.5 71.8 63.0 59.9 55.5
8124 60.6 69.2 68.7 60.6 57.9 53.0
897.8 57.8 65.8 65.6 58.2 55.9 50.8
992.3 55.0 62.5 62.5 55.7 53.8 48.6
1096.6 52.2 59.3 59.4 53.2 51.7 46.5
1212.0 49.5 56.1 56.3 50.6 49.5 44.6
13394 46.8 529 53.2 48.1 47.2 42.6
1480.3 44.2 49.9 50.3 45.6 45.0 40.8
1636.0 41.7 47.0 474 43.2 42.8 389
1808.0 393 442 44.7 40.8 40.6 371
1998.2 37.0 415 42.0 38.5 384 35.2
2208.3 34.8 39.0 39.5 36.2 36.3 335
2440.6 32.8 36.6 371 34.1 34.2 31.7
2697.3 30.8 343 34.8 32.1 32.2 30.0
2981.0 29.0 322 326 30.1 30.3 28.3
3294.5 27.3 30.2 30.6 28.3 28.5 26.7
3640.9 25.8 284 28.7 26.6 26.7 25.1
4023.9 243 26.7 26.9 249 25.0 23.6
44471 229 25.0 253 234 23.5 221
4914.8 21.6 235 23.8 22,0 22.0 20.7
5431.7 203 221 223 20.7 20.6 19.4
6002.9 19.0 20.7 209 19.5 19.3 18.2
6634.2 17.9 194 19.6 183 18.1 17.0
7332.0 16.7 18.2 184 171 16.9 15.8
8103.1 15.7 17.0 17.2 16.0 15.9 14.8
8955.3 14.6 15.9 16.1 15.0 14.9 13.8
9897.1 13.7 14.8 15.0 14.0 13.9 129
10938.0 12.8 13.8 14.0 13.1 13.0 12.0
12088.4 119 129 13.1 123 12.1 11.2
13359.7 11.1 12.0 12.2 114 113 10.5
14764.8 103 11.2 114 10.7 10.6 9.77
16317.6 9.62 104 10.6 9.94 9.87 9.12
18033.7 8.96 9.65 9.84 9.25 9.20 8.51
19930.4 8.33 8.98 9.16 8.62 8.58 7.94
22026.5 7.75 8.35 8.52 8.02 7.99 7.40
24343.0 7.21 7.76 7.92 7.47 7.44 6.90
26903.2 6.71 7.22 7.37 6.95 6.93 6.44
29732.6 6.24 6.72 6.86 6.47 6.45 6.00
T (eV) Nb Mo Ru Rh Pd Ag In
54.6 48.0 48.6 39.8 40.9 40.7 36.4 53.9
60.3 51.9 54.1 44.7 45.6 453 40.8 55.1
66.7 55.5 59.0 50.1 50.6 50.3 45.6 56.3
73.7 59.0 63.2 55.5 55.8 55.3 50.7 57.6
81.5 62.5 66.9 60.6 61.0 60.4 56.0 59.1
90.0 66.3 704 64.9 65.8 65.2 61.3 60.7
99.5 70.6 73.9 68.8 69.9 69.6 66.6 62.5
109.9 75.3 77.6 72.1 73.3 73.5 71.7 64.4
121.5 80.0 81.3 75.0 76.3 77.0 76.6 66.3
1343 84.1 84.8 71.7 79.1 80.2 81.3 68.3
148.4 86.7 87.2 80.1 81.7 82.9 85.5 70.2
164.0 87.8 88.4 82.1 84.0 85.3 89.2 72.0
181.3 87.6 88.3 83.5 85.9 87.1 924 73.5
200.3 86.2 87.1 839 87.0 88.3 94.9 74.7
2214 84.1 85.1 83.2 87.2 88.4 96.7 75.6
244.7 81.4 82.5 81.7 86.4 87.5 97.5 76.1
2704 78.4 79.5 79.4 84.6 85.5 97.1 76.1
298.9 75.2 76.3 76.7 82.1 82.9 95.6 75.4
330.3 71.9 72.9 73.7 79.2 79.8 93.2 74.0
365.0 68.6 69.6 70.5 76.0 76.4 90.2 72.0
403.4 65.3 66.2 67.3 72.6 73.0 86.7 69.5
445.9 62.0 62.9 64.1 69.2 69.5 83.0 66.7
492.7 58.9 59.7 60.9 65.8 66.0 79.3 63.8
544.6 55.9 56.6 57.8 62.5 62.6 75.5 60.8

601.8 53.1 53.7 54.8 59.3 59.3 71.8 57.8
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Table 1 (continued)

T (eV) Nb Mo Ru Rh Pd Ag In
665.1 50.4 50.9 51.9 56.1 56.1 68.1 54.8
735.1 48.0 48.3 49.1 53.1 53.1 64.6 51.9
8124 45.7 45.9 46.5 50.3 50.2 61.2 49.1
897.8 43.6 43.7 441 47.6 47.4 58.0 46.5
992.3 41.7 41.7 41.8 45.1 44.8 54.9 43.9

1096.6 39.9 39.8 39.6 42.7 424 52.1 41.5
1212.0 38.2 38.1 37.7 40.4 40.0 493 39.2
13394 36.6 36.5 36.0 384 379 46.8 37.0
1480.3 35.0 35.0 343 36.6 36.0 44.5 34.9
1636.0 335 335 32.8 34.8 34.2 42.5 33.0
1808.0 32.0 32.0 313 33.2 325 40.5 31.2
1998.2 30.5 30.6 29.9 31.7 31.0 38.5 29.6
2208.3 29.1 29.2 28.5 30.2 29.5 36.6 28.1
2440.6 27.7 27.8 27.2 28.8 28.1 34.8 26.6
2697.3 26.3 26.5 25.9 274 26.7 33.0 25.3
2981.0 249 25.1 24.6 26.0 25.4 31.2 24.0
3294.5 23.6 23.8 233 24.6 241 29.4 22.8
3640.9 223 22.5 221 233 22.8 27.7 21.6
4023.9 21.0 213 20.9 22.0 215 26.1 20.5
44471 19.8 20.0 19.7 20.8 20.3 24.6 194
4914.8 18.6 18.8 18.6 19.6 19.2 23.1 18.3
5431.7 17.5 17.7 17.5 18.4 18.1 21.6 17.2
6002.9 16.4 16.6 16.4 173 17.0 20.3 16.2
6634.2 15.4 15.6 15.4 16.2 15.9 19.0 15.3
7332.0 14.4 14.6 14.4 15.2 14.9 17.7 14.3
8103.1 134 13.6 13.5 14.3 14.0 16.5 134
8955.3 12.6 12.8 12.6 133 131 154 12.6
9897.1 11.7 11.9 11.8 12.5 12.2 14.4 11.8

10938.0 11.0 11.1 11.0 11.6 114 134 11.0

12088.4 10.2 104 103 109 10.7 12.5 103

13359.7 9.56 9.70 9.62 10.1 9.96 11.6 9.62

14764.8 8.93 9.05 8.97 9.45 9.30 10.8 8.98

16317.6 8.35 8.45 8.37 8.82 8.67 10.1 8.38

18033.7 7.80 7.90 7.81 8.23 8.09 9.38 7.81

19930.4 7.29 7.38 7.30 7.68 7.55 8.73 7.29

22026.5 6.81 6.89 6.81 7.17 7.04 8.13 6.80

24343.0 6.36 6.43 6.36 6.69 6.57 7.57 6.34

26903.2 5.94 6.01 5.94 6.25 6.14 7.06 5.92

29732.6 5.54 5.61 5.55 5.83 5.73 6.58 5.53

T (eV) Sn Cs Gd Tb Dy Hf Ta

54.6 48.8 86.0 57.6 60.9 53.5 29.8 31.1
60.3 50.2 86.8 60.9 64.8 57.3 31.7 335
66.7 51.6 86.7 64.3 68.8 61.0 33.7 35.6
73.7 52.8 85.9 67.3 72.8 64.7 35.8 37.6
81.5 53.9 84.5 69.6 771 68.4 37.9 39.5
90.0 55.0 82.7 71.2 814 72.1 40.2 41.3
99.5 56.2 80.4 72.1 85.2 75.5 42.5 43.2
109.9 57.6 779 724 88.1 78.3 44.7 45.1
1215 59.1 75.3 72.3 89.8 80.2 46.8 46.9
1343 60.9 72.6 71.8 90.3 81.3 48.6 48.7
148.4 62.8 70.1 70.8 89.9 81.4 49.9 50.2
164.0 64.8 67.7 69.6 88.8 80.9 50.8 51.2
181.3 66.8 65.4 68.2 87.2 79.8 51.1 51.8
200.3 68.5 63.4 66.5 85.2 78.4 51.0 51.8
2214 70.0 61.8 64.7 83.0 76.6 50.6 51.5
244.7 711 60.5 62.9 80.5 74.7 49.9 50.9
2704 71.6 59.8 61.0 77.9 72.6 49.1 50.0
298.9 71.5 59.6 59.0 75.2 70.4 48.1 49.0
3303 70.7 59.4 57.1 72.4 68.1 47.0 479
365.0 69.3 59.0 55.1 69.7 65.8 45.8 46.6
403.4 67.4 58.0 53.2 66.9 63.4 44.6 45.3
4459 65.0 56.4 51.4 64.2 61.1 433 44.0
492.7 62.4 54.4 50.0 61.8 58.9 421 42.7
544.6 59.6 52.1 48.5 59.5 56.9 40.8 413
601.8 56.8 49.7 46.9 57.2 54.8 395 40.0
665.1 54.0 47.2 45.2 54.8 52.7 38.2 38.6
735.1 51.3 44.8 434 52.4 50.5 36.9 37.3
812.4 48.6 424 41.6 50.0 48.3 35.6 359
897.8 46.0 40.1 39.8 47.6 46.2 343 34.6
992.3 43.5 379 37.9 45.3 44.0 33.0 333
1096.6 41.1 35.8 36.1 43.0 419 31.7 32.0
1212.0 38.8 33.8 343 40.8 39.8 30.4 30.7
13394 36.7 319 32.6 38.6 37.8 29.1 294
1480.3 34.6 30.0 30.9 36.6 35.8 27.8 28.1

(continued on next page)
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Table 1 (continued)

T (eV) Sn Cs Gd Tb Dy Hf Ta
1636.0 32.7 283 29.3 34.5 339 26.6 26.9
1808.0 309 26.7 27.7 32.6 321 254 25.7
1998.2 29.2 25.1 26.2 30.8 303 24.2 245
2208.3 27.6 23.7 24.7 29.0 28.6 23.0 233
2440.6 26.2 223 233 27.3 26.9 21.8 22.1
2697.3 249 21.0 22.0 25.6 254 20.7 21.0
2981.0 236 19.8 20.7 24.1 239 19.6 19.9
3294.5 224 18.8 19.5 22.6 224 18.6 18.8
3640.9 213 17.8 18.3 21.2 21.1 17.5 17.8
4023.9 20.1 16.8 17.2 19.9 19.8 16.5 16.8
44471 19.1 15.9 16.2 18.7 18.5 15.6 15.8
4914.8 18.0 15.1 15.2 17.5 17.4 14.7 14.9
5431.7 17.0 143 143 16.4 16.3 13.8 14.0
6002.9 16.0 135 135 154 153 13.0 13.2
6634.2 15.1 12.7 12.7 14.5 143 12.2 124
7332.0 141 12.0 12.0 13.6 135 11.5 11.6
8103.1 133 113 113 12.8 12.7 10.8 109
8955.3 124 10.6 10.6 12.0 11.9 10.1 10.3
9897.1 11.6 10.0 10.0 113 11.2 9.54 9.64

10938.0 109 9.35 9.43 10.55 10.46 8.98 9.06

12088.4 10.2 8.77 8.87 9.89 9.81 8.45 8.52

13359.7 9.52 8.21 8.33 9.27 9.19 7.94 8.01

14764.8 8.88 7.68 7.82 8.67 8.61 7.46 7.52

16317.6 8.29 7.18 7.33 8.11 8.05 7.01 7.06

18033.7 7.74 6.71 6.87 7.58 7.53 6.58 6.62

19930.4 7.22 6.27 6.43 7.09 7.04 6.17 6.21

22026.5 6.73 5.86 6.02 6.62 6.57 5.78 5.82

24343.0 6.28 5.47 5.63 6.18 6.14 5.41 5.45

26903.2 5.86 5.11 5.27 5.77 5.73 5.07 5.11

29732.6 5.47 4.77 4.92 5.39 5.35 475 478

T (eV) w Re Os Ir Pt Au Bi

54.6 27.0 244 211 21.7 23.7 243 40.8
60.3 303 28.1 239 246 264 26.9 421
66.7 333 32.0 26.9 27.8 294 29.7 43.2
73.7 36.0 353 29.9 31.0 325 32.6 443
81.5 38.2 38.0 32.6 34.2 35.5 35.7 454
90.0 399 40.3 35.0 36.9 38.1 38.7 46.5
99.5 414 423 36.8 39.1 40.3 41.6 47.8
109.9 42.9 44.0 383 41.0 421 442 49.0
121.5 443 45.6 39.7 42.6 43.6 46.5 50.4
1343 45.8 471 411 44.0 44.9 48.4 51.9
148.4 47.3 48.4 42.5 451 45.9 49.9 534
164.0 48.4 49.5 43.7 46.0 46.6 51.0 54.8
181.3 49.1 50.2 44.5 46.6 47.0 51.8 56.0
200.3 49.3 50.5 449 47.0 471 52.1 56.9
2214 491 50.3 44.9 46.9 46.9 52.0 57.3
244.7 48.5 49.7 44.6 46.4 46.5 51.5 57.4
270.4 47.7 48.8 43.9 45.7 45.8 50.7 57.0
298.9 46.8 47.7 43.0 44.7 448 49.7 56.1
330.3 45.6 46.5 42.0 435 43.7 48.4 54.9
365.0 44.5 45.2 40.9 42.2 42.5 47.0 53.5
403.4 43.2 43.8 39.7 40.8 411 454 51.7
445.9 41.9 42.5 385 394 39.7 43.7 49.8
492.7 40.7 411 37.3 38.1 383 42.0 47.8
544.6 394 39.7 36.1 36.7 37.0 40.3 45.8
601.8 38.1 383 349 354 35.6 38.6 43.7
665.1 36.8 37.0 33.7 341 34.3 37.0 41.7
735.1 35.6 35.6 325 329 33.1 354 39.7
8124 343 343 314 31.7 31.9 34.0 37.8
897.8 33.1 33.0 303 30.6 30.7 325 36.0
992.3 319 31.8 29.2 294 295 31.2 343
1096.6 30.7 305 28.1 284 284 29.8 32.7
1212.0 29.5 293 27.0 27.3 27.3 28.6 31.2
1339.4 28.3 28.1 26.0 26.2 26.2 273 29.8
1480.3 27.1 26.9 249 25.2 25.2 26.1 284
1636.0 259 25.8 239 242 24.2 25.0 27.1
1808.0 24.8 24.6 229 23.2 23.1 239 259
1998.2 23.7 235 21.9 22.2 22.2 22.8 24.7
2208.3 22.6 224 20.9 21.2 21.2 21.8 235
2440.6 21.5 214 19.9 20.3 20.2 20.7 224
2697.3 204 203 19.0 193 193 19.7 213
2981.0 194 193 18.0 184 183 18.7 20.3
32945 184 183 171 174 174 17.8 19.2

3640.9 17.4 17.3 16.2 16.6 16.5 16.8 183
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Table 1 (continued)

T (eV) W Re Os Ir Pt Au Bi
4023.9 16.4 16.3 154 15.7 15.7 16.0 17.3
44471 15.5 154 14.5 14.8 14.8 15.1 16.4
4914.8 14.6 14.5 13.7 14.0 14.0 14.2 15.5
5431.7 13.7 13.7 129 13.2 13.2 134 14.6
6002.9 129 129 12.2 124 125 12.7 13.8
6634.2 12.2 12.1 11.5 11.7 11.7 11.9 129
7332.0 114 114 10.8 11.0 11.0 11.2 12.2
8103.1 10.7 10.7 10.1 103 104 10.5 114
8955.3 10.1 10.0 9.52 9.72 9.74 9.88 10.7
9897.1 9.46 9.42 8.94 9.13 9.14 9.27 10.0

10938.0 8.89 8.84 8.40 8.57 8.58 8.69 9.41

12088.4 8.36 8.31 7.89 8.05 8.06 8.16 8.82

13359.7 7.86 7.81 7.42 7.57 7.57 7.65 8.25

14764.8 7.38 7.34 6.98 7.11 7.11 7.19 7.73

16317.6 6.93 6.89 6.56 6.68 6.68 6.75 7.24

18033.7 6.51 6.47 6.16 6.27 6.28 6.34 6.78

19930.4 6.10 6.07 5.78 5.89 5.89 5.95 6.36

22026.5 5.72 5.69 5.42 5.53 5.53 5.58 5.95

24343.0 5.36 5.33 5.09 5.18 5.19 5.24 5.58

26903.2 5.02 5.00 4,77 4.86 4.86 491 5.23

29732.6 4.70 4.68 4.47 4.55 4.56 4.61 4.90

10° T T T

Stopping Power/density (MeV cmz.'g)

00 I i
10 10? 10° 10° 10°
Electron Energy (eV)

Fig. 1. Energy dependence of calculated mass collision stopping powers (or
collision stopping powers divided by density) for Li, Be, glassy carbon, graphite,
diamond, and Na. The solid lines show stopping powers calculated for each solid
with the full Penn algorithm as a function of electron relativistic kinetic energy T.
The solid circles show stopping powers calculated with the single-pole approxi-
mation. The dashed lines show stopping powers calculated from the relativistic
Bethe equation (Eq. (12)).

with the reflection EELS data of Robins and Swan [31]. We also
chose a set of optical data from Palik [32] for Au since this data
set gave an ELF in better agreement with reflection EELS experi-
ments [31] than the data set from Hagemann et al. [33] we used
previously [1,2,5,29].

