1.     J.-G. Li, T. Ikegami, T. Mori, and Y. Yajima, gSolution-based processing of Sc2O3 nanopowders yielding transparent ceramics,h J. Mater. Res., accepted.

 

2.     J.-G. Li, T. Ikegami, T. Mori, and Y. Yajima, gWet-chemical routes leading to scandia nanopowders,h J. Am. Ceram. Soc., 86 [9] 1493-99 (2003).

 

3.     J.-G. Li, T. Ikegami, T. Mori, gFabrication of transparent Sc2O3 ceramics with powders thermally pyrolyzed from sulfate,h J. Mater. Res., 18 [8] 1816-22 (2003).

 

4.     J.-G. Li, T. Ikegami, Y. Wang, and T. Mori, g10mol% Gd2O3-doped CeO2 solid-solutions via carbonate coprecipitation: a comparative study,h J. Am. Ceram. Soc., 86 [6] 915-21 (2003).

 

5.     J.-G. Li, T. Ikegami, T. Mori, Y. Yajima, gMonodispersed Sc2O3 precursor particles via homogeneous precipitation: synthesis, thermal decomposition, and the effects of supporting anions on powder properties,h J. Mater. Res., 18[5] 1149-56 (2003).

 

6.     X.-D. Sun, J.-G. Li, F. Zhang, X. Qin, Z. Xiu, H. Ru, and J. You, gSynthesis of Nanocrystalline a-Al2O3 Powders From Nonometric Ammonium Aluminum Carbonate Hydroxide,h J. Am. Ceram. Soc., 86 [8] 1321-25 (2003).

 

7.     Y. Wang, T. Mori, J.-G. Li, and Y. Yajima, gLow-temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2 ceramics,h Sci. Tech. Adv. Mater., 4, 229-38 (2003).

 

8.     @T, Mori, J. Drennan, Y. Wang, G. Auchterlonie, J.-G. Li, and A. Yago, gInfluence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system,h Sci. Tech. Adv. Mater., 4, 213-20 (2003).

 

9.     T. Mori, J. Drennan, Y. Wang, J.-H. Lee, J.-G. Li, and T. Ikegami, gElectrolytic properties and nanostructural features in the La2O3-CeO2 system,h J. Electrochem. Soc., 150 [6], A665-A73 (2003).

 

10.  Y. Wang, T. Mori, J.-G. Li, T. Ikegami, and Y. Yajima, gLow-temperature preparation of dense 10mol%-Y2O3-doped CeO2 ceramics using powders synthesized via carbonate coprecipitation,h J. Mater. Res., 18 [5] 1239-46 (2003).

 

11.  J.-G. Li, T. Ikegami, Y. Wang, and T. Mori, gNanocrystalline Ce1-xYxO2-x/2 (0x0.35) oxides via carbonate precipitation: synthesis and characterization,h J. Solid State Chem., 168[1] 52-59 (2002).

 

12.  J.-G. Li, T. Ikegami, Y. Wang, and T. Mori, gReactive ceria nanopowders via carbonate precipitation,h J. Am. Ceram. Soc., 85[9] 2376-78 (2002).

 

13.  T. Ikegami, J.-G. Li, T. Mori, and Y. Moriyoshi, gFabrication of Transparent Yttria Ceramics by the Low-Temperature Synthesis of Yttrium Hydroxide,h J. Am. Ceram. Soc., 85 [7] 1725-29 (2002).

 

14.  Y. Wang, T. Mori, J.-G. Li, and T. Ikegami, gLow-Temperature Synthesis of Praseodymium-doped CeO2 Nanopowders,h J. Am. Ceram. Soc., 85[12] 3105-107 (2002).

 

15.  J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, J. Drennan, and D.-Y. Kim, gPrecursor scavenging of resistive grain-boundary phase in 8mol% ytterbia-stabilized zirconia,h J. Electrochem. Soc., 149[3], J35-J40 (2002).

 

16.  T. Mori, J. Drennan, Y. Wang, J.-G. Li, and T. Ikegami, gInfluence of nanostructure on electrolytic properties in CeO2 based system,h J. Thermal Analysis and Calorimetry, 70, 309-319 (2002).

 

17.  T. Mori, J. Drennan, J.-H. Lee, J.-G. Li, and T. Ikegami, gOxide ionic conductivity and microstructure of Sm or La doped CeO2 based system,h Solid State Ionics, 154-155C, 461-66 (2002).

 

18.  T. Mori, J. Drennan, J.-H. Lee, J.-G. Li, and T. Ikegami, gImproving the ionic conductivity of yttria stabilized zirconia electrolyte materials,h Solid State Ionics, 154-155C, 529-33 (2002).

 

19.  J.-G. Li, T. Ikegami, T. Mori, and T. Wada, gReactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation: …Ÿ, synthesis and characterizationh, Chem. Mater., 13[9], 2913-2920 (2001).

