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Abstract

We analyze a forward scattering model on a square lattice, which exhibits spontaneous Fermi surface symmetry
breaking with a d-wave order parameter: the Fermi surface expands along the kx-axis and shrinks along the ky-axis
or vice versa. While the transition is usually first order as a function of chemical potential at low temperature, we
find that Fermi surface fluctuations near the transition can be strong. For a particularly favorable but not unphysical
choice of parameters, the first order transition is completely suppressed, leading to a quantum critical point.
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The Fermi surface (FS) usually respects the point
group symmetry of the underlying lattice. Recently,
however, the possibility of symmetry breaking of the
FS was discussed in the two-dimensional t-J [1] and
Hubbard [2] models. In electron systems on a square
lattice forward scattering processes can drive a d-wave
shaped deformation, where the FS expands along the
kx-axis and shrinks along the ky-axis or vice versa. A
tendency toward such a d-wave Fermi surface deforma-
tion (dFSD) may play a role in high-Tc cuprates [1,3]
and in Sr3Ru2O7 [4].

Here we analyze basic properties of the dFSD as
obtained from the following simple forward scattering
model [5]:

H =
X

k

ε0k nk +
1

2L

X

k,k′

fkk′ nknk′ , (1)

where nk is the spin-summed number operator of elec-
trons with momentum k, and L is the number of lattice
sites; the bare dispersion is given by ε0k = −2[t(cos kx+
cos ky) + 2t′ cos kx cos ky + t′′(cos 2kx + cos 2ky)] with
t, t′, and t′′ being nearest, next-nearest, and third-
nearest neighbors on a square lattice, respectively. The
forward scattering interaction has the form
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fkk′ = u − g dkdk′ , (2)

where u ≥ 0, g > 0, and dk = cos kx − cos ky; the
first term suppresses the uniform compressibility of the
system, which works in favor of a second order phase
transition, and the second term drives the dFSD.

We analyze the Hamiltonian (1) in the Hartree ap-
proximation

HMF =
X

k

εk nk −
1

2

X

k

δεk 〈nk〉 , (3)

which becomes exact in the thermodynamic limit for
the present model. Here εk = ε0k +δεk, δεk = un+ηdk,
n = 1

L

P

k
〈nk〉, and η = − g

L

P

k
dk〈nk〉. The order

parameter of the dFSD η and the density n are deter-
mined by minimizing the grand canonical potential.

We first take band parameters, t′/t = −1/6 and
t′′/t = 0, for which the bare dispersion has saddle
points at (π, 0) and (0, π), yielding a log-divergence
in the density of states at ε0vH = −2t/3. Typical fea-
tures of the spontaneous dFSD are captured for these
parameters. In Fig. 1(a) we show the phase diagram
for g/t = 1 and u = 0. The solid line denotes a sec-
ond order transition, which turns to a first order one at
low T (open circles). The end points of the second or-
der transition are tricritical points (solid circles). Since
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Fig. 1. Results for t′/t = −1/6 and t′′ = 0. (a) µ-T phase

diagram for g/t = 1 and u = 0. The solid line, T 2nd

c
, is a second

order transition line, whose end points, Ttri, are tricritical

points (solid circles); the open circles, T 1st

c
, denote a first

order transition. The dotted line indicates the van Hove energy,

µ = ε0
vH

. (b) and (c) FS in the symmetry-broken phase near

the first order transition; FS for g = 0 is also shown by the

dotted line. (d) u dependence of Ttri. (e) The inverse of the

Stoner factor for several choices of g and u along the first order

line as sketched in the inset by the arrow.

the dFSD is driven by forward scattering of electrons
mainly on the (original) FS close to van Hove points
[1,2], the maximal Tc(µ) appears around µ = ε0vH =
−2t/3. The FS in the symmetry-broken phase is shown
in Figs. 1(b) and (c). The FS has typically open topol-
ogy except close to a second order transition.

When the u term in Eq. (2) is introduced, the tri-
critical points are suppressed in favor of a second or-
der transition. This suppression, however, saturates at
a larger u as shown in Fig. 1(d). The first order tran-
sition at low T is a robust feature of the dFSD.

However, we find that the d-wave compressibility,
which is given exactly by the RPA expression

κd =
N2

1 − gN2

, (4)

where N2 = − 2

L

P

k
d2
kf ′(ε0k + un − µ), is typically

strongly enhanced by interactions even near the first
order transition. The ”Stoner factor” S = (1−gN2)

−1

is a dimensionless measure of this enhancement. We
calculate S along the first order line as sketched in the
inset of Fig. 1(e). The main panel shows that S−1 is
nearly zero close to Ttri, as expected. At lower T , S−1

becomes finite, but its value is much smaller than one,
especially for a smaller g; a finite u reinforces this ten-
dency. We see that the d-wave compressibility is en-
hanced by a factor of 25 for g/t = 0.5 and u/t = 10 by
interactions. Hence, in the presence of interactions with
a small finite momentum transfer (beyond our mean-
field model) fluctuations of the dFSD can be strong
even near the first order transition at low T . Such fluc-
tuations lead to non-Fermi liquid behavior [3].

Now we consider band parameters that satisfy α =
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Fig. 2. µ-T phase diagrams for several choices of u for

t′/t = −1/6, t′′/t = 1/5, and g/t = 0.5. The dotted line indi-

cates the van Hove energy.

| t+2t′

4t′′
| < 1, setting t′/t = −1/6 and t′′/t = 1/5. The

bare dispersion has saddle points at (π ± cos−1 α, 0)
and (0, π ± cos−1 α), and local minima at (π, 0) and
(0, π). In this case, we can have a quantum critical
point (QCP) of the dFSD. In Fig. 2(a), we show the
µ-T phase diagram for g/t = 0.5 and u = 0. We see
that qualitative features are the same as in Fig. 1(a),
although the transition line is now strongly asymmetric
with respect to µ = ε0vH = −13t/9. This asymmetry
is related to a large asymmetry of the bare density of
state. When we introduce the u term, the tricritical
point at higher µ is suppressed, but saturates to a finite
value as in Fig. 1(d). A striking behavior appears on
the lower side of µ. As seen in Figs. 2(b) and (c), Ttri

is substantially suppressed with u and disappears for
u/t & 2, leading to a QCP. It should be noted that if
the coupling g is much larger or smaller than the value
chosen in Fig. 2, a QCP does not appear even if a large
u is introduced.

The dFSD reduces the symmetry of the FS, which
then leads to distinct features in low energy properties
of electrons. It will be interesting to further explore the-
oretical consequences of a dFSD and its fluctuations,
and to look for realizations in layered materials.
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