For two solids, Pd and V, there were large gaps in our previous
ELFs (between 20 and 100 eV for Pd and between 40 and 100 eV for
V). Our new ELF for Pd between 18 and 120 eV was obtained from
an interpolation of ELF data [34] with a cubic spline function. The
error in the f-sum for the new ELF was —2.3%, a value much smaller
than that for the previous ELF (—12%) [29]. For V, we used a new set
of optical data from Palik [32] for photon energies between 42.5
and 120 eV. We also chose new ELF data for photon energies less
than 24 eV from Ref. [34] because this ELF better resembled trans-
mission and reflection EELS data [30,35] than the previous ELF
data. The resulting error in the f-sum was —0.8% (compared to
the previous value of —20%) [29]. As a result, the new SPs for Pd
and V are much larger than our previous SPs.

Stopping Power/density (MeV cm?g)

10° '

10" 10? 10° 10* 10°
Electron Energy (eV)

Fig. 2. Energy dependence of calculated mass collision stopping powers for Mg Al,
Si, K, Sc, and Ti. See caption to Fig. 1.

We checked the internal consistency of the new ELF data
through use of the oscillator-strength sum rule (or f-sum rule)
and a limiting form of the Kramers-Kronig integral (or KK-sum
rule) [36-39]. The average root-mean-square (RMS) errors for the
ELF data sets of our 41 solids were 4.2% and 7.7% based on the f-
sum and KK-sum rules, respectively. These values are superior to
the corresponding results for our previous ELFs (about 10% RMS er-
ror in both sum rules for 27 elemental solids) [5,29]. For over 80%
of our 41 elemental solids, the ELFs satisfied the f-sum and KK-sum
rules to better than 10%.

Fig. 8 shows ratios of SPs determined from the non-relativistic
FPA, which are obtained from Eq. (3) when T/c?> — 0, and the
new ELF data sets, S,.w, to those calculated previously from the
SPA and the old ELF data sets, S,4, [1,2] as a function of non-relativ-
istic kinetic energy for the 19 elemental solids for which we
adopted new ELF data. The largest changes occurred for Pd (where
the SP increased by up to 58%), V (where the SP increased by up to
52%), and Re (where the SP decreased by up to 26%). These changes
are the opposite of those found in similar comparisons of IMFPs (as
shown in Fig. 11 of Ref. [6]). The changes in Fig. 8 result from two
causes: use here of improved sets of ELF data [6] and differences in
the SP calculation algorithms (the FPA and the SPA). The inset in
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Fig. 3. Energy dependence of calculated mass collision stopping powers for V, Cr,
Fe, Co, Ni, and Cu. See caption to Fig. 1.
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Fig. 4. Energy dependence of calculated mass collision stopping powers for Ge, Y,
Nb, Mo, Ru, and Rh. See caption to Fig. 1.

Stopping Power/density (eV cm?/g)

10 i s s aaaal A s s aaaul i g aaaal i -;n.-u-
10’ 10? 10° 10°* 10°
Electron Energy (eV)

Fig. 5. Energy dependence of calculated mass collision stopping powers for Pd, Ag,
In, Sn, Cs, and Gd. See caption to Fig. 1.

Fig. 8 shows ratios of SPs from the FPA, Sgpy, to those from the SPA,
Sspa, for the 19 solids that were calculated using the new ELFs for
each algorithm. We see that the SP changes are smaller than 10%
and that most of the differences occur for energies less than
200 eV (as will be discussed further in the following section). Since
the ratios Spew/Sow in Fig. 8 generally deviate from unity by more

Stopping Power/density (eV cm?/g)

10" 10? 10° 10* 10°
Electron Energy (eV)

Fig. 6. Energy dependence of calculated mass collision stopping powers for Tb, Dy,
Hf, Ta, W, and Re. See caption to Fig. 1.
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Fig. 7. Energy dependence of calculated mass collision stopping powers for Os, Ir,
Pt, Au, and Bi. See caption to Fig. 1.
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Fig. 8. Plots of ratios of SPs determined from the FPA and the new ELF data sets,
Snew, to those calculated previously from the SPA and the old ELF data sets, Soiq, [1,2]
as a function of electron non-relativistic kinetic energy (i.e., E = v?/2) for the 19
elemental solids for which we adopted new ELF data. The inset shows ratios of SPs
from the FPA, Sgpa, to those from the SPA, Sspa, for the same 19 solids. These SPs were
calculated with the new ELFs for each algorithm.

than the values of Sgpa/Sspa in the inset, it is clear that most of
the changes in S,.w/Soiq are due to the differences in the ELFs.
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3.3. Comparison of stopping powers from the FPA and SPA

We now make comparisons of RMS differences between SPs cal-
culated from the FPA and SPA using the same (new) ELF data set for
each of our 41 solids. Relative percentage RMS differences, RMS,
were calculated from

05

_ o (Ssea(T); — Seea(T);\*
RMS = 100 x {Z <W> /41 (%) (13)

as a function of electron energy from 10 eV to 30 keV.

Fig. 9 shows plots of RMS as a function of relativistic kinetic en-
ergy. We see a steep decrease from about 50% for E = 10 eV to less
than 10% for energies above 40 eV. The steep decrease must be due
to the contributions of single-electron excitations to the SP that are
neglected in the SPA (which only considers excitations at the plas-
mon pole). For energies above 40 eV, RMS generally decreases with
increasing energy, reaching 1% at 30 keV. Three maxima are ob-
served in Fig. 9 at energies of about 100 eV, 2 keV, and 10 keV.
These maxima are due to the different energy positions of maxima
and structure found in the SP plots from the FPA and SPA as a func-
tion of energy in Figs. 1-7.

3.4. Influence of electron exchange on stopping powers

It is important to know the effect of exchange between projec-
tile and target electrons on SP calculations with the FPA. There is
no consensus, however, on how to incorporate exchange effects
within the dielectric formalism [6]. Nevertheless, we can estimate
the influence of exchange on calculated SPs using the Born-Ochkur
exchange correction [40,41].

The non-relativistic DCS with the Born-Ochkur correction can
be written as [41]:

o Cu -1 71
dgdw — wNE  |&(q, )| q’

where E is the non-relativistic kinetic energy (i.e., E = »?/2) and C,
is the exchange correction factor given by

¢ ()
Cele—ﬁ—&-(ﬁ) . (15)
We calculated SPs of Al, Cu, Ag, and Au with the exchange
correction from Eqs. (14) and (15) and compared the results with

(14)
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Fig. 9. The root-mean-square relative differences, RMS, of stopping powers
calculated with the full Penn algorithm from stopping powers calculated with the
single-pole approximation for the 41 elemental solids as a function of electron
relativistic kinetic energy. The RMS differences were calculated from Eq. (13).
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Fig. 10. Ratios of SPs calculated from the FPA with and without an exchange
correction for Al, Cu, Ag, and Au as a function of non-relativistic electron kinetic
energy (i.e, E = v?/2).

corresponding SPs calculated without the exchange correction.
Fig. 10 shows plots of ratios of SPs with the exchange correction
to those without this correction as a function of non-relativistic
kinetic energy. We see that SPs with the exchange correction are
smaller than those without the exchange correction for these four
solids and energies between 10 eV and 30 keV. Above 100 eV, SPs
with the exchange correction are smaller than those without the
exchange correction by less than about 10%. The SP ratios generally
increase with increasing electron energy, reaching about 0.95 at
30 keV.

The influence of electron exchange on calculated SPs is almost
the same as that found in IMFP calculations for electron energies
between 50 and 100 eV [26]. We note, however, that the Born-
Ochkur approximation is essentially a high-energy approximation.
It is then not clear whether this approximation is useful for evalu-
ating the exchange correction for energies less than 100 eV.

4. Discussion

We will compare our calculated mass collision SPs with SPs
from other calculations and from experiments. Although the FPA
is expected only to provide a qualitative guide to SPs for energies
less than about 50 eV, we show SPs calculated from the FPA for
energies as low as 3 eV in Figs. 11-15 in order to make compari-
sons with available SP data.

4.1. Comparisons with calculated stopping powers

Mao et al. [21] calculated SPs of Al and Cu from 1 eV to 10 keV
with the FPA. Fig. 11 shows comparisons of our SPs for Al and Cu
calculated from the FPA and SPA with those of Mao et al. There is
excellent agreement between our FPA SPs for Al and those of
Mao et al. and satisfactory agreement for Cu. The slight differences
for Cu at energies less than about 30 eV are probably due to the
selection of different sets of optical ELF data in each calculation.
As discussed in Section 3.3, the substantial differences in the SPs
for Al from the FPA and SPA at energies less than 20eV are
associated with the contributions of single-electron excitations to
the SP that occur at much lower energy losses than the relatively
sharp plasmon peak at about 15 eV in the ELF. In contrast, there
is broad structure in the Cu ELF, and a wide range of excitation
energies contribute to the SP in the SPA calculation for Cu.

Fernandez-Varea et al. [42] calculated SPs for Al, Si, Cu, and Au
for electron energies between 10eV and 100 MeV. Their
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Fig. 12. Comparison of mass collision SPs calculated from optical data for (a) Al, (b) Si, (c) Cu, and (d) Au by Fernandez-Varea et al. [42] (solid lines) as a function of electron
relativistic kinetic energy with our SPs that were obtained with the single-pole approximation (long-dashed line) and the full Penn algorithm (solid circles).

calculations were based on a so-called “N-oscillator” model in
which different dispersion relations were applied for valence-
electron excitations and inner-shell excitations. They also included
a correction for electron exchange to cross sections for inner-shell
excitations. We compare their SPs with our SPs from the FPA and
SPA in Fig. 12. For energies over 1 keV, the SPs of Fernandez-Varea
et al. for Al, Si, Cu, and Au are in excellent agreement with our
values from the FPA. For Al and Si, there are differences in the
shapes of the SP versus energy curves in the vicinity of 100 eV.

These differences might be associated with the “switch energies”
of 73 eV and 99 eV for Al and Si, respectively, used by Fernandez-
Varea et al. to represent the demarcation between their models
for valence-electron and inner-shell excitations. For Cu and Au,
the switch energies are 74 eV and 54 eV, respectively, but there
are no obvious changes of slope in the SP-versus-energy curves
for these solids in Fig. 12. This difference from the Al and Si behav-
ior occurs because the switch energies for Cu and Au occur in a
structureless region of their ELFs. Tan et al. [43] reported SP
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Fig. 13. Comparison of our mass collision SPs obtained from the full Penn algorithm (solid circles) as a function of relativistic kinetic energy for (a) Al, (b) Si, (c) Ni, (d) Cu, and
(e) Au with SPs calculated from the Mermin-ELF model with ®wy.x = min(T/2, T — Ey) (solid lines) and with . = T — Er (long-dashed lines).

calculations for a group of organic compounds with the SPA and
two types of exchange correction [41,44]. They found that inclu-
sion of exchange reduced their computed SPs by an average of
28%, 9%, and 9% for energies of 100 eV, 1 keV, and 10 keV, respec-
tively. These differences are in good agreement with our estimates
of electron exchange effect for SPs as shown in Fig. 10 except at
100 eV. Their calculations were done up to Wy = T/2 in Eq. (4).
They must then obtain larger SPs at a low energy such as 100 eV
if they used the same W (=T — E) value as we used. We will re-
fer later to this issue in comparison of SPs from the FPA and from
the Mermin model. Nevertheless, the maximum SPs of Fernandez-
Varea et al. (with an exchange correction) for Cu and Au are larger
than our corresponding maximum SPs from the FPA (without an

exchange correction). For Si and Al, however, there is close agree-
ment in the maximum SPs from Fernandez-Varea et al. and our cal-
culations with the FPA. It therefore appears that the exchange
correction must be smaller than differences due to other factors
(e.g., differences in optical ELFs and differences in the models).
We have also pointed out in our related IMFP calculations that cor-
relation and exchange should be treated in an integrated manner
together with information on the band structure of the solid [6].
Abril et al. [45] proposed an algorithm for IMFP and SP calcula-
tions based largely on a Mermin-model dielectric function for the
ELF (Mermin-ELF model) [46]. The Mermin function is an improve-
ment over the Lindhard dielectric function used here in that it ac-
counts for the finite lifetimes of the various excitations. Their
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Fig. 14. Mass collision stopping powers for (a) graphite, (b) Al, (c) Si, (d) Cr, (e) Ni, and (f) Cu as a function of electron relativistic kinetic energy. The dotted lines show SPs
from the relativistic Bethe formula (Eq. (12)), and the solid and long-dashed lines show our SPs from the full Penn algorithm and the single-pole approximation, respectively.
The long-short dashed lines show SPs calculated from a modified Bethe-Bloch SP equation and expressions for the effective atomic electron number and the effective mean
excitation energies [51]. The symbols indicated SPs derived from the experiments of Luo et al. [53] (for Si, Cr, and Cu), Luo [54] (for graphite), Hovington et al. [55] (for
graphite, Al, and Cu), Kalil et al. [57] (for Al), Al-Ahmad and Watt [58] (for Al, Ni, and Cu), Garber et al. [59] (for Al), Fitting [60] (for Al), and Ishigure et al. [61] (for Al).

model of Mermin energy-loss functions was combined with gener-
alized oscillator strengths (MELF-GOSs) to fit experimental ELF
data. The part of an experimental ELF ascribed to excitations of
outer-shell electrons was fitted with a linear combination of Mer-
min-type ELFs, and the part associated with excitations of inner-
shell electrons was fitted with hydrogenic generalized oscillator
strengths [47].

We have calculated SPs for Al, Si, Ni, Cu, and Au with the Mer-
min-ELF model using the parameters for outer-electron excitations
given in Table 1 of Ref. [48] for Al, Si, Ni, and Cu and Table 1 of Ref.

[49] for Au; these parameters were determined from fits to optical
ELFs for excitation energies up to about 1 keV and thus include the
contributions of several inner shells. In our calculations we ignored
the contributions of GOSs for inner-shell ionization of the K shells
of Al and Sj, of the K and L shells of Ni and Cu, and of the K, L, and M
shells of Au. We estimated their contribution to be less than a few
percent for electron energies less than 2 keV for Ni and Cu and less
than 10 keV for Al, Si, and Au.

Fig. 13 shows comparisons between SPs from the FPA (solid
symbols) and from the Mermin-ELF model (solid and dashed lines)
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Fig. 15. Mass collision stopping powers for (a) Ge, (b) Pd, (c) Ag, (d) Pt, and (e) Au as

a function of electron relativistic kinetic energy. The dotted lines shows SPs from the

relativistic Bethe formula (Eq. (12)), and the solid and long-dashed lines show our SPs from the full Penn algorithm and the single-pole approximation, respectively. The long-
short dashed lines show SPs calculated from a modified Bethe-Bloch SP equation and expressions for the effective atomic electron number and the effective mean excitation
energies [51]. The symbols indicated SPs derived from the experiments of Luo et al. [53] (for Ge), Luo [54] (for Pd, Pt, and Au), Hovington et al. [55] (for Pt), and Al-Ahmad and

Watt [58] for Ag and Au).

for Al, Si, Ni, Cu, and Au using two choices for the upper limit wpnax
for excitation energy in the latter SP calculations. One value of w,ax
was Wmax = min(T/2,T — Ef), as recommended by Denton et al.
[50], while the other was wm. =T —Ef as chosen here for
evaluation of Eq. (2). Denton et al. chose the former limit to avoid
consideration of secondary electrons having energies larger than
inelastically-scattered primary electrons. Larger energy transfers
are possible, however, although secondary electrons may then be
indistinguishable from scattered primary electrons, either in
experiments or in model calculations of electron energy spectra.
We believe that the upper limit wn.x = T — Ef is more appropriate

for the SP calculation, as we have chosen here for the results in
Figs. 1-7.