 

20.  J.-G. Li, T. Ikegami, T. Mori, and T. Wada, gReactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation: … , sinteringh, Chem. Mater., 13[9], 2921-2927 (2001).

 

21.  J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori, and Y. Yajima, gA wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder,h Ceram. Int., 27[4], 481-489 (2001).

 

22.  J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori, gCharacterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method,h Acta Mater., 49[3], 419-426 (2001).

 

23.  J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori, and Y. Yajima, gSynthesis of Mg-Al spinel powder via precipitation using ammonium bicarbonate as the precipitant,h J. Euro. Ceram. Soc., 21[2], 139-148 (2001).

 

24.  T. Mori, J.-H. Lee, J.-G. Li, T. Ikegami,@G. Auchterlonie, and J. Drennan,@ gImprovement of the electrical properties of Y2O3 based materials using a crystallographic index,h Solid State Ionics, 138[3-4], 277-291 (2001).

 

25.  J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, J. Drennan, and D.-Y. Kim, gScavenging of siliceous grain-boundary phase of 8 mol% ytterbia-stabilized zirconia without additive, J. Am. Ceram. Soc., 84[11], 2734-36 (2001).

 

26.  J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, J. Drennan, D.-Y. Kim,@ "Precursor Scavenging of Resistive Grain-Boundary Phase in 8 mol% Yttria-Stabilized Zirconia: The Effect of Trace Concentrations of SiO2," J. Mater. Res., 16[8], 2377-2383 (2001).

 

27.  J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, and S. Takenouchi, gThe influence of alumina addition and its distribution upon grain-boundary conduction in 15mol% calcia-stabilized zirconia,h Ceram. Int., 27[3], 269-276 (2001).

 

28.  J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, and S. Takenouchi, gImpedance spectroscopic estimation of inter-granular phase distribution in 15 mol% calcia-stabilized zirconia/alumina composites,h J. Euro. Ceram. Soc., 21[1], 13-17 (2001).

 

29.  J.-G. Li, J.-H. Lee, T. Mori, Y. Yajima, S. Takenouchi, and T. Ikegami, gCrystal phase and sinterability of wet-chemically derived YAG powders,h J. Ceram. Soc. Jpn., 108[5], 439-444 (2000) [in English].

 

30.  J.-G. Li, T. Ikegami, J.-H. Lee, and T. Mori, gFabrication of translucent Mg-Al spinel ceramics,h J. Am. Ceram. Soc., 83[11], 2866-2868 (2000).

 

31.  J.-G. Li, T. Ikegami, J.-H. Lee, and T. Mori, gCharacterization of yttrium aluminate garnet (YAG) precursors synthesized via precipitation using ammonium bicarbonate as the precipitant,h J. Mater. Res., 15[11], 2375-2386 (2000).

 

32.  J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori and Y. Yajima, gCo-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant,h J. Euro. Ceram. Soc., 20[14-15], 2395-2405 (2000).

 

33.  J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori and Y. Yajima, gReactive YAG powder via coprecipitation using ammonium hydrogen carbonate as the@precipitant,h J. Mater. Res., 15[9], 1864-1867 (2000).

 

34.  J.-G. Li and X.-D. Sun, gSynthesis and sintering behavior of a nanocrystalline alpha-alumina powder,h Acta Mater., 48[12] 3103-3112 (2000).

 

35.  J.-G. Li, T. Ikegami, J.-H. Lee and T. Mori, gWell-sinterable Y3Al5O12 powder from carbonate precursor,h J. Mater. Res., 15[7], 1514-1523 (2000).

 

36.  J.-G. Li, T. Ikegami, J.-H. Lee, and T. Mori, gLow-temperature fabrication of transparent YAG ceramics without additives,h J. Am. Ceram. Soc., 83[4] 961-963 (2000).

 

37.  J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, M. Komatsu, and H. Haneda, gImaging secondary ion mass spectroscopy observation of the scavenging siliceous film from 8 mol% yttria-stabilized zirconia,h J. Am. Ceram. Soc., 83[5], 1273-1275 (2000).

 

38.  J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, M. Komatsu, and H. Haneda, gImprovement of grain-Boundary conductivity of 8 mol% yttria-stabilized zirconia by precursor scavenging of siliceous phase,h J. Electrochem. Soc., 147[7], 2822-2829 (2000).

 

39.  T. Ikegami, T. Mori, J.-G. Li, J.-H. Lee, H. Tokuda, and Y. Moriyoshi, gFabrication of Transparent Yttrium Aluminum Garnet Ceramics through a New Dry Mixing method,h Taikabutsu (Japanese), 52[7], 356-364 (2000) [in Japanese].

 

40. J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, M. Komatsu, and H. Haneda, gThe influence of alumina distribution upon scavenging highly resistive grain-boundary phase of 8 mol% yttria-stabilized zirconia,h Electrochemistry, 68[6], 427-432 (2000) [in English].