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Abstract

We study the extended t-J model on a square lattice, which has the second and third-neighbor hopping terms (t′ and t′′, respectively)
as well as the nearest-neighbor one using the slave-boson mean-field approximation. It is found that the phase diagram consistent
with the experiments for multilayer high-Tc cuprates is obtained for a suitable choice of t′ and t′′. Temperature dependence of the
uniform spin susceptibility is also calculated in the coexistence of antiferromagnetism and d-wave superconductivity.
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Recently uniform coexistence of antiferromagnetism and
d-wave superconductivity was found in multilayer high-Tc

cuprate superconductors[1, 2]. This finding attracts much at-
tention because it may give important insight into the mecha-
nism of high-Tc superconductivity. The coexistence of antifer-
romagnetic (AF) and superconducting (SC) order was predicted
in the two-dimensional t-J model using the slave-boson mean-
field approximation (SBMFA)[3, 4] and the variational Monte
Carlo method[5]. However, the phase diagram so obtained is
not consistent with the experiments[1, 2] even qualitatively in
that the Néel temperature TN shows reentrant behavior around
the tetracritical point.

In this paper we study the extended t-J model on a square
lattice, which has the second and third-neighbor hopping terms
(t′ and t′′, respectively) as well as the nearest-neighbor one.
We treat this model using the SBMFA and show that the phase
diagram consistent with the experiments[1, 2] is obtained by
making a suitable choice of t′ and t′′.

The Hamiltonian of our model is given as

H = −
∑
i, j,σ

ti jc̃
†
iσc̃ jσ + J

∑
<i, j>

Si · S j (1)

where the transfer integrals ti j are finite for the nearest (t),
second-neighbor (t′), and third-neighbor bonds (t′′), and van-
ish otherwise. J(> 0) is the antiferromagnetic superexchange
interaction and 〈i, j〉 denotes the nearest-neighbor bonds. c̃iσ is
the electron operator in the Fock space without double occu-
pancy and we treat this condition using the slave-boson method
by writing c̃iσ = b†i fiσ, where fiσ (bi) is a fermion (boson)
operator that carries spin σ (charge e). The spin operator
is expressed as Si =

1
2
∑
αβ f †iασαβ fiβ with σ being the Pauli

matrices. H is decoupled by introducing the following or-
der parameters (OPs): m = 1

2 〈 f
†
i↑ fi↑ − f †i↓ fi↓〉eiQ·ri (staggered

magnetization) with Q = (π, π), χ(1) = 〈∑σ f †iσ f jσ〉, 〈b†i b j〉
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(bond order parameter; i and j are nearest-neighbor sites), and
∆τ = 〈 fi↑ fi+τ↓ − fi↓ fi+τ↑〉 (singlet resonating-valence-bond order
parameter) with τ = x, y. Here we assume that all OPs are inde-
pendent of i, and consider the dx2−y2 -wave pairing state for ∆τ,
i.e., ∆x = −∆y(≡ ∆0). The SC state is characterized by ∆0 , 0
and 〈b〉 , 0, while in the AF state m is finite. In the following
the bosons are assumed to be Bose condensed, i.e., 〈b〉 =

√
δ

and 〈b†i b j〉 = δ with δ being the hole concentration, so that the
onset of ∆0 corresponds to that of the SC state. This assumption
is valid at low T and for δ not so close to 0 (δ & 0.02). Then
the self-consistency equations are obtained as[4]

m =
1
N

∑
k

Jm
Dk

(η+k
λ+k

tanh
λ+k
2T
−
η−k
λ−k

tanh
λ−k
2T

)
χ(1) = − 1

2N

∑
k

ξ−k
Dk

(cos kx + cos ky)

×
(η+k
λ+k

tanh
λ+k
2T
−
η−k
λ−k

tanh
λ−k
2T

)
∆0 = − 1

2N

∑
k

(cos kx − cos ky)
(
∆k

λ+k
tanh
λ+k
2T
+
∆k

λ−k
tanh
λ−k
2T

)
δ =

1
N

∑
k

(η+k
λ+k

tanh
λ+k
2T
+
η−k
λ−k

tanh
λ−k
2T

)
.

(2)

Here λ±k =
√

(η±k )2 + ∆2
k , η±k = ξ

+
k ±Dk, Dk =

√
(ξ−k )2 + (2Jm)2,

ξ±k = (ξk ± ξk+Q)/2, ξk = −2(tδ + 3
8 Jχ(1))(cos kx +

cos ky) − 4t′δ cos kx cos ky − 2t′′δ(cos 2kx + cos 2ky) and ∆k =

− 3
4 J∆0(cos kx − cos ky). T , N and µ represent temperature, the

total number of lattice sites and the chemical potential, respec-
tively, and the k sum is over the region |kx| + |ky| ≤ π.