Fig. 13 indicates that SPs from the FPA are smaller than those
from the Mermin-ELF model with the same upper limit
wmax = T — Ej for Si, Ni, Cu, and Au. These differences are generally
less than 20% for energies over 50 eV and may be associated with
different g-dependences of the ELF in the two models. For Al, SPs
from the Mermin-ELF model (with wm.x =T — Ef) and from the
FPA are in good agreement for energies less than 200 eV. This
agreement, in contrast to the results for Si, Ni, Cu, and Au, may
be fortuitous because of the relatively poorer fit for Al of the
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Mermin-ELF to the optical ELF (particularly around the volume-
plasmon energy-loss peak between 12 and 17 eV) than for the
other four solids.

Fig. 13 also shows that calculated SPs from the FPA are larger by
up to about 250% than those from the Mermin-ELF model with
wmax = Min(T/2,T — Ef) for energies between 20eV and 1 keV.
For energies above 1 keV, there is generally good agreement be-
tween SPs from the two approaches. In contrast, we previously
found much better agreement between IMFPs calculated with the
FPA for Al and Au [6] and those reported by Denton et al. [50]
who used the Mermin-ELF model with the same parameters as
those given in Refs. [48] and [49]. This observation suggests that
choice of the upper limit wpq is more significant in SP calculations
than in IMFP calculations because of the greater relative contribu-
tions of possible large-energy-loss excitations to the SP [the factor
o in Eq. (4)] than to the IMFP. Fig. 13 indicates that the choice of
the upper limit is most important for electron energies between
about 20 eV and about 1 keV.

Gumus et al. [51] calculated SPs for Al, Si, Cr, Ni, Cu, Ge, Pd, Ag,
Pt, and Au for electron energies between 10 eV and 100 MeV. Their
calculations were performed using a modified Bethe-Bloch SP
expression and analytical expressions for the effective atomic
number and the effective mean excitation energy of each material.
We show their SPs in Figs. 14 and 15 together with our SPs (and the
experimental SPs discussed in the next section). For energies over
200 eV, the SPs of Gumus et al. for Al, Si, Cr, Cu, Ge, and Pt, are in
good agreement with our values from the FPA and SPA. We also
see that the SPs of Gumus et al. for the other solids are smaller than
our SPs from the FPA for energies above 200 eV. For energies be-
tween 10 and 200 eV, the SPs of Gumus et al. for Al, Si, and Ge
are smaller than our SPs while they obtain larger SPs for the other
solids. Except for Ag, there is generally good agreement between
the Gumus et al. SPs and our SPs from the FPA and SPA for energies
over 200 eV. Since their calculations were made with a modified
Bethe formula that is usually applied for much higher energies,
200 eV must be an effective low-energy limit for their approach.

For Ag, there are larger differences between our SPs from the
FPA and those of Gumus et al. at energies above 200 eV, as stated
above. Since the SPs of Ag for Gumus et al. are in good agreement
with SPs from the relativistic Bethe formula (Eq. (12)) for energies
above 5 keV, the differences with our SPs might be due to uncer-
tainties in the experimental ELF data for Ag (despite relatively
small errors in the f-sum and KK-sum rules [6]).

4.2. Comparison with experimental stopping powers

We compare calculated SPs from the FPA for graphite, Al, Si, Cr,
Ni, Cu, Ge, Pd, Ag, Pt, and Au in Figs. 14 and 15 with experimental
SP data that were mostly obtained from Joy’s database [52]. We
previously made similar comparisons of SPs from the SPA for Al,
Si, Cr, Ni, Cu, Ge, Pd, Ag, Pt, and Au and for electron energies be-
tween 100 eV and 30 keV [1]. We will therefore emphasize com-
parisons here between SPs from the FPA and measured SPs as
well as comparisons for energies less than 100 eV. Comparisons
will also be made with SPs from the relativistic Bethe equation
(Eq. (12)) using MEEs listed in Table 4.3 of Ref. [7] except graphite.
The MEE value for graphite was obtained from our previous work
[2]. We also show SPs from the SPA in Figs. 14 and 15 so that sim-
ilarities and differences with the FPA results are visible.

The experimental SPs in Figs. 14 and 15 can be classified into
two groups. Almost all of the experimental SPs for energies less
than 1 keV were reported by Luo et al. [53], Luo [54], and Hoving-
ton et al. [55,56]. These SPs are based on measurements of trans-
mission electron energy-loss spectra of 100 or 200 keV electrons
transmitted through thin specimen films. The energy-loss spectra
for energy losses up to 1keV and for the angular acceptance of

their spectrometer were analyzed to obtain the single-scattering
ELF. These ELFs were extended to larger energy losses using atomic
X-ray absorption data. Checks were made to ensure that the ELFs
satisfied the expected sum rules. SPs were then calculated from
the experimental ELFs without consideration of any g-dependence
other than that expected from the scattering kinematics. Their SP
calculation, although derived from experimental ELFs, is very sim-
ilar in principle to our SP calculation from optical ELFs. The other
group of measured SPs in Figs. 14 and 15 was obtained from calo-
rimetric methods for Al, Ni, Cu, Ag, and Au [57,58], from a novel
thin-film method in which currents to electrodes at the top and
bottom surfaces of a film were measured (and with the electrodes
separated from the film by thin insulating layers) for Al [59], from
analyses of energy distributions of electrons transmitted through a
thin Al film with a retarding-field analyzer [60], and from analyses
of energy distributions of electrons transmitted through a thin Al
film at various scattering angles [61].

We see generally excellent agreement between our SPs from the
FPA and the Joy SPs for energies larger than about 10 eV and in
some cases (Cu, Pd, and Pt) for lower energies. However, the excel-
lent agreement at energies near 10 eV is very likely fortuitous be-
cause our SP calculations with the FPA ignored the effects of
electron exchange and correlation that must be important at such
low energies. Some small but systematic differences are found at
energies between 10 and 100 eV for graphite, Al, Si, and Ge, and
similar differences can be seen for larger energies for Cr, Pd, Pt,
and Au. Generally good agreement is found between our SPs from
the FPA and the SPs measured by calorimetry for Al, Ni, Cu, Ag, and
Au for energies between about 4 and 30 keV, but there are dis-
agreements between our SPs and those of Al-Ahmad and Watt
[58] for Al, Ag, and Au at lower energies.

The comparisons in Fig. 14 for Al show a wide spread in mea-
sured SPs for the same material as measured by different methods.
The measured SPs at a given energy can differ by a factor of more
than two, and the energy dependence of the SPs reported by Garber
et al. [59] differs from those obtained by other methods (including
the FPA). Given this disparity in SP results for a single material, we
believe that there is satisfactory agreement between SPs from the
FPA and the measured SPs. Definitive experimental tests are still
required, however, to determine whether and how any exchange
correction should be included in the SP calculation, as discussed
in Sections 3.4 and 4.1. Further experimental tests are also required
to distinguish differences in SPs corresponding to different choices
of the upper limit wyq, in Eq. (4), as discussed in Section 4.1.

We note that there is good agreement between SPs from the
FPA and SPA in Figs. 14 and 15 for all solids except Al, Si, and Ge
at energies less than 20 eV. These solids have strong and narrow
plasmon peaks in their energy-loss spectra. As discussed in Sec-
tions 3.3 and 4.1, substantial differences can occur for such solids
between SPs determined from the FPA and SPA because SPs from
the SPA do not have contributions from single-electron excitations.

Finally, we see satisfactory agreement in Figs. 14 and 15 be-
tween SPs from the relativistic Bethe equation (Eq. (12)), SPs cal-
culated from the FPA, and most measured SPs for energies larger
than about 5keV for low-Z and most medium-Z elements
(graphite, Al, Si, Cr, Ni, Cu, Ge, and Pd) and for energies larger
than about 10 keV for high-Z elements (Pt and Au). For Ag, how-
ever, there are larger differences between SPs from the FPA and
those from Eq. (12) at energies above 5 keV than for the other
solids. These differences might be due to uncertainties in the
experimental ELF data for Ag [6].

5. Summary

We have reported mass collision electron SPs for Li, Be, graphite,
diamond, glassy C, Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y,
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Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt,
Au, and Bi over the 50 eV to 30 keV energy range. These SPs were
calculated from ELFs determined from experimental optical data
or ELF measurements [6] with the full Penn algorithm [4]. For 19
of our 41 solids, we adopted improved sets of optical ELF data [6]
over those used for our previous SP calculations with the single-
pole approximation or simple Penn algorithm [1,2]. The largest
changes occurred for Pd (where the SP increased by up to 58%), V
(where the SP increased by up to 52%), and Re (where the SP de-
creased by up to 26%).

We made comparisons of RMS differences between SPs calcu-
lated from the FPA and SPA using the same ELF data sets for the cal-
culations with each algorithm. For energies above 50 eV, the RMS
relative differences were less than 10% and generally decreased
with increasing energy, reaching 1% at 30 keV.

We compared our calculated SPs with results from other calcu-
lations. Mao et al. [21] calculated SPs of Al and Cu from 1 eV to
10 keV with the FPA. There was excellent agreement between
our SPs from the FPA for Al and those of Mao et al. and satisfac-
tory agreement for Cu. Fernandez-Varea et al. [42] calculated
SPs of Al, Si, Cu, and Au for electron energies between 10 eV
and 100 MeV with their N-oscillator model. For energies over
1 keV, the SPs of Fernandez-Varea et al. for Al, Si, Cu, and Au were
in excellent agreement with our values from the FPA. For Al and
Si, there were differences in the shapes of the SP-versus-energy
curves in the vicinity of 100 eV. These differences might be asso-
ciated with the “switch energies” of 73 and 99 eV for Al and Si,
respectively, used by Fernandez-Varea et al. to represent the
demarcation between their models for valence-electron and
inner-shell excitations. Their maximum values of the SPs for Al
and Si were in reasonable agreement with our maximum values,
but their maximum values for Cu and Au were larger than our
maximum values.

Abril et al. [45] developed an algorithm for IMFP and SP calcu-
lations based on a Mermin-model dielectric function (Mermin-ELF
model) [46]. We calculated SPs for Al Si, Ni, Cu, and Au with the
Mermin-ELF model using the parameters for outer-electron excita-
tions adopted by the Abril group [48,49]. These calculations were
performed with two choices for the upper limit wp,,x for excitation
energy, one being Wm.x = min(T/2,T — Ef), as recommended by
Denton et al. [50], while the other was wm.x =T — Ef as chosen
here for our SP calculations. The differences between SPs with
the latter choice of W, and our SPs from the FPA were generally
less than 20% for Si, Ni, Cu, and Au at energies above 50 eV and for
Al at energies above 200 eV. In similar comparisons of SPs with the
former choice of wpq, our SPs were larger than those from the
Mermin-ELF model by up to 250% for energies between 20 eV
and 1 keV. There was, however, good agreement for energies less
than 20 eV for Al, Si, Cu, and Au or less than 10 eV for Ni and great-
er than 1 keV for the five solids. We believe that wmax = T — Efis the
more appropriate choice for the upper limit.

We compared our SPs calculated from the FPA for graphite, Al,
Si, Cr, Ni, Cu, Ge, Pd, Ag, Pt, and Au with values derived from avail-
able experimental data. Most of these comparisons were made
with SPs derived by Joy et al. [52-56] from ELFs obtained from
analyses of energy-loss spectra measured by transmission of 100
or 200 keV electrons through thin specimen films. We found gen-
erally excellent agreement between SPs derived in this way and
our SPs from the FPA for energies larger than about 10 eV, although
there were small but systematic differences for some solids
between 10 and 100 eV. There was satisfactory agreement be-
tween our calculated SPs and values determined from calorimetry
experiments for Al, Ni, Cu, Ag, and Au [57,58] at energies between
4 keV and 30 keV, but there were disagreements with the experi-
mental SPs for Al, Ag, and Au [58] at lower energies. SPs have been
measured by other methods for only one material (Al) [59-61], but

the reported SPs at a particular energy can differ by a factor of
more than two.

Finally, we compared our calculated SPs with values from the
relativistic Bethe equation with recommended mean excitation
energies derived from a wide variety of experimental data [7]
and from our previous analysis for the three carbon allotropes
[2]. The RMS relative deviations between our calculated SPs and
values from the Bethe equation were 9.1% and 8.7% for energies
of 9.897 and 29.733 keV, respectively. Satisfactory agreement
was found between SPs from the Bethe equation, our SPs, and most
measured SPs for energies larger than about 5 keV for low-Z and
most medium-Z elements (graphite, Al, Si, Cr, Ni, Cu, Ge, and Pd)
and for energies larger than about 10 keV for high-Z elements (Pt
and Au). Larger differences between SPs from the Bethe equation
and from the FPA were found for Ag at energies above 5 keV, pre-
sumably due to uncertainties in the experimental ELF data set for
Ag.
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The imaging properties of bright field and annular dark field scanning confocal electron microscopy
(BF-SCEM and ADF-SCEM) are discussed based on their point spread functions (PSFs) in comparison
with multislice simulations. Although the PSFs of BF-SCEM and ADF-SCEM show similar hourglass
shapes, their numerical distributions are quite different: BF-SCEM PSF is always positive and shows a
center of symmetry whereas the ADF-SCEM PSF is complex and has Hermitian symmetry. These PSF
properties explain the large elongation effect in BF-SCEM for laterally extended object and almost no-
elongation in ADF-SCEM, illustrating the importance of the numerical analysis of PSFs. The Hermitian
symmetry of the ADF-SCEM PSF results in an interesting “edge enhancement effect” at the interface.
Simulation using the PSF and the multislice method verified this effect at GaAs surfaces and InAs
interfaces embedded in GaAs. This unique feature of ADF-SCEM can potentially be useful for depth
sectioning. It is also pointed out that a PSF imaging model cannot be applicable for BF-SCEM of a phase
object, when the system is symmetric and aberration free.

Optical sectioning
Multislice method
Image simulation

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Scanning confocal electron microscopy (SCEM) [1,2] is the elec-
tron version of the well-established optical three-dimensional ima-
ging technique, scanning confocal optical microscopy (SCOM) [3,4]
and was firstly reported in 2002 [2]. The schematic of the system is
depicted in Fig. 1. The SCEM ray path consists of scanning transmis-
sion electron microscopy (STEM) illumination system and transmis-
sion electron microscopy (TEM) imaging system with pin-hole
aperture placed at the detector. The image is formed by scanning
the focused probe over the sample and by de-scanning the probe
image on the detector. The original report [2] demonstrated an image
improvement for thick semiconductor device by SCEM in comparison
with STEM or TEM.

Takeguchi et al. [5] and Hashimoto et al. [6] developed a stage-
scan system that forms an image by scanning the sample instead
of scanning the beam. This system avoids the difficulties asso-
ciated with beam scanning such as adjusting the probe positions
on the sample and detector during the scan and de-scan, which is
a technically very demanding task especially at high-resolution.

* Corresponding author. Tel.: +81 29 863 5474; fax: +81 863 5571.
E-mail address: Mitsuishi.Kazutaka@nims.go.jp (K. Mitsuishi).

0304-3991/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ultramic.2011.10.004

Using the stage scan system they obtained for the first time high-
resolution SCEM images from Au particles.

However, the depth sectioning (z-sectioning) capability of a
sample has not been achieved by usual SCEM yet partially
because in comparison with optical lenses used in SCOM, the
available numerical aperture size is much smaller for the SCEM
due to the aberrations in magnetic lenses used in SCEM. Recent
progress of aberration correctors is now improving this situation
rapidly [7-9].

A more intrinsic problem of z-sectioning with SCEM is, as pointed
by many authors [10-12] including our previous paper [13], con-
ventional bright field (BF)-SCEM is susceptible to the elongation
effect depending on the sample lateral size, and thus the depth
resolution is much worse than the vertical spread of the focused
probe. Note that the point spread functions of aberration free BF-
SCEM is the same with for high-angle annular dark field (HAADF)-
STEM [10-12,14,15]. Therefore, the depth resolution achievable with
BF-SCEM is the same with HAADF-STEM.

On the other hand, annular dark field (ADF)-SCEM, recently
suggested SCEM technique that uses annular dark field aperture
placed at the collector lens (Fig. 1(b)), shows more readily
interpretable image contrast. Depth sectioned images of a nano-
coil were obtained with ADF-SCEM using an uncorrected micro-
scope, and no obvious elongation effects due to the sample lateral
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BF-SCEM ADF-SCEM
M Il
objective lens
objective apature
Upper deflector E E E E

Lower deflector E E E E
Collection lens
Annular dark
Bright-field field apature
apature
Detector

Fig. 1. Schematic drawing of BF and ADF-SCEM setups. The sample is illuminated
by an electron beam, which is focused by the objective lens and scanned by the
upper deflection coils. The transmitted beam is de-scanned by the lower deflection
coils and re-focused by the collector lens on the detector. The detector pin-hole
aperture selects only electrons passing through the focus. A BF or ADF aperture is
applied at the collector lens.

size were observed [16,17]. In the previous paper, we provided a
geometrical explanation of the image features observed in BF and
ADF-SCEM [13]. It was demonstrated that the BF-SCEM intensity
profile consists of broad and sharp features originated from the
sample shape and atomic structure close to the probe focus,
respectively.

The properties of imaging system are often discussed using the
contrast transfer function (CTF), and the boundaries of the CTF are
used to discuss the limit of frequency transfer. However, since CTF
is an expression in reciprocal space, it is difficult to predict the
imaging property in real space. Furthermore, the values of the CTF
within the boundary are equally important for imaging.

In this paper, we illustrate the properties of BF and ADF-SCEM
using the point spread function (PSF) and CTF and explain some
unusual features of ADF-SCEM that can be explained by taking
account of the value of PSF. To accentuate the imaging nature of
BF and ADF-SCEM, we only discuss the case of aberration free
system. This assumption may be justified by the recent develop-
ments of electron microscopes equipped with double (objective
and collector lenses) aberration correctors that is capable of
opening up the aperture as wide as a few 10 mrad and potentially
realize a nanometer resolution in the z-direction.

2. Calculations conditions

Throughout this paper, the objective semiangles are 30 mrad
for both BF and ADF-SCEM and the collection semiangles are
30 mrad for BF and 30 to 40 mrad for ADF-SCEM. The PSFs are
calculated for the region of 2.56 nm x 2.56 nm x 25.6 nm divided
by 512 x512 x512. Dynamical calculations were performed
using the FFT-multislice method [18] implemented into the EMS
software [19], which was modified for SCEM simulations. The
incident energy was 200 keV. All aberrations but defocus were
ignored and a point detector was assumed. Both BF and ADF
intensities at the point detector were normalized at each illumi-
nation angle by the BF intensities without a sample. The supercell
of 9.60 x 9.58 nm was used for GaAs/InAs where 1024 x 1024
waves were calculated; this corresponds to 17 x 24 unit cells of

GaAs(110). The lattice constant was assumed to be the same
for InAs and GaAs. All absorption has been neglected, although
the elastic potential was smeared through the use of the
Debye-Waller factors.

3. Imaging model of HAADF-STEM and SCEM

In this and following sections we restrict the discussion of SCEM
to coherent scattering by a weak scattering object and neglect
multiple scattering. In this case the image amplitude may be
expressed by a convolution between an object distribution and a
PSF, which describes the system response to a point object. Then,
a Fourier transform of the image amplitude is given by a simple
product between a Fourier transform of the object distribution and
a CTF, which is a Fourier transform of the PSF. Thus, either function
expresses a system performance, if the system shows a linear
response against the object distribution.

For ADF-STEM in which we can assume the incoherent
imaging, the image can be described as [12,14]

1(x,,2) = 0srem(X,9,2) ® |h°¥ (x,9,2)|* = 0s7em(r) ® PSF(D), )

where os7gy is the cross section of an incoherent signal (object
function), such as electron intensity scattered to the ADF-detec-
tor, h"b’(x,y,z) describes a wave field formed by the objective lens
and ® expresses the three-dimensional (3D) convolution opera-
tion. In this case, the PSF of the system is the probe intensity,
namely| hY(x,y.2) | 2,
SCEM imaging is described as [12,14,20]

I(x,y,2) = |o(x,y,2) ® hY(—x,—y, —z)h“”(x,y,z)\z = |o(r) ® PSF(r) 2

2

where o(r) is the object function, hi°*?(x,y,z) and h(x,y,z)are the
PSFs of the objective and collector lenses, respectively. Thus, the
PSF of the whole system is h*”(—x,—y,—2)h“(x,y,2). As discussed
below, for an aberration-free symmetric SCEM, h"bj(—x. —y,—2) =
h°Y(x,y,—z) = K (x,y,z)*and the PSF becomes identical to that of
ADF-STEM. However, we have to note that the object function is
different between ADF-STEM and SCEM. The object function of
HAADF-STEM is a HAADF absorption potential in the absorption
model [18], whereas for the object function of SCEM, a transmis-
sion function derived within the phase object approximation is
often used [12,14,15,21]. The phase object has the form of
t(r) = exp(icV(r)), where V(r) is the crystal potential and ais the
interaction constant. For a single-layer or a single atom, a phase-
grating works well as the transmission function and can predict
an intensity distribution [12,14]. However, its value is unity in the
area of zero potential, namely in vacuum, and the convolution
between the phase grating and PSF depends on the volume of
integration [12].

In optics, this unphysical situation is avoided by defining the
object function as a sum of the unscattered and scattered compo-
nents as o(r) = d(z)+s(r) [20], where J(z) is the Dirac delta function.
The delta function gives the unscattered wave at the observation
plane when it is convoluted with a 3D-PSF ands(r)represents the
scattering object, which is assumed to be weaker than the
unscattered wave. In the case of phase object s(r)=t(r)-1=
exp(icV(r))—1, which becomes zero in vacuum. Using the scatter-
ing power s(r) for an object function, as in optics, we can avoid the
unphysical dependence on the integration volume.

Then, the BF-SCEM intensity may be given using s(r) as the
object function:

I(x,,2) = |(3(2)+5(1)) ® PSF(r)|* = |1+5(r) @ PSF(T)|* ~ 1
+2Re[s(r) ® PSE(r)].
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Therefore, the ADF-STEM and BF-SCEM intensities are both
linear in the PSF, and thus the information transfer becomes
identical between them as pointed out by several authors [12,14].

In the case of ADF-SCEM there is no unscattered wave at the
observation plane, and thus the observed amplitude is simply
given by a convolution between the scattering object and the PSF:

I(x,y,2) = |s(r) ® PSF(r)|?

The mathematical justification for this assumption is given
below (Eq. (10)). Note that the intensity is not linear in PSF.

4. Shapes of PSF and CTF

A PSF of a single lens can be expressed as a stack of two-
dimensional PSFs evaluated at each defocus z:

h(x,y,z) = /A(I(H)exp{—ix(l(u ,z)}exp(il(\‘R)dl(H 3)

Here K| is a 2D reciprocal space vector, R=(x,y) is a 2D real-
space vector and y is the lens aberration function. When all
aberrations are ignored as in the case of ideal (aberration free)

lens, it can be written as
2
X(KH Z) = TC)~|KH ‘ z

The corresponding CTF can be calculated numerically using
Fourier transform. When all aberrations except defocusing are
ignored a CTF for an individual lens becomes a section of the
sphere (Ewald sphere) [20].

The PSF of SCEM is a product of the two PSFs for the objective
and collector lenses:

PSF(x,,2) = h®Y (—x,—y,—2)h (x,y,2) )

Then, the CTF of SCEM is calculated by convoluting the CTFs for
the objective and collector lenses:

CTF(En,0) = H(—&,—n,~0) @ H'(¢n.0) 5)

Then, the SCEM CTF is calculated by convoluting the two
opposite spherical sections of the objective and collector lenses
as illustrated in Fig. 2(a) for BF-SCEM case.

Fig. 3 shows the PSF and CTF of a rotationally symmetric
aberration-free BF-SCEM calculated for the convergence and
collection semiangles of 30 mrad. The FWHM of the PSF is
0.045 nm in the x-y plane, and 4.9 nm in the z direction. These
values roughly correspond to the ranges of CTF of 4a/A for x-y
and o?/4 for the z direction [11,14,20] as shown in Fig. 2(b).

aZ

a
(Iva)

2o
-0

a b
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ks - o
: 22 I
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Fig. 2. (a) Schematics of the convolution of the CTFs for the objective and collector lenses that results in (a) BF-SCEM CTF. (b) The x-z section of BF-SCEM CTF. In the shaded

area the CTF has non-zero value.

defocus (nm)

position(nm)

16 32

=32 -16 0
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Fig. 3. (a) The x-z section of point-spread-function and (b) the ky—k, section of contrast transfer function of BF-SCEM calculated for 30 mrad convergence for both objective

and collector apertures.



56 K. Mitsuishi et al. / Ultramicroscopy 112 (2012) 53-60

Here, the PSF shows an hourglass shape, or a head-to-head double
cone, while the CTF resembles narrowed eyes’ shape with so-
called missing-cones near the origin [12,20]. A finite object
perpendicular to the optical axis contributes to the BF-SCEM
intensity for a wide defocus range, and thus yields an elongated
image. This elongation effect of BF-SCEM has been explained by
the missing cone of the CTF [10]. However, we note that contrary
to SCOM the cone angle of BF-SCEM is almost 90°, and that the
terminology of missing cones may be confusing. On the other
hand, we could explain the elongation effect of BF-SCEM from
simple geometrical considerations [13]. Below we will analyze
the elongation of the BF-SCEM imaging in terms of the PSF.

The PSF and CTF of ADF-SCEM for a point detector can be
calculated in the same way using different apertures for the
objective and collector lenses. In this case the CTFs to be
convoluted become a section and annular zone of Ewald spheres,
respectively, defined by the objective and collector apertures, as
shown in Fig. 4(a), where all aberrations except defocusing are
ignored. Fig. 5 shows a PSF and CFT of aberration-free ADF-SCEM
calculated for the convergence semiangle of 30 mrad and the
collection semiangles between 30 mrad and 40 mrad. An overall
feature of the PSF of ADF-SCEM is also characterized by a similar
hourglass observed for the BF-SCEM. On the other hand, the CTF

of ADF-SCEM shows distinctively different shapes from that of BF-
SCEM [12,20]. The FWHM of the PSF is 0.035 nm in the x-y plane
and 5.5 nm in the z direction. These values roughly correspond to
the ranges of CTF of 2(B,+®)/4 for x-y and fZ,/2/ for the z
direction as shown in Fig. 4(b), where o = f3;,. The limit of CTF in
the x-y plane extends a little bit more due to the larger outer
(40 mrad) collection semiangle, which results in the smaller
FWHM of PSF in the x-y plane. On the other hand, the FWHM
in the z direction becomes slightly worse since the range of the
CTF along the z direction is narrower than that of BF-SCEM. It may
be noted that the CTF has a missing-region close to the origin as in
the case of BF-SCEM, although ADF-SCEM does not show an
elongation effect as observed in BF-SCEM [13,16,17]. Thus, it is
clear that a simple explanation of the elongation effect in
BF-SCEM using only the shape of the CTF shape, namely a
missing-cone is insufficient.

When all aberrations except defocusing are ignored, h(x,y,—z) =
h(x,y,2)*. Thus, the PSF of each rotationally symmetric lens has
Hermitian symmetry, h(—x,—y,—z) = h(x,y,—z) = h(x,y,2)*, and the
value of BF-SCEM PSF becomes

PSFgr(x,y,2) = h”B’;j (—X,—Y, —z)hg’}'(x,y,z) = hg‘;j (x,y,z)*hgupl(x,y,z) = \hg‘;j *y.2)| 2
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Fig. 4. (a) Schematics of the convolution of two CTFs of the objective and collector lenses that corresponds to ADF-SCEM CTF. (b) The x-z section of ADF-SCEM CTF.
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Fig. 6. The profiles of (a) BF —~SCEM PSF and (b) ADF-SCEM PSF. The former is real while the latter has an imaginary part, which is asymmetric about z=0.

This function is real and positive, and its distribution is
symmetric to reflection over the mid plane (z=0):
hgr(x,y,2) = hpp(x,y,—2)

It may be noted that the integral of the BF-SCEM PSF perpen-
dicular to the optic axis (over the x-y plane) is unity for any
defocus:

- S 17 .
/PSFBF(x,y;z)dxcly= / |h% (x,y: 2)|*dxdy = E/ \HY (& ;2| dédn =1,
(7

since |H(¢,n,2)| =1.

On the other hand, in the case of ADF-SCEM even when all
aberrations except defocusing are ignored, PSF is still complex:

PSFADF(vavZ) = hzkg)-‘(fxi =Y, 7Z)h;‘\OD’F(X!y)Z) = hzlgF(X'yvz)*hf‘ODlF(x'yvz))

®)
and its distribution becomes a complex-conjugate after reflection
over the plane z=0:
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Especially for the case with no overlap between objective and
annular apertures, the integral of the ADF-SCEM PSF perpendi-
cular to the optic axis is always zero:

/ PSF ppp(x,y; 2)dxdy = / B (XY 2)* hihr(x,y; 2)dxdy

= [ Hol- -2 Hghe G pddn =, (10)

Here, we have used the property of Fourier transform that an
integral of the product of two functions in one space is equal to an
integral of the product of two functions in other space.

Although the PSF shows the similar shape of an hourglass both
for BF and ADF PSF, their profiles are quite different when the real
and imaginary parts of the PSFs are plotted in the z direction as
shown in Fig. 6. Note that the imaginary part of the ADF-SCEM
PSF is antisymmetric along the z-direction. In the following
section, we use the PSF profiles to explain some features of BF-
and ADF-SCEM images.

5. Imaging properties of BF-SCEM derived from PSF

Consider the intensity of BF-SCEM signal when a thin finite
object is gradually shifted along the z-axis of the probe. For the
case where defocus value is large so that the probe is much larger
than the size of atoms, the atomic structure of the object can be
neglected and the object can be treated as a homogeneous
medium. For such case, the thin object larger than the section
of the PSF produces a constant signal from Eq. 7. When object

Fig. 7. BF-SCEM intensity profile of single atom calculated using the CTF, plotted
together with the real and imaginary part contributions.

moves further from the confocal plane, the finite size of the object
becomes smaller than the section of the PSF, and thus the signal
starts to decrease from the constant value because the electron
that passes through the sample reduces. This qualitatively
describes the elongation effect in BF-SCEM image [13].

The fact that the BF-SCEM PSF is a real-valued function (Eq. 6)
explains why a contrast of BF-SCEM for a phase object will be low.
The first-order term of a phase grating expansion is imaginary,
and thus its convolution with the real-valued PSF is also imagin-
ary as discussed by Cosgriff et al. [21]. Thus, the lowest order in
the BF image intensity of a phase object becomes a second order,
and the contrast becomes low. This is contrary to the BF HRTEM
image, where the first-order term of a phase grating expansion
contributes to the image intensity at a Scherzer focus. At and near
the confocal position, the probe is well focused to the atomic
level. Then the atomic nature of the sample appears. Cosgriff
et al.[21] showed that the contrast of a single atom as a function
of z has a small rise at the position as shown in Fig. 7, and they
explained this by atomic focusing.

This rise can be straightforwardly explained by a balance
between contributions from the real and imaginary parts of the
phase grating. Even if we include the higher-order terms in the
exponential expansion of the phase object, the weak scattering
approximation will hold provided all the terms included are small
compared with the unscattered wave. When we include terms up
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method (b).

to the second order, the image intensity can be given by

I(r) = |exp{icV()} ® PSF(I‘)\2

2
~ ' <1 +iaV(r)—%(aV(r))2> ® PSF(r)

~1—(aV(r))*PSF(r)+(aV(r) ® PSF(r))* (11

Note that the first-order term becomes imaginary after the
convolution with the real-valued PSF. Thus, the lowest orders in
the BF-SCEM image intensity from both the real and imaginary
parts of the phase object are of the second order, within the weak
scattering approximation. In Fig. 7 the image intensity of a single
Au atom located at z=0 is plotted together with the real and
imaginary contributions. The contrast from the real part is
negative around the atom position, whereas it is positive for the
imaginary part. Thus, the resultant intensity profile shows a small
rise at the focus position. When the resolution increases, both
contributions become sharper and thus the width between two
minima decreases as found by Cosgriff et al. [21]. However, the
atomic focusing model may not be able to explain quantitatively
the change of shape as a function of resolution.