We solve the above self-consistency equations numerically
to obtain the phase diagram in the plane of T and δ. In Fig.1 the
result for t/J = 4, t′/t = 0.12 and t′′/t = −0.06 is shown.
Curves (a) and (c) denote the Néel temperature TN and the
SC transition temperature Tc, respectively; (b) is the Tc when
the AF order is assumed to be absent. The region below both
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Figure 1: Phase diagram in the plane of T and δ for t/J = 4, t′/t = 0.12 and
t′′/t = −0.06. (a) Néel temperature TN . (c) SC transition temperature Tc; note
that Tc becomes zero at half filling, which however is not visible, and finite
once carrier is doped. If AF order is absent, Tc would follow the curve (b).

(a) and (c) corresponds to the coexistence of AF and SC or-
der, and there is a tetracritical point at (δ,T ) = (δtetra, Ttetra)
(δtetra ≈ 0.165,Ttetra ≈ 0.031J) where the normal, AF, SC and
coexistent states touch. This phase diagram is in qualitative
agreement with that obtained experimentally[2].

The coexistence of AF and SC order was already predicted
in the previous works[3, 4, 5]. However, the Néel tempera-
ture shows the reentrant behavior around the tetracritical point
in contradiction to the experimental findings[2]. The difference
between the present and the previous works resides in the differ-
ent choices of the long-range transfer integrals t′ and t′′, which
lead to different shapes of the Fermi surface. In the present
paper t′ and t′′ are chosen in such a way that the nesting of
the Fermi surface for the wave vector Q occurs near δ ≈ δtetra
though the system is away from half-filling. This results in a
divergence of the static spin susceptibility χ(q) at q = Q and
thus the commensurate AF order is induced, while it is not
the case for the choices of t′ and t′′ in Ref.3 and 4, leading to
the reentrant behavior around the tetracritical point. From the
above argument one may expect that the phase diagram may
be determined by the shape of the Fermi surface irrespective of
the values of t′ and t′′. In order to check this, we have exam-
ined the different values of t′ and t′′ which lead to almost the
same Fermi surface (t′/t = −1/6, t′′/t = −1/5). The resulting
phase diagram becomes indeed almost the same as in the case
of t′/t = 0.12 and t′′/t = −0.06.

Next we study the uniform spin susceptibility χ(0) = χ. In
Fig.2 we show χ as a function of T for different values of δ. At
high temperatures (T > Tc, TN) χ is almost independent of T
when δ is not so small (δ & 0.15). At lower T , χ shows qual-
itatively different behavior for δ > δtetra and δ < δtetra. When
δ < δtetra, χ gradually decreases as T passes TN (≈ 0.14J), and
then sharply drops when the superconducting order sets in at
T = Tc (≈ 0.045J). On the other hand for δ > δtetra, χ does not
show a noticeable change at TN (≈ 0.017J). This is because χ
decreases rapidly below Tc (≈ 0.03J) due to the opening of the
gap in the excitation spectrum and the change at T = TN is hard
to be distinguished.
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Figure 2: Uniform spin susceptibility χ as a function of T for (a) δ = 0.15 and
(b) δ = 0.167.

The coexistence of AF and SC order has not been observed in
LSCO (single layer) and YBCO (bilayer) systems, and the AF
state is realized only near half-filling (δ . 0.02 for LSCO[6],
δ . 0.055 for YBCO[7]), though the superexchange interaction
within the CuO2 plane, J, is almost material independent. This
may be understood as follows. In genuine two-dimensional sys-
tems the AF order cannot occur due to the Mermin-Wagner the-
orem. The weak three dimensionality, which is always present
in real systems, may stabilize the AF order, but it would be eas-
ily hindered by such extrinsic effects as randomness. In single-
layer and bilayer systems the effect of fluctuations due to low
dimensionality may be strong and the AF order will be eas-
ily destroyed. On the contrary the SC order can occur as the
Kosterlitz-Thouless (KT) transition at finite T even in genuine
two-dimensional systems. Thus the SC order is expected to be
more robust than the AF order, which may explain why the SC
order is observed in a similar doping region in both multilayer
and single-layer systems. (Note that the critical phenomena
near Tc in real systems are not KT like, but three dimensional
because of the weak three dimensionality.)

The coexistence of AF and SC order was observed only in
multilayer systems. Nevertheless we expect that the present
mean-field analysis based on the single-layer model may cap-
ture the essential features of the phase diagram including the
coexistent state, because the condition for the occurrence of the
coexistence is essentially determined by the shape of the Fermi
surface, in particular, the condition for the nesting. However,
the precise and quantitative arguments should be given by em-
ploying the multilayer t-J model, which is under way.
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