Next, we consider a two-atom case of aberration-free symmetric
BF-SCEM imaging. In Fig. 8, we show the BF-SCEM intensity profiles
of one gold atom and two atoms of gold (separated by 0.4 nm along
the beam direction) calculated by the multislice method and by the
PSF (the convolution is actually calculated using the CTF in recipro-
cal space). The PSF intensity profile of two atoms is calculated by
two different projected potentials; one is projecting two atoms into
a single layer, and the other is projecting two atoms into two
different layers. Here the PSF result for projecting two atoms into a
single layer is close to the one obtained by the multislice method.
On the contrary, placing two atoms in two different layers gives an
unphysical intensity. This discrepancy is because multiple scattering
contributions between layers are neglected in the PSF treatment.

The unphysical intensity distribution can be understood by
considering the object function consisting of two layers charac-
terized by the same potential V. The image intensity can be
expressed for the real-valued PSF as

I(r) = | [5(r) +5(r)] ® PSF(r)|*

= |[1+(exp(iaV(r))— 1)+ (exp(iaV(r))—1)] ® PSF(r)|*
2

~ ) {1 + <iaV(r)—%(oV(r))2> + (iaV(r)— %(aV(r))zﬂ ® PSF(r)

~ 1-202[V(r)?> ® PSE(T)]+(20)*[V(r) ® PSF(r)}? (12)

where we assume that those two layers are close with each other
so that the difference in PSF can be ignored. The lowest terms are
of second order by potentials, as in the case of a single atom.

The second term increases linearly with number of layers while
the third term quadratically. Therefore, the total intensity will
exceed 1 regardless of how weak is the scattering. This unphysical
intensity distribution occurs because the contribution from double
scattering by the second layers is ignored in the image calculated
using PSF. Thus, it is evident that at least double scattering should
be taken into account in the case of phase object imaging for
aberration-corrected symmetrical BF-SCEM. This will not happen if
two layers can be projected into one as shown above. Nevertheless,
a total (3D) sample may not be projected to a single layer, and the
depth sectioning cannot be argued by the projected layers.

In the case where the system’s aberration is not negligible, the
PSF becomes complex. Then, it can be shown that the BF-SCEM
image intensity is of the first order in terms of the potential as in
the case of BF-HRTEM by explicitly writing the real and imaginary
parts of the PSF as

I(r) = [[1+ (exp(icV1(r)—1) +(exp(igV,(r))—1)]
®(PSF,(r)+PSFi(r))|*
~ 1-26(V1(r)+V2(r)) ® PSFi(r)—a*(V1(r)* + V(r)*) ® PSF(r)
+02[(V1(r)+ V(1) ® PSF(1)]* + 62 [(V1(r)+ V4 (T)) ® PSFy(r)]*
(13)

Here, the first order term contributes mainly to the image
intensity, and thus the PSF can be used to estimate the image
intensity. This operation condition may be preferable in practice
because the first-order term contributes to the image with a
strong contrast. As we have seen in Eq. (8) the PSF of ADF-SCEM is
complex so that the image can always be safely approximated by
the square of a convolution of the PSF and the object function.

6. Imaging properties of ADF-SCEM derived from PSF

In contrast to the BF-SCEM case, when a thin object is larger
than the section of the ADF-SCEM PSF, the signal becomes zero
(Eq. 10) at any defocus value. As a consequence, ADF SCEM signal
does not appear from a large object at any defocused position,
when the object is wider than the PSF. This quantitatively
explains why ADF SCEM does not show the elongation effect.
When the object covers only a portion of PSF by moving further
from the confocal plane, or when the object moves from the optic
axis, this cancellation over the integration becomes partial, and
may result in some intensity. Nevertheless, the convolution
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integral of ADF SCEM may be destructive so that the resultant
intensity may not be significant.

At and near the confocal position, the probe is well focused to
the atomic level and again the atomic structure of the sample
appears. In contrast to BF-SCEM, however, the PSF of ADF-SCEM is
complex so that the potential of the first order dominates the
image contrast so that the effect of double diffraction is unim-
portant. This can be seen in Fig. 9 where the image intensity
profiles of one and two Au atoms are calculated with the PSF and
multislice. Here, the two profiles are almost identical for both
single and two atoms between PSF and multislice.

It may be noted that the integral of ADF-SCEM PSF over the x-y
plane is zero even on the confocal plane. It means that when the
object function does not change much for the range of the probe
size, the ADF-SCEM signal will be small. Therefore, an ADF-SCEM
signal is only generated by sharp features of the sample, but not
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generated by broad sample features. This result was also
explained by a simple geometrical consideration that a sharp
feature scatters electrons into the collector aperture [13]. It is
therefore evident that the shape of the PSF does not explain the
elongation effect. In the same way, the shape of the CTF, namely
the missing-cone, does not simply explain the elongation effect.
We need to evaluate the value of PSF or CTF.

As we noted in Section 4, the imaginary part of ADF-SCEM PSF
is antisymmetric in the z direction, and the positive and negative
parts of PSF will cancel out, when the probe is focused within the
object. On the contrary, when the probe is located at an interface
or surfaces this cancellation becomes imperfect. Therefore, the
ADF-SCEM intensity should be sensitive for detecting interfaces as
demonstrated in the following simulations.

Here, we calculated the same 30 nm thick <110) GaAs sample
as used in Ref. [21]. The images in Fig. 10(a) and (b) are simulated
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Fig. 9. The ADF-SCEM image intensity profiles of one and two Au atoms calculated with the PSF and multislice method.
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Fig. 10. Simulated x-z images of 30 nm thick {110) GaAs located at the center of the image calculated for 1.13 nm in the x direction and 90 nm in the z direction for
(a) BF, (b) ADF and (c) ADF with the PSF. In ADF-SCEM, the atoms within the slab show almost no intensity, and strong peak observed only at the surfaces.
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Fig. 11. The simulated (a) BF- and (b) ADF-SCEM intensity profiles of a 30 nm thick (110 GaAs sample for Ga and As columns together with two inter-atomic sites.
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Fig. 12. The simulated x-z SCEM images of an InAs layer embedded in the 30 nm GaAs sample of Fig. 10 and located at 5 nm from the sample bottom, for (a) BF, (b) ADF
and (c) ADF calculated with the PSF. The lattice constants are assumed to be the same for InAs and GaAs.

using the multislice method while the image in Fig. 10(c) is done
by the PSF. The BF-SCEM image (Fig. 10a) is similar to the one
given in Fig. 9 of Ref. [21], although the z-spread of the probe is
three times larger here. It is striking that the atoms within the
slab show almost no intensity in ADF-SCEM, while strong peaks
were observed only at the surfaces (Fig. 10b). It may be noted that
the PSF gives the ADF-SCEM image (Fig. 10c) similar to the one
calculated with the multislice method.

Fig. 11 shows intensity profiles of (a) BF- and (b) ADF-SCEM
images along the z-direction at the Ga and As columns. As already
pointed by Cosgriff et al., BF-SCEM intensity at the atomic column
drops at the top and bottom surfaces of the sample. On the
contrary ADF-SCEM intensities have their peaks at the top and
bottom surfaces for atomic column site.

Fig. 12 shows simulated images for a buried interface, where
10 nm of GaAs is replaced by InAs at 5nm from the sample
bottom as shown in the figure. Thus, the Ga/In columns have
discontinuity, while the As atom columns are continuous. In the
BF-SCEM image (Fig. 12a), the change from GaAs to InAs is faint,
and it is difficult to identify the depth of the impurity layer as
pointed by Cosgriff et al. [21]. On the other hand, a clear peak
appears at the Ga/In interface in the ADF-SCEM image while the
As column intensity does not show any contrast between the top
and bottom interfaces (Fig. 12b). This unique edge enhancement
effect of ADF-SCEM should be useful for depth sectioning. It may
be noted again that the PSF gives the ADF-SCEM image (Fig. 12c)
similar to the one calculated with the multislice method.

7. Conclusions

We have discussed that the imaging properties of BF- and ADF-
SCEM are discussed based on their PSFs. The PSFs of both BF-
SCEM and ADF-SCEM show the similar hourglass shapes, and the
corresponding CTFs have comparable missing cones. Therefore,
the difference in the imaging properties of BF and ADF-SCEM
cannot be explained by the shape of the PSF or CTF. It is shown
that the ADF-SCEM PSF is complex and has a Hermitian symme-
try, while the symmetric BF-SCEM PSF is always positive and
possesses a center of symmetry. The positive valued PSF explains
the large elongation effect of BF-SCEM for a laterally extended
object, and the complex-valued PSF accounts for the absence of
the elongation effect in ADF-SCEM. This means that it is essential
to consider the numerical distributions of PSF as well as its overall
shape to understand the imaging characteristics.

The Hermitian symmetry of the ADF-SCEM PSF results in the
interesting “edge enhancement effect” at the interface. Simula-
tion using the PSF and multislice method verified this effect at the
surfaces of a GaAs and at the InAs impurity interfaces embedded
in GaAs. This unique feature of ADF-SCEM can potentially be
useful for depth sectioning. It is also pointed out that the
approach of PSF is not applicable for BF-SCEM of a phase object,
if the lens system is symmetric and aberration free.
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has attracted broad interest because it is one of the most

advanced testbeds for quantum computation. Although the
interest began with solution NMR'7, it is now believed that scalable
NMR quantum computers in the future will be built on semicon-
ductors based on highly developed semiconductor technology**.
The main challenges include the initialization and the creation of
spin entanglement, which are essential features of quantum com-
putation’. Semiconductor-based NMR quantum computers are
advantageous as they can be achieved optically; that is, the initiali-
zation (nuclear—spin polarization) is provided by optical pumping®’,
and the entanglement is created via internuclear (nuclear spin-
spin) couplings between polarized nuclei'®". In optically pumped
semiconductors, the latter manifests itself as dipolar order'>"
and double-quantum coherence'.

Switchability is another essential functionality required for inter-
nuclear couplings, which should be ‘on’ during operations and ‘off’
otherwise. In this respect, nuclear dipolar coupling (D-coupling,
hereafter) is not the best choice for the above-mentioned reasons.
In addition, the time required for operations increases rapidly with
increasing qubit number because of decoupling operations®. Other
possible candidates include indirect couplings mediated by donor
electrons* and magnons'®. Their implementations are fairly chal-
lenging, however, given the complicated switching mechanisms. By
contrast, the scheme presented in this paper is rather simple; the
coupling strength can be controlled externally through light power,
and on/off switching can be easily implemented.

In this study, we have preformed cross-polarization (CP) experi-
ments with GaAs under light illumination, and demonstrated that a
nuclear spin—spin coupling grows in strength, and extends its reach
to farther nuclei as light power is increased. These futures bring
about a unique transition of the CP process from oscillatory behav-
iour in the ‘dark” towards exponential relaxation with increasing light
power. The experiments provide us with information on the essential
features of the optically induced nuclear spin-spin couplings; in par-
ticular, we find that the coupling strength is roughly proportional to
light power, which is essential for the switching of the couplings.

N uclear magnetic resonance (NMR) quantum computing

Results

CP process in GaAs in the dark. The present mechanism is
manifested ina CP process from "As (I-spin) to "'Ga (S-spin) in GaAs
under infrared light irradiation. Before detailing this process, we
first describe it in the dark (without light irradiation) as a reference.
This is an ordinary CP process, for which we expect a contact time
(7,,) dependence of S-magnetization (Mseq) of the form

M(1,) = ME[1-exp(~Tey / Tis))s 1)

where T is the cross-relaxation time. A relaxation process in the
rotation frame (T',) need not be considered here, as it is sufficiently
long because of high crystal symmetry'®". The reality, however,
is more complicated than equation (1). Figure 1 shows ng(rcp)
obtained in the dark, which exhibits a clear transient oscillation.
Transient oscillations have been reported in some molecular crys-
tals, and attributed to discrete S-I coupling spectra of isolated S-I
pairs’®2. The magnetization is transferred back and forth inside the
pair with a frequency corresponding to half the flip-flop term of the
D-coupling. The present sample, however, is not a molecular crystal,
so isolated pairs are expected to be rare. Here an essential factor
is the existence of two Ga isotopes, that is, ®Ga and "'Ga with
natural abundances of “N,=0.604 and "'N,=0.396, respectively.
A local 7As -"'Ga pair appears when only one of the four nearest-
neighbour sites of " Asis occupied by 'Ga and the others are occupied
by “Ga. The probability of finding such pairs is ,C,-"'N,-(¥N,)* = 0.35;
that is, about 35% of ”As have a single "’Ga in the vicinity and
contribute to the oscillation. The pairs are coupled through indirect
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Figure 1| CP experiment in GaAs in the dark. Contact time (7))
dependence of 7'Ga magnetization (ng) in a cross polarization experiment
in the dark at 10K, normalized at 7,,= 0.7 ms. The pulse sequence

is shown in Figure 5, where the light is turned off, that is, Pz =0mW.

The magnetization is transferred back and forth between ">As and "'Ga at a
nearest neighbour site. This process gives rise to a transient oscillation. The
solid red line represents the best-fit curve using equation (2).

scalar coupling J;;, where D-couplings are absent because the Ga
sites are situated at magic angle positions in the (100) crystal orien-
tation'®'”?'. The process is described by a damping oscillation'®,

1 1
ng (Tcp) = ng [1 - Eexp(—chp) - exp(—?;RTCp /2) cos(ZnQTcp )}, 2)

where Q is the oscillation frequency (=J¢/2) and R is the damp-
ing factor. We fit the data using equation (2) with Q and R as free
parameters. The best result is obtained with Q=0.74kHz, which
yields Ji;=2Q =1.48kHz. This value is comparable with that in the
InP case (Jis=2.3kHz)". The fitting curve is shown by a solid line in
Figure 1. The fit is not very good at the beginning of the oscillation;
this may be due to the presence of ”As sites with more than one
7'Ga nucleus in the four nearest-neighbour sites.

CP process under light irradiation. Figure 2a shows the 7., depend-
ence of S-polarization, M(7,,) under various levels of light power,
Py, which exhibits new local maxima (peaks) that are not observed
in the dark. The maxima form a number of series (o, 3, 7...), and
the maximal position in each series shifts towards smaller values of
7., as the light power is increased. For example, the series ‘3" shown
by the red arrows starts with a broad maximum around 7,,=3.1 ms
at P=100mW, which shifts towards smaller values of 7., as Py
is increased and eventually merges into a peak at 7,=0.8ms at
166 mW. These maxima represent new polarization transfer pro-
cesses that appear under light irradiation. Figure 3 shows a three-
dimensional representation of Figure 2a obtained by interpolating
the data in between. The continuous shift of the maximum in each
series can be readily confirmed.

This phenomenon can be explained by discrete increments in the
number of S-nuclei ("’Ga) involved: in the dark (P,=0mW), the
number of nuclei participating in the process is small and oscilla-
tory behaviour is observed, as shown in Figure 1. Light illumina-

2 NATURE COMMUNICATIONS | 2:378 | DOI: 10.1038/ncomms1378 | www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.



NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1378

ARTICLE

a
200 r 200 mW
\l/“/
175
15.0
]
3 12.5
c
Ke]
® 10.0
N
©
c
g 75
€
8
= 5.0
25
0.0
-I L 1 " 1 2 1 2 1 L 1 " 1 2 1 2 1 L 1 " 1
00 05 10 15 20 25 30 385 40 45 50
Contact time (ms)
b c
. 30 307 -
S A
: ¥ .
S 20 + T 20 :
= ’ ' VT N
g BTy p
T . .
c "4 = .
51.0- ) = 10¢
L ,” 1 I T
.92 S 5 2 SR T ! i
~ 0 . N ' . A Ll L L L '
0 50 100 150 200 0 1.0 2.0 3.0 40 50

Pr (mW) PIR2 (10 W?)

Figure 2 | CP experiments in GaAs under light irradiation. (a) Contact
time (7,,) dependence of ”'Ga magnetization (M,) in CP experiments at 10K
measured under light irradiation with power P, ranging from O to 200 mW.
The pulse sequence is shown in Figure 5. The data at P,=0mW are the same
as those in Figure 1. Black, red and blue arrows represent the three series of
maxima. (b) The light power (P;;) dependence of °As magnetization (M),
which represents the enhancement of the nuclear spin polarization due to
the optical pumping effect. The magnetization exhibits a linear dependence
with Py.. The error bars represent the data scatterings in a few experiments
performed under the same conditions. (c) The values of 1/Tfor the three
series (0, B and y) marked by the arrows in (a) plotted against Fiﬁ. The error
bars represent the breadth around each peak. The lines are visual guides.

tion causes a series of S-nuclei batches (o, B, v...) to participate in
sequence. Their contributions are successively added to the signal
intensity one after another, whereas the speed of transfer from
I- to S-nuclei in each series increases with the light power (that is,
the maximal position shifts towards smaller values of 7.). As the
number of nuclei involved is further increased, the cross relaxation
is expected to approach the exponential relaxation behaviour given
by equation (1)*. That is, we see here the transition from oscillatory
behaviour in the ‘dark’ towards exponential relaxation with increas-
ing light power. This is a unique case in that such a transition can
hardly be observed in ordinary NMR measurements.

Another factor responsible for the phenomenon is the opti-
cal pumping effect®’. It contributes to the S-magnetization ("'Ga)
through the enhancement of the I-magnetization (”>As) caused by
the polarization transfer from the optically oriented electrons for
the duration of light irradiation 7, = 60s. Figure 2b shows the light-
power dependence of the I-magnetization (*As), which increases
linearly with light power. This enhancement is partly responsible for

3" nearest neighbour
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VA 0 \NETGRANANL, (AN
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EARNSEANN NN

71Ga magnetization (a.u.)

ight \
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1%t nearest neighbour

Figure 3 | Light power dependence of the CP process in GaAs. Three-
dimensional representation of Figure 2a obtained by interpolating the data
in between. The data shown by the yellow arrow represents those in the
dark (Pr=0mW), which corresponds to the polarization transfer to the
nearest-neighbour "'Ga through the conventional J. The black (o) and
red (B) arrows indicate the series of maxima corresponding, presumably,
to the polarization transfers to the second and third nearest neighbour
sites, respectively. The dotted red line represents the 7'Ga magnetization
at 7,,=0.7ms, which exhibits a plateau-like feature (that is, less steeper
slope) around 80 mW.

the increase of the S-magnetization with increasing light power, as
seen in Figures 2a and 3.
The 7., dependence of M is expressed as,

dark
MS(’L'CP) = MIar (TL)mFlS(TCP) + M?P(PIR,TL)
e op,i ®3)
X mIq—>S(Tcp)+ 2 m S s (P> Tep) |»
i=a
where M }hrk(rL) in the first term on the right-hand side represents

the I-magnetization in the dark portion of the sample recovered
during 7, =60s and m{2, ; represents the polarization transfer proc-
ess to S-spins in the first nearest neighbour sites through Ji;. This
process is essentially the same as that in Figure 1. On the other hand,
M7P (P, 71) in the second term is the I-magnetization in the illumi-
nated area generated by the optical pumping effect during 7, =60s,
whose P, dependence is shown in Figure 2b. This magnetization
is transferred to S-spins through the two processes shown in the
brackets: the same process as that in the dark, m}, ¢, and additional
ones induced by light irradiation, 3, m‘;i’s( B> Tep) (i=0, B, v...).
The latter are caused by the optically induced heteronuclear indirect
coupling, J & " We will discuss characteristics of this coupling in the
next section.
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Figure 4 | Optical switching of a nuclear spin-spin coupling. A conceptual
(ideal) model of optical switching of a nuclear spin-spin coupling between
nuclear-spin qubits (red arrows) spaced a few lattice points apart from
each other. Blue balls represent ‘inert’ (for example, spin-zero) nuclei. The
nuclear dipolar couplings between the qubits are out of reach. Once the
light is illuminated, a coupling emerges between the qubits. The strength of
the coupling can be controlled externally through light power.

Discussion

The new coupling I tis presumably mediated by photo-excited
electrons. It is known that electrons in metals can mediate indirect
nuclear spin-spin couplings, a process refer{ed to as the RKKY
interaction®. In the present case, however, Jie 1S is observed in semi-
conductors where no intrinsic Fermi surfaces exist. Moreover, the
lifetimes and spin relaxation times of the photo-excited electrons
usually fall in the range between pico- and nanoseconds, which is
more than six orders of magnitude smaller than that of the CP proc-
ess, that is, milliseconds. It is intriguing that two phenomena with
such different time scales are coupled with each other.

The strength of JiE 1S in each batch (o, E y...) can be evalu-
ated by the cross-relaxation time TIS in mI s(PRr-Tep) (i=0t,
Y...). According to Demco et al.'”?*%, the cross-relaxation time is
expressed as

opt _ N7

VT = TMlSTc) 4
where 7. is the correlation time of the CP and,
My == 1(1 +1)Y @enj¥) )

is the second moment of the I- S heteronuclear spectrum due to 7§ IS .
Equat1on (5) indicates that M1 is proportional to (/3")?. Prov1ded
that J ISt is proportional to PIR and that 7, is mdependent of 7% IS ,
equations (4) and (5) lead to the conclusion that 1/ TIS is propor-
tional to Py’ The actual value of Tjg’ Pin each batch is determined
from the analys1s of the functional form of m; —>S(PIR’Tcp) (i=0, B,
v...). Here we evaluate it from the maximal position; Tjg is defined as
the contact time at which the maximum is formed. Figure 2c shows
1/Tjs for the three series of maxima (o,  and y) plotted against Ag.
The graph suggests that 1/ TIS is roughly proportional to Pig, imply-
ing that J Isp is proportional to Py,.

This result prov1des a clue to the nature of the series of S-nuclei
batches (o, B, v...). Equation (5) indicates that the condition

o< () is fulﬁlled only when all I-S pairs part1c1pat1ng in the
sungmauon of the right-hand side share the same JoP 1s > such that
I 1s can be taken out of the summation X. Therefore, each series
may be assigned to the polarization transfers to a batch of S-spins at
the same distance from the I-spin at the origin. Figure 3 illustrates
this situation. For example, the o-maxima may be assigned to the
second nearest-neighbour S-spins, the 3-maxima to the third, and
so forth. It is reasonable that equivalent S-spins in the same order
situated at the same distance from the I-spin share the same scalar
coupling with it. Moreover, the contributions from nuclei in the
same order to the correlation time are partially cancelled out'**%.
opt

Therefore, the assumption that 7, is independent of I ;s may bea
reasonable approximation.

The result also provides us with information about the reach of
I ' 'The dotted red line in Figure 3 shows the P, dependence of
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Figure 5 | Pulse sequence. Pulse sequence for optical pumping CP
experiments. [=7°As, S="'Ga and IR =infrared light (1.50eV, 7). '‘Comb":
comb pulse consisting of a number of n/2 pulses. 7,: duration of light
irradiation (=605s). 7., contact time for CP. w,/2m, ,/2m: rf-pulse
strengths in terms of Rabi frequency (=35kHz). P infrared light power.
The horizontal axis is not to scale.

M(t,,) at a constant 7. One finds a plateau-like feature around
80mW, which indicates that the S-spins at the third nearest-
neighbour sites participate in the process only when P >80mW;
thatis, /7§ can reach farther than D- and Jis-couplings, as the latter
two may not substantially reach the third-nearest neighbours.

Features such as the external switchability and the long reach
may add variety to the qubit arrangement in semiconductor-based
NMR quantum computers. Figure 4 shows an example. In an array
of nuclear-spin qubits, a few lattice points apart from each other,
the D-couplings are out of reach, so that the qubits are decoupled.
Then, the present mechanism provides the external control of inter-
nuclear couplings. As the light power is increased, the reach of
couplings is extended. This would further enhance the flexibility of
qubit arrangements.

This mechanism is compatible with most schemes proposed for
semiconductor-based NMR quantum computing. The implantation
of nuclear spin arrays in semiconductors has been studied using
various techniques such as scanning probe microscopes, ion beams,
and isotope engineerings* . These techniques will provide promis-
ing technologies to implement the schemes shown in Figure 4.

In conclusion, we have discovered an optically switchable indi-
rect nuclear spin-spin coupling, which is manifested in CP experi-
ments with GaAs under light illumination. As the strength of this
coupling is externally controllable through light power, we expect
it to have an essential role in the quantum gate operations of solid-
state NMR quantum computers in the future.

Methods

Optical pumping double resonance NMR system and the sample. The CP
experiments were performed at 10K using an optical-pumping double-resonance
NMR system developed for this study. The system consists of an NMR spectro-
meter, a laser system and a cryostat loaded in a 6.34-T superconducting magnet.

A custom-built double-resonance probe is installed inside the cryostat. The sample
used in this study is an undoped semi-insulating GaAs single-crystal wafer with

a thickness of 600 im and a crystal orientation of (100) (Mitsubishi Chemical).

It is mounted on a sample stage made of sapphire located at the probe head and set
with the surface normal to the magnetic field. The sample stage is cooled through
thermal contact with the cold head of the cryostat. Infrared light emitted from a
Ti:Sapphire laser is delivered to the cryostat through a polarization-maintaining
fibre?”. It is converted to circularly polarized light by a quarter-wave plate at the
probe head, and applied to the sample in parallel to the magnetic field. The spot
size at the sample surface is about ¢5mm.

Pulse sequence. The pulse sequence used is shown in Figure 5. The magnetization
of I-spins, saturated by the first comb pulse, is regenerated during the time interval
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7, and transferred to S-spins through the CP immediately thereafter. The infrared
light is irradiated at a constant strength P}, throughout the sequence. The photon
energy of 1.50eV (near the band gap) and the helicity 6~ were selected so that the
optical pumping NMR signal enhancements for both 7’Ga and "*As were nearly
maximal. The experiment in the dark (Fig. 1) was obtained with the same pulse
sequence as that in Figure 5, with the exception that P, =0mW.
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Hyperthermic effects of dissipative
structures of magnetic nanoparticles in
large alternating magnetic fields
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Targeted hyperthermia treatment using magnetic nanoparticles is a promising cancer therapy. However, the
mechanisms of heat dissipation in the large alternating magnetic field used during such treatment have not
been clarified. In this study, we numerically compared the magnetic loss in rotatable nanoparticles in
aqueous media with that of non-rotatable nanoparticles anchored to localised structures. In the former, the
relaxation loss in superparamagnetic nanoparticles has a secondary maximum because of slow rotation of
the magnetic easy axis of each nanoparticle in the large field in addition to the known primary maximum
caused by rapid Néel relaxation. Irradiation of rotatable ferromagnetic nanoparticles with a high-frequency
axial field generates structures oriented in a longitudinal or planar direction irrespective of the free energy.
Consequently, these dissipative structures significantly affect the conditions for maximum hysteresis loss.
These findings shed new light on the design of targeted magnetic hyperthermia treatments.

umour-targeted magnetic hyperthermia has recently attracted much attention'. Preferential accumulation
of magnetic nanoparticles in tumour tissue is achieved by conjugating nanoparticles with tumour-homing
peptides® or antibodies®. When the accumulated nanoparticles are exposed to a large alternating magnetic
field, H=H,sin(2nf*t), where H, is the amplitude of the field, fis the frequency, and t is time, they begin to rotate
because of magnetic torque. Simultaneously, the direction of the magnetic moment, 4, in each nanoparticle
reverses with a certain probability. Consequently, heat equivalent to the magnetic loss dissipates locally in the
tumour tissue. If the properties of the irradiated field are limited (i.e., H,.'f < constant)' to ensure biomedical
safety, then nanoparticles that maximise the in vivo efficiency of heat dissipation, Py/(H,"f), are required, where
Py is the specific energy dissipation rate (specific loss power) per unit mass of nanoparticles. The actual rotations
of the nanoparticles are disordered because the microviscosity of the local environment in cancer cells is not
constant*’, and effective elasticity depends on the binding conditions between nanoparticles and membranes. To
minimise the effect of irregular rotations in magnetic hyperthermia, two guiding principles have been proposed
on the basis of simple models that consider a linear response of thermodynamic equilibrium states or magnetic
field-driven reversals.
The first guiding principle® is to use the relaxation loss in superparamagnetic iron oxide nanoparticles (SPIONs)
with a sufficiently low energy barrier AU for reversal. If a linear response of their thermodynamic equilibrium state
is considered at low H,, the out-of-phase component of AC susceptibility y” can be expressed as follows:

1= (2nf7)/[1+2nfr)], (1)

where y is the initial susceptibility per unit mass of SPIONs. When reversal and rotation occur in a nanoparticle in
parallel, the characteristic time 7 is given by the following equation:

NI 2)

where 1y is the Néel relaxation time for reversal, and tp is the Brownian relaxation time for rotation.
Consequently, the heating efficiency Py/(H,.'f) = )" H,. for individual monodisperse nanoparticles has a
single maximum at the peak frequency 2nf, = t~'. For a sufficiently small SPION, t is determined only by 7y
because 7y is much shorter than 7. In this case, it has been assumed that the conditions for maximising the
efficiency are unaffected by uncontrolled rotation of the nanoparticles.

However, in some experiments, dual peaks have been observed for the frequency dependence of y" o Py/
(Hyf)® despite the prediction of a single peak at a 2nf, value of ™' (= 1y"' + 157 '). For this reason, size
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distribution” or aggregation® of the nanoparticles was considered
based on the linear response theory. In an earlier study’, the low-
frequency peak observed for the susceptibility was attributed to
Brownian relaxation of larger nanoparticles, while the high-frequency
peak was attributed to Néel relaxation of smaller nanoparticles. In
another study®, the low- and high-frequency peaks were attributed to
individual and agglomerated nanoparticles, respectively. Thus the
observed dual peaks have been theoretically explained by the coex-
istence of two kinds of nanoparticles. In other words, these explana-
tions are based on the assumption that a single kind of nanoparticle
will produce only a single peak at ™' (=1 "' + 137"). However, this
assumption has never been theoretically verified under a large AC
magnetic field, where the linear response theory does not hold.

The second guiding principle is to use hysteresis loss in ferromag-
netic nanoparticles’. In mechanical models such as the Stoner-
Wohlfarth model for single domain particles, # is reversed in the
time scale of Larmor precession (picoseconds) when AU disappears
at the switching field Hy,,, because thermal fluctuations are not con-
sidered. Such fast reversals are considered to dominate the response
to high frequency AC magnetic field because the Brownian relaxa-
tions of large ferromagnetic nanoparticles are generally slow com-
pared with the oscillation of the field. In this case, the work done in
one cycle is given by the area inside the hysteresis loop, {* M H,,
where M is the spontaneous magnetisation and { is a coefficient
related to the rectangularity of the loop. In the simple case of rect-
angular hysteresis loops, { is 0 for H,. < Hg, and 4 for H,. = H.
Consequently, the maximum efficiency, Py/(H,.'f) = ("M, (Hg,/
H,.)/p, where p is the density of magnetite, is achieved when H, is
adjusted to H,,. Because Hy, depends on the magnetic anisotropy
field Hx specific to each nanoparticle, it has been assumed that, in
cases where reversal is much faster than rotation, the amount of
hysteresis loss is unaffected by the inhomogeneous rotations of nano-
particles in cancer cells.

In recent experimental studies'®"', the observed Py; of immobilised
ferromagnetic nanoparticles was lower than that of the same nano-
particles dispersed in a fluid. Kim et al.' attributed the difference to
variation in the rates of convective heat transfer. Miiller et al.'' sug-
gested that the orientation or agglomeration of the nanoparticles, or
interaction effects, may be responsible for the observed difference.
The orientation of nanoparticles is important because it is related to
the magnetic torque intrinsic in rotatable ferromagnetic nanoparti-
cles. However, there has been no theoretical study on magnetic field-
driven reversals of # in ferromagnetic nanoparticles with easy axes
that simultaneously rotate under the magnetic torque.

There are many reported inconsistencies between experimental
results and predictions based on the above two guiding principles
for optimising hyperthermia treatment. These guiding principles are
based on the simple models established at the two limits: in zero
magnetic field or at zero temperature. Under the conditions for
hyperthermia (H,. # 0, T # 0), where T is temperature, the validity
of the guiding principles has not been theoretically verified even for
an ideal system of non-interacting monodisperse nanoparticles.
Consequently, we attempted to simulate the thermally assisted mag-
netic response of individual superparamagnetic/ferromagnetic iron
oxide nanoparticles exposed to a large AC magnetic field like that

used in hyperthermia treatment. The simulation was performed
in the following two extreme cases: non-rotatable nanoparticles
strongly anchored to structures resembling organelles, and rotatable
nanoparticles in an aqueous phase mimicking cytoplasm. In the
simulations, the thermally activated reversals of # were calculated
between the meta-stable directions. Simultaneously, the rotations of
the spheroidal nanoparticles were computed in the inertialess limit
(Brownian dynamics simulation), where the frictional torque always
balances with magnetic torque and with Brownian torque (details are
reported in the Methods section). The results allow examination
of whether the relaxation loss for 7y « 7g and the hysteresis loss at
H,. = H, are independent of the ability of the nanoparticles to
rotate under the conditions for hyperthermia treatment.

Results

The magnetic response to an AC magnetic field H,sin2nf'f) at T =
310 K was simulated for individual monodisperse spheroidal magnet-
ite nanoparticles with non-magnetic surfactant layers in non-rotatable
and rotatable situations (see the Methods section for details). Results
are presented for the following representative nanoparticles: nearly
spherical nanoparticles with an aspect ratio, #; of 1.1 and an equatorial
diameter, 2Ry, of 18 nm, and elongated spheroidal particles with # =
1.4 and 2Ry; = 24 nm. The parameters of these nanoparticles are
summarised in Table 1. The former nanoparticles with 1 (H,.=0)
of 20 ns can be considered as typical SPIONS, while the latter with Ty
(Hac = 0) of 2X107 s (1 year) can be regarded as typical ferromagnetic
nanoparticles in the frequency range of hyperthermia treatment
((2nf)~" of approximately 1 ps). Results for nanoparticles with other
sizes and shapes are shown in the Supplementary Information.

The magnetisation curves of the non-rotatable nearly spherical
nanoparticles at low H,. (1 kA/m) are shown in Fig. 1. A linear
response without hysteresis was observed at f = 100 kHz. Such
superparamagnetic behaviour is reasonable because the estimated
n(H,e = 0) for the nanoparticles is 20 ns. Hysteresis appeared in
the curves at f = 1,000 kHz. As fincreased further, the area inside the
hysteresis loop grew. This area corresponds to the work done in one
cycle. Therefore, Pyy/(H,."f) also increased with f, and a single max-
imum was observed at a peak frequency, f,,, of 10,000 kHz (Fig. 1 (b)).
Figure 2(a) shows the H,. dependence using a contour plot of Py/
(Hqac'f). As H,. increased, f, shifted towards higher frequencies. As
indicated by the dashed line in Fig. 2(a), this shift can be explained by
the values of tn(H,.) calculated using the conventional Brown’s
equation as follows':

[en(Hae)] ™" =fo(1=1?) {(1+h) exp[(— KaV /ks T)(1+h)’]
+(1—h)exp[(—KaV/ksT)(1—h)*]}

where h is tH/(2 K4V), K4 is the shape anisotropy constant, V'is the
volume of the magnetic core, and kg is the Boltzmann constant.
Therefore, the emergence of a single peak in Py/(H,.'f) can be
attributed to Néel relaxation loss, as expected for SPIONSs.

For the nearly spherical nanoparticles with a low H,. (1 kA/m),
the magnetisation curves in the rotatable case were the same as those
in the non-rotatable case (see Fig. 1). An equivalent maximum
appeared in the f-dependence of Py/(H,.*f) in the linear response

Table 1 | Parameters of the simulated nanoparticles: including the aspect ratio «, equatorial diameter 2Ry, thickness of the surfactant layer
SR, density of magnetite p, spontaneous magnetisation M, anisotropy field Hy, viscosity 17, Néel relaxation time zny(H = O), and Brownian
relaxation time . The value of 7n(H = 0) was estimated using equation (3), while the value of t was estimated using equation (4).

2RM oR P Ms HK n TN(H = O) B
K (nm) (nm) (kg/m3) (kA/m) (kA/m) (mPa's) (sec) (sec)
Nearly spherical nanoparticle 1.1 18 4.5 5200 450 17 1.0/ 2x10°8 8x10-°
Elongated spheroidal 1.4 24 6.0 5200 450 57 1.0/ 2x107 2x10°°

nanoparticle
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Figure 1| Magnetic response of nearly spherical nanoparticles (typical
SPIONs). The open and solid symbols show the values of non-rotatable
and rotatable nanoparticles, respectively. (a) Steady magnetisation curves
withlow H,. (1 kA/m) at various frequencies, (b) frequency dependence of
the efficiency of heat dissipation with low and intermediate values of H,.

range (H,. = 1 kA/m) (Fig. 1(b)). This behaviour is consistent with
the above assumption because the estimated 7y (H,. = 0) of 20 ns is
much shorter than 75 = 8 ps (Table 1). The shift of this peak with
increasing H,. is analogous to that in the non-rotatable case
(Fig. 2(b)). However, another maximum of Py/(H,.'f) was observed
at H,. = 8—16 kA/m and f = 30 kHz in the contour plot shown in
Fig. 2(b). A secondary maximum like this has not previously been
theoretically predicted for individual monodisperse nanoparticles.
Figure 3(a) shows the magnetisation curves calculated under these
conditions. Unlike the non-rotatable case, an S-shaped hysteresis
loop without remanence existed. At the same time, the mean
orientation of the long (easy) axes of the nanoparticles showed
butterfly-shaped hysteresis, as shown Fig. 3(b). Because such beha-
viour cannot be explained using the present linear response theory,
its origin is discussed in the next section from the viewpoint of the
rotation of the long axis of SPION.

(a)non-rotatable @ng,)" (b) rotatable H_PHF
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Figure 2 | Efficiency of heat dissipation in the nearly spherical
nanoparticles (typical SPIONs) that are (a) non-rotatable and (b)
rotatable, where Py is the specific energy dissipation rate. Dashed lines
represent the Néel relaxation time (2nty) ', dotted lines show the
Brownian relaxation time (2n7g) "', and solid lines indicate typical angular
velocity, wy(H = H,., Yy = n/4)/2m, of the rotation caused by magnetic
torque. White lines show the thresholds for biomedical safety. Diamonds A
and B on the white lines denote the conditions for maximum Py/(H,.*f) in
the rotatable nanoparticles.
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Figure 3 | Magnetic response of nearly spherical nanoparticles (typical
SPIONSs) with an applied AC field with H,. = 8 kA/m and f = 30 kHz.
(a) Steady magnetisation curves, (b) mean orientation of the long (easy)
axis of the nanoparticles, <cosf>. Orientations are indicated in the inset
images.

The magnetisation curves at f = 10,000 kHz for the elongated
spheroidal nanoparticles, which are typical ferromagnetic nanopar-
ticles, in the non-rotatable case are shown in Fig. 4(a). The curve was
reversible at H,. = 20 kA/m, and hysteresis appeared in the curve at
H,. = 26 kA/m. As H,increased further, the area inside the hyster-
esis loop grew. When H,. became larger than 32 kA/m, the expan-
sion of the area was saturated and the shape of the magnetisation
curve approached that predicted by the Stoner-Wohlfarth model.
Py/(H,'f) was almost zero at low H,, then at approximately
30 kA/m it began increasing rapidly with H,, followed by a gradual
decreases with increases in H,. (Fig. 4(b)). This behaviour depends
weakly on the frequency (Fig. 5(a)). In mechanical models that do not
consider thermal fluctuation, a hysteresis loop appeared when H,.
was higher than Hy,. Because Hy, of ferromagnetic nanoparticles
with randomly oriented easy axes ranges from Hk/2 = 29 kA/m to
Hy = 57 kA/m, and is often close to 0.5 Hy, that Pyy/(H,."f) is almost
independent of frequency at H,. > 30 kA/m in the non-rotatable

(b) Magnetic loss

(a) M-H curves
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Figure 4 | Magnetic response of elongated spheroidal nanoparticles
(typical ferromagnetic nanoparticles) in high-frequency AC fields with
£=10000 kHz and various values of H,. (a) Steady magnetisation curves
in the non-rotatable case; the corresponding curves for rotatable
nanoparticles are presented in Fig. 6(a) and (b). Solid lines indicate
Stoner—Wobhlfarth model curves. (b) H,.—dependence of the efficiency of
heat dissipation. The open and solid symbols show the values of the non-
rotatable and rotatable nanoparticles, respectively. The arrows indicate the
peak maxima of Py/(H,.*f) in both cases, and the broken line shows half of
the anisotropic field, Hx/2. The inset shows an enlarged view.
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Figure 5 | Efficiency of heat dissipation of elongated spheroidal
nanoparticles (typical ferromagnetic nanoparticles) that are (a) non-
rotatable and (b) rotatable. Dashed lines represent the Néel relaxation
time (2m7y) "' and the solid line indicates f;, which was calculated using
equation (5). White lines show the thresholds for biomedical safety.
Diamonds C and D on the white lines denote the conditions for maximum
Py/(H,.*f) in the rotatable nanoparticles.

ferromagnetic nanoparticles is consistent with the properties
expected for the hysteresis loss.

Figure 6 shows the magnetisation curves for rotatable elongated
spheroidal nanoparticles at f = 10,000 kHz. Because the magnetic
response slowly changed after the AC magnetic field was applied at
t = 0, transient variations of the hysteresis loops are observed. The
shape of the major hysteresis loop at H,. = 60 kA/m was initially
consistent with that predicted by the Stoner—-Wohlfarth model with
randomly oriented easy axes. However, the remanence of the major
loop gradually increased from 0.5 M, to M. In other words, the
major loop became squarer, and the area inside the loop increased
with time. In comparison, the remanence of the minor loop at
H,. = 26 kA/m gradually decreased and the area became smaller
over time. As shown in Fig. 6(c) and (d), the long (easy) axes of the
nanoparticles gradually turned when the variations of the loops pro-
ceeded (see the next section for details). Consequently, the increased
area of the major hysteresis loops and decreased area of the minor
loops caused the maximum of Py/(H,.*f) to shift towards higher H,.
compared with the non-rotatable case (see arrows in Fig. 4(b)). Note
that reversals occurred every hundred nanoseconds (~1/f), while
rotations took several microseconds (Fig. 6(c)). Thus, the assump-
tion that the amount of hysteresis loss is unaffected by the rotation
of nanoparticles when reversal is significantly faster is invalid
for ferromagnetic nanoparticles in large AC magnetic fields at high
frequencies.

Before discussing this novel phenomenon observed at high
frequencies, the other important variation in the contour plot of
Py/(H,'f) (Fig. 5) that occurred because of the ability of the fer-
romagnetic nanoparticles to rotate at lower frequencies shall be
examined. The maximum of Py/(H,.'f) shifted toward lower H,.
below 100 kHz for the rotatable elongated spheroidal nanoparticles,
while it stayed between Hy/2 and Hy in the non-rotatable case.
Figure 7(a) shows the magnetisation curve obtained when H,. =
16 kA/m and f = 30 kHz. The curve in the rotatable case had an
obvious hysteresis loop with a large remanence in the steady state,
but there was no hysteresis observed for the non-rotatable situation.
Because H,. = 16 kA/m is much smaller than Hy/2, no reversals of z#
occur at any orientation of the easy axis so hysteresis is not observed for
the latter case. Figure 7(b) shows the variation of <cosf> in the
rotatable case, where <cosf> (0 < 0 < n/2) is the mean angle between

(a) Major loops

(b) Minor loops
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Figure 6 | Magnetic response of elongated spheroidal nanoparticles
(typical ferromagnetic nanoparticles) in high-frequency AC fields with
f=10 000 kHz and various values of H,.. (a) Transient major hysteresis
loops of the rotatable nanoparticles after application of a field with H,. =
60 kA/m at t = 0. (b) Transient minor loops of the rotatable nanoparticles
after application of a field with H,. = 26 kA/m at t = 0. Solid lines indicate
Stoner—Wohlfarth model curves. (c) Relaxation of the mean orientation of
the long axis, <cos 0>, (d) steady values of <cos 0> and relaxation time
Trot- Dashed lines in (d) show Hg/2 and Hg; and the solid line in (d)
indicates the reciprocal, [wy(H= H,sinfy=0.43)] "', of the typical angular
velocity of rotation caused by magnetic torque. Orientations are indicated
in the inset images.

the magnetic field and the long axes of the spheroidal nanoparticles.
Note that <cosf> is synchronised with |M/M;| = |cosy|, where V) is
the angle between # and H. This fact indicates that the hysteresis in the
rotatable case (Fig 7(a)) is mainly caused by the rotation of the easy axis
where the direction of g is fixed. Consequently, heat equivalent to the
hysteresis loss dissipates even at H,. < H/2.

For Brownian relaxation, 73 can be expressed as follows:

5= (37 Vir (0.8+0.2)/ (ks T)), (4)

where 7 is the viscosity of the surrounding medium, and Vy is the
hydrodynamic volume. In equation (4), the frictional torque for
spheroids, described in the Methods section, is considered. For the
elongated spheroidal nanoparticle, (2n7g)™"' is calculated to be
8 kHz. This value is too low to cause the nanoparticle to rotate at
30 kHz. Therefore, Yoshida et al.'* also took into account the rota-
tion caused by magnetic torque, (t) X H(t). They concluded that the
area of the hysteresis loop was maximised as follows:

2mf, =5 [140.07(uH,e ks T)?] ™. (5)

The location of the peak in Py/(H,.f) below 100 kHz can be
explained by this equation, as shown in Fig. 5(b). An expression that
describes all of the variation in the position of the primary peak of
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Figure 7 | Magnetic response of elongated spheroidal nanoparticles
(typical ferromagnetic nanoparticles) in a low-frequency AC field with
f=30 kHz and H,. = 16 kA/m. (a) Steady magnetisation curves, where
the open and solid symbols show the values of the non-rotatable and
rotatable nanoparticles, respectively. Solid lines are Stoner—Wohlfarth
model curves. (b) Mean orientation of the long (easy) axis of nanoparticles,
<cos0>.

Py/(H,.*f) is desirable, and equation (5) can be rewritten as follows:
21, ~ [in(Hae)] ' 415 [140.07(uH, /ks T, (6)

This equation is an extended relationship of 7' = 7' + 757" for
a large AC magnetic field. This expression is for the primary
maximum; the secondary maximum is discussed later. The second
term of equation (6) can be approximated to 0.1uH,./(nVy) for
UH,/kgT » (0.07)"°° and # ~ 1. On the other hand, tn(H,.) of
ferromagnetic nanoparticles becomes extremely short only when
the energy barrier disappears between Hy/2 and Hy. Therefore, the
changeover between the two terms in the equation (6) generally
occurs at H,. = Hy/2 and 2nf = 0.1uHyx/(2nVy)=0.1 KgV/(nVy).
For the elongated spheroidal particles (x = 1.4, K4=16 kJ/m’, and
V/Vy = 0.3) in a liquid phase with 7 = 1 mPa-s, the values of H,.
and fare 29 kA/m and 76 kHz. Such a changeover around 100 kHz
occurs for ferromagnetic nanoparticles of any size, as long as the
conditions, Ky, V/Vy, and 5, are constant. We must keep in mind
that, even when ferromagnetic nanoparticles are large enough for
their Brownian relaxation to be negligible, the magnetic torque
caused by the large AC magnetic field can easily rotate such nano-
particles in the liquid phase at a time scale of microseconds. This
knowledge is helpful when considering the frequency for hyperther-
mia treatment, even if it is obtained for a simplified system.

In summary, most of the simulated results, including signifi-
cant variations for ferromagnetic nanoparticles exposed to a low-
frequency AC magnetic field, can be explained using the existing
models. The two essential exceptions are as follows:

(a) a secondary maximum in the relaxation loss for SPIONs exposed
to a low-frequency AC magnetic field, and

(b) a shift of the maximum hysteresis loss caused by the ability of
typical ferromagnetic nanoparticles exposed to a high-frequency AC
magnetic field to rotate.

These novel phenomena are discussed in detail in the following
section.

Discussion

The two novel phenomena of rotatable nanoparticles in a large AC
magnetic field described above cannot be explained by simple models
that consider a linear response of thermodynamic equilibrium states
or magnetic field-driven reversals. In this section, we shall further

discuss these atypical responses from the viewpoint of the orientation
of the long (easy) axis. First, we begin with the appearance of a
secondary maximum of Py/(H,.'f) near H,. = 8 kA/m and f =
30 kHz for the nearly spherical nanoparticles (typical SPIONs)
where an S-shaped hysteresis loop without remanence was obtained
(Fig. 3). We must recall that the variation in <cosf> showed
butterfly-shaped hysteresis under these conditions. This behaviour
explains the atypical magnetic response in the period f' (33 ps)
(Fig. 3(b)). Initially (at t = 0), no magnetisation exists because the
occupation probabilities of # in the two stable directions parallel to
the long (easy) axis are equalised in a zero magnetic field. As H
increases, the occupation probability in the more stabilised direction
immediately increases because of reversals on a time scale of 1y
(=20 ns). The reversed #in the stabilised direction is not completely
parallel to H, {y # 0, and the magnetic torque uHsiny turns the long
(easy) axis towards the direction of the field. If we neglect Brownian
torque A(f) (see equation (11) in the Methods section), the angular
velocity of the rotation due to magnetic torque can be expressed as

ou(H(). Y(1)) = [aH(E)sing (1)) /[6nVir (0.8+0.26)].  (7)

Hence, oy (H(t), Y(t)) increases in proportion to the field amplitude
H = H,sin(2nf t). For example, wy(H, Y = m/4) is 0.15X10° rad/s
when H (t = 1/4f = 8 ps) is 8 kA/m. Therefore, rotation is not
negligible in the peak period of the oscillations of H. Subsequently,
H decreases to zero at t = 1/2f = 17 ps, and the occupation prob-
abilities are again equalised because reversal is rapid, so the magnetic
torque disappears. Alternatively, the Brownian torque randomises
the orientation of the long axis on a time scale of 75 (= 8 ps).
Therefore, competition between the magnetic and Brownian torques
can cause the butterfly-shaped hysteresis of <cos0>. Because the
equilibrium magnetisation of SPIONs with easy axes parallel to H is
higher than that of randomly oriented SPIONs", the magnetisation
curve shows hysteresis without remanence. Consequently, a second-
ary maximum appears for the rotatable SPIONs even though 7y « Tp.

Next, we investigate the influence of the ability of elongated spher-
oidal nanoparticles to rotate under a high-frequency AC magnetic
field on the shift of the maximum Py/(H,.*f). As shown in Fig. 6(a)
and (b), the magnetisation curves varied after an AC magnetic field
was applied at + = 0. At the same time, transient variations also
occurred in <cos(0>, as shown in Fig. 6(c). In the case of the major
loop at H,. = 60 kA/m, <cos0> gradually increased from 0.5 to
0.95. In other words, the long (easy) axis became oriented towards
the direction parallel to H. The characteristic time, 7., was estimated
to be 1.3 ps using the approximation of exponential decay. Note that
the direction of # is not completely parallel to H even for H = Hy,
even though wis already reversed for all of the nanoparticles. Because
sin ¥ is 0.43 when cos ¥ is 0.9, a large magnetic torque can turn the
long axis even if the magnetisation is almost saturated after reversals
at H ~ Hy. Indeed, 1, at H,. = Hy is comparable to the reciprocal of
typical values of wy(H = H,, sin {y = 0.43) (Fig. 6(d)). Therefore,
these transient variations can be attributed to the longitudinal ori-
entation being adopted preferentially because of the magnetic torque.

In the minor loops at H,. =26 kA/m, the remanence of the rotat-
able nanoparticles decreased gradually with time (Fig. 6(b)) and
<cos0> simultaneously decreased from 0.5 (Fig. 6(c)). The long axis
was oriented perpendicular to H during this period, although the
longitudinal orientation is preferred when the Zeeman energy is
considered. It should be noted that the angle s for # in a stable
direction more parallel to H is smaller than that in a metastable
direction less parallel to H (Fig. 6(d)). In other words, the magnitude
of the magnetic torque toward the longitudinal orientation in the
former is weaker than that toward the perpendicular orientation in
the latter. This difference makes the orientation of the long axis
planar on average, because the stable and metastable states alternate
every half period when the reversal of #is blocked in the minor loop.
These arguments suggest that the slowing of the rotation for
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0.5 Hx = H,. = Hy (Fig. 6(d)) can be attributed to compensation
between two magnetic torques in the intermediate range. Briefly, in
ferromagnetic nanoparticles in the aqueous phase, longitudinal or
planar orientations are adopted, irrespective of the free energy, as
dissipative structures under a high-frequency AC magnetic field.
Consequently, Py/(H,.'f) increases gradually in major hysteresis
loops and decreases in minor loops. These variations cause the max-
imum of Py/(H,."f) to shift towards higher H,..

Finally, we return to the contour plots of Py/(H,."f) in Figs. 2 and
5, and discuss the effect of rotation on the design for maximising Py/
(Hac*f). If a safety limit of H,.'f < 4.85X10° Am™'s™" is applied’,
then maximum values of Py/(H,.*f) for rotatable SPIONs and fer-
romagnetic nanoparticles are obtained at the conditions shown by
diamonds A and C in Figs. 2(b) and 5(b), respectively. However, no
heat dissipation occurs under the same conditions (A and C) if the
rotation of these nanoparticles is blocked (Figs. 2(a) and 5(a)). If a
highly amplified AC magnetic field H,.*f of 1.74X10" Am™'s™" is
allowed”, a maximum Py/(H,.'f) of 3.0X107* m’s?A™"
(5.2 MW/kg) for the rotatable ferromagnetic nanoparticles can be
obtained (diamond D in Fig. 5(b)). However, Pyy/(H,.*f) halves when
the rotation of these nanoparticles is blocked (Fig. 5(a)) because
oriented structures are not formed. In contrast, condition B for the
primary maximum of Py/(H,.'f) in the rotatable SPIONs remains
the optimum condition when these nanoparticles cannot rotate
(Fig. 2(a) and (b)). This is because the long (easy) axes of SPIONs
are randomly oriented in rotatable SPIONSs as Brownian torque has
more effect than magnetic torque in a weak magnetic field. As
demonstrated here, rotation generated by the magnetic torque
caused by a large alternating magnetic field greatly affects the con-
ditions for maximising heat dissipation in magnetic nanoparticles.

In this study, we simulated the magnetic responses of superpar-
amagnetic and ferromagnetic magnetite nanoparticles in a large
alternating magnetic field. The results show that both the relaxation
loss for Ty « T and the hysteresis loss at H,. = Hy,, are affected by the
formation of dissipative structures because of the ability of nanopar-
ticles to rotate. Consequently, the conditions for maximising heat
dissipation depend strongly on the inhomogeneous microviscosity of
the surrounding medium.

Compared with the simplified model used for our simulation,
actual magnetic nanoparticles used for targeted magnetic hyperther-
mia treatment are not ideal. For this reason, the factors affecting
more realistic situations need to be evaluated. First, the effects of
crystalline and surface anisotropy energy are considered. In this case,
the potential energy with respect to the direction of #is complicated.
Even if multiple valleys appear in the energy surface, the easy axes are
not parallel to H, because the orientations of the nanoparticles are
randomised by Brownian torque in the liquid phase. For this reason,
slow rotations inevitably occur after fast reversals because of the
magnetic torque in an AC magnetic field. These rotations lead to
secondary relaxation loss in SPIONs in a low frequency AC magnetic
field and shift the hysteresis loss in ferromagnetic nanoparticles in a
high frequency AC magnetic field. Next, the variation in the size and
shape of actual nanomagnets must be considered. In this case, Néel
relaxation times, Ty, differ significantly because they depend expo-
nentially on the volume of each nanoparticle and the shape aniso-
tropy constant. In contrast, the dependence of frictional torque on
the size and shape of nanoparticles is weak. Because the S-shaped
hysteresis loop of SPIONs appears in the frequency range of rotation,
the secondary loss peak becomes less diffuse compared with the
primary relaxation loss peak. For ferromagnetic nanoparticles, the
shift of the hysteresis loss at high frequencies should still be signifi-
cant even if the size of nanoparticles is not uniform, because the
anisotropy field is independent of nanoparticle size. Finally, the effect
of dipole-dipole interactions is considered, because the density of
nanoparticles accumulated in cancer cells might be inhomogeneous
if they are trapped at specific sites. In such a case, chain structures of

longitudinally aligned nanoparticles have been conventionally dis-
cussed in a magnetic field, although their details are still controver-
sial'. Our findings illuminate this conventional view, because, in
some cases, formation of structures with a planar orientation is pre-
dicted even for individual ferromagnetic nanoparticles. In future
studies, we will clarify a variety of dissipative structures, which
are different from ordinary chains, for interacting nanoparticles.
As discussed here, knowledge of the heat dissipation in the non-
equilibrium steady states of rotatable nanoparticles is essential for
the design of targeted magnetic hyperthermia treatments using large
AC magnetic fields.

Methods

Model for the simulation. The magnetic response to an AC magnetic field
H,sin(2mf*t) was simulated for individual superparamagnetic/ferromagnetic
magnetite nanoparticles in two extreme cases: non-rotatable nanoparticles strongly
anchored to structures resembling organelles and rotatable nanoparticles in an
aqueous phase resembling the cytoplasm. We considered the nanoparticles to be
monodisperse prolate spheroids with equatorial diameters, 2Ry, from 12 to 24 nm,
and aspect ratios, k, between 1.1 and 1.4. Because these dimensions are smaller than
the typical exchange length of magnetite, 27 nm,'” all of the spins are parallel to one
another in each nanoparticle. In other words, we can assume that each nanoparticle
has a single magnetic moment # = M,V (coherent rotation/ macro-spin
approximations'*), where V is the volume of each nanoparticle, [(4/3)n*kRy,’]. The
magnitude of spontaneous magnetisation My = | M| was set to the value of bulk
magnetite®, 450 kA/m, because the dependence of M; on particle size has not been
well established'®.

The magnitude of # is important; for example, 1 of a nanoparticle with 2Ry =
24 nmand x = 1.4is 1.5X10° up. Hence, such nanoparticles aggregate because of the
large dipole-dipole interactions between # unless a sufficient non-magnetic sur-
factant layer exists. The required thickness of this layer is approximately 6 nm for
nanoparticles with 2Ry; = 24 nm". Therefore, in our model, we used non-magnetic
layers with a thickness 6R of 0.5 Ry;. Consequently, we can assume that the nano-
particles are uniformly dispersed and do not aggregate. In this case, the typical
distance between nanoparticles is n™"*, where 7 is the number density of nanopar-
ticles. Because the actual mass fraction of nanoparticles accumulated in cancer cells
does not exceed 1% (approximately 10 mg/mL), the magnitude of the interaction
between nanoparticles with 2Ry; = 24 nm, n* u*/kg, is estimated to be less than
1X10* K. Consequently, we did not consider minor effects caused by dipole-dipole
interactions in our simulations.

In such an individual nanoparticle, the potential energy with respect to the dir-
ection of g, U(R), is given by the following equation:

U(R)=Ua(R2) + Ue(2) + Us(Q) —-H (8)

where Ug(Q), U(Q), U,(£2) and — - H are the shape, crystalline, and surface
anisotropy energies, and Zeeman energy, respectively, and £ is the solid angle of .
For spheroidal particles, the first term, Uy4(£2), can be described as K4Vsin’¢ and has
two minima separated by the energy barrier AU=K4V, where Ky is the shape
anisotropy constant and ¢ is the angle between the long (easy) axis and s The
magnitudes of Ky, given by (Neasy~Nhard)tto* M, are 5 and 16 kJ/m? for spheroidal
particles with x of 1.1 and 1.4, respectively. Neqsy and Np,.q are the demagnetising
factors for the long and short axes, respectively. In comparison, magnetite has cubic
crystalline anisotropy* and an anisotropy constant K;=—11 kJ/m’>. The energy
landscape of cubic anisotropy (K;<0) is gentle and AU is (1/12)K, V = (1 kJ/m?®)- V*.
Additionally, the effects of surface anisotropy are generally insignificant if the part-
icles are larger than 10 nm'®, although the rationale for this is still unknown. For these
reasons, we assumed that the uniaxial shape anisotropy dominated. Consequently,
equation (8) can be simplified as follows:

U(p.) - KqV sin® ¢ — piH, sin(2nf-t) cos i, (9)

where 1 is the angle between # and H (see Fig. 3).

Little is known about the local environments of magnetic nanoparticles accumu-
lated in tumour tissue. For example, nanoparticles coated with dextran are completely
immobilised in tissues®', whereas dextran nanoparticles appear to be mobile in cells’.
For this reason, we simulated the magnetic response of the monodisperse spheroidal
nanoparticles in the following two extreme cases: non-rotatable nanoparticles with
randomly oriented easy axes, and rotatable nanoparticles in a Newtonian fluid with a
viscosity 1 of 1 mPa-s.*

Simulation of the reversal. The detailed trajectories of #in a magnetic field applied at
an oblique angle 0 to the long easy axis of a spheroidal particle can be precisely
simulated by solving the stochastic Landau-Lifshitz-Gilbert equations. However, we
are only interested in the reversal of # once every microsecond because the frequency
used for hyperthermia is limited. Therefore, we can use a well-known coarse-grained
approach, or “two-level approximation”, that considers thermally activated
reversals between the meta-stable directions, (¢, ¥/;) and (¢, ¥,), via the midway
saddle point at (¢3, Y3) in Up(¢,1)). The reversal probability from (¢, /1) to (2, 2),
V12, is given by fo ™ exp[(Up(¢3, ¥3) — Uo(¢1, ¥1))/kpT |, while the backward reversal
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probability vy, is fo' *exp[(Up(¢3, ¥3) — Up(2, ¥2))/ksT ], where f is the attempt
frequency of 10° s™".

In the simulation, the time evolution of the occupation probabilities, p;(0), p,(0) =
1 — p1(0), at the two stable directions of a nanoparticle tilted at ) was computed using
the following relationship:

0p1 /0t =10,1p2(0) —v12p1 (0). (10)
p1(0) was simply set to either zero or one when there was only one minimum in
Up(¢,). This calculation was continued until the transient factors depending on the
initial conditions disappeared. The time step 4t was typically 10~*/f s but was shorter
when vy,4t (or v,;4t) became large compared with one. At each step, magnetisation
was obtained as »[(pl(ﬁ),ucosll/l + pa(0)ucosys,)sinfd. Test simulations were per-
formed to check the validity of this method using the same parameters as in an earlier
study to calculate the reversals of magnetic nanoparticles in large AC magnetic
fields. As detailed in the Supplementary Information, our results agree with the
reported behaviour'.

Simulation of reversal and rotation. The rotation of spheroidal nanoparticles was
simulated in synchronisation with the reversal of # In Newtonian fluids, the frictional
torque for rotation can be expressed as 617V (0.8 + 0.2x)" @ (t),”> where Vi = [(4/
3)n-k(Ryv + OR)?] is the hydrodynamic volume and @ () is the angular velocity of
rotation; de/dt = @ (t) Xe(t), where e(#) is the unit vector along the long axis of the
spheroid; and #(t)*e(t) = ucos¢. Under typical conditions, where = 1 mPa-s, Vi
=~ 10’ nm’, and w(f) = 1X10° rad/s, the inertia of the nanoparticle can be neglected
(Brownian dynamics simulation). In this inertia-less limit*, the frictional torque
balances with magnetic torque ()X H(t) and Brownian torque A(t) as follows:

6nVi-(0.8+0.2k) w(t)=pu(t) x H(t)+ A(t) (11)

<Ai(t)>=0,

(12)

<i(t)Ai(ty) > =2kg T (6n Vi (0.840.2K)) d(t; — 1), (13)
where 6(t1 —t2) is the Dirac delta function.

At the beginning of the simulation for the rotatable nanoparticles, an assembly of
randomly oriented nanoparticles was generated, where their number ensures an
optimal compromise between calculation time and precision. Then, the time evolu-
tion of the direction of #and the orientation of the long easy axis were computed by
the following steps. (i) Using equation (9), reversible variations of the meta-stable
directions (§;(t), Yi(t)) caused by the latest changes in the field strength and direction
of the easy axis were calculated, (ii) # () at (¢, (¢), Y, (¢)) was reversed if x < v;,4¢, but
otherwise not. In this case, x € [0, 1] is a pseudorandom number generated by the
Xorshift algorithm®®. The backward reversal was computed in a similar manner. (iii)
Substituting the reversed (or held) #(t) into equation (11), @ (t) was calculated. (iv)
e(t) was finally computed using the relationship de/dt = @ (¢) X e (t). This calculation
was continued until transient factors depending on the initial conditions disappeared.
In this simulation, 4t was typically 10~*/f s but was shorter unless v;,4t, or the
changes in e (t) were sufficiently small compared to one. Magnetisation was obtained
as X(m;pucosy;) at each step. Test simulations were performed to check the validity of
this method. There have been no prior theoretical studies on systems where both
reversal and rotation occur simultaneously in a large AC magnetic field.
Consequently, comparisons with prior studies were performed under two extreme
conditions. In the first case, high viscosities were assumed. Because reversal dom-
inates rotation under these conditions, the results were compared with those reported
by Carrey et al.'*. In the second case, a high anisotropic field was assumed. Because
rotation dominates reversal in this situation, the results were compared with the
numerical simulations of Yoshida et al., where nonlinear Brownian rotational
relaxation of magnetic fluids with a large excitation field was studied using the
Fokker-Planck equation'®. The results obtained from our simulation of reversal and
rotation were consistent with those of earlier studies (Supplementary Figs. S1-S4).
Therefore, we can now take a first step toward understanding the roles that rotation of
a nanoparticle and reversal of its magnetic moment play together in large AC mag-
netic fields.
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