Addenda

Addenda: Van Hove Singularity and Spontaneous Fermi Surface Symmetry Breaking in Sr₃Ru₂O₇

Hiroyuki YAMASE¹ and Andrey A. KATANIN²

¹ National Institute for Materials Science, Tsukuba 305-0047, Japan
² Institute of Metal Physics, 620219 Ekaterinburg, Russia

KEYWORDS: magnetic susceptibility, Pomeranchuk instability, Fermi surface, metamagnetism, ruthenates

In our original paper,¹⁾ we computed the uniform magnetic susceptibility χ by employing the standard formula eq. (4). However, the magnetic susceptibility picks up an additional component, and thus its full expression should read

$$\chi = -\frac{1}{N} \sum_{\mathbf{k},\sigma} f'(\xi_{\mathbf{k}}^{\sigma}) + g \frac{\left(\frac{1}{N} \sum_{\mathbf{k},\sigma} \sigma d_{\mathbf{k}} f'(\xi_{\mathbf{k}}^{\sigma})\right)^2}{1 + \frac{g}{N} \sum_{\mathbf{k},\sigma} d_{\mathbf{k}}^2 f'(\xi_{\mathbf{k}}^{\sigma})} \,. \tag{A1}$$

This expression is obtained within random-phase approximation²⁾ and becomes exact in the thermodynamic limit with Hamiltonian (1). The presence of the second term was overlooked in the original paper. This term yields a jump of the uniform magnetic susceptibility at a continuous phase transition and affects our results at low temperatures for $g \neq 0$ in Fig. 3(b). Statements associated with Fig. 3(b) in the original paper should read accordingly. We here give a brief comment about the additional term in eq. (A1). The details will be published elsewhere.²⁾

Because of the *d*-wave form factor in the numerator of the second term in eq. (A1), this term vanishes in the symmetric phase. However, it can be finite in the symmetry-broken phase, leading to a jump of χ at a continuous phase transition of the *d*FSD, as shown in Fig. A1. In addition, the numerator of the second term in eq. (A1) contains the spin variable $\sigma = \pm 1$, which imposes the necessity of breaking spin symmetry, i.e., $\xi_{\mathbf{k}}^{\uparrow} \neq \xi_{\mathbf{k}}^{\downarrow}$; otherwise, the numerator vanishes. Hence, the jump of χ in Fig. A1 is interpreted as a field-induced anomaly. The magnitude of the jump is more pronounced at h = 0.48 than at h = 0.42, and diverges at a tricritical field ($h \approx 0.49$). On the other hand, if the *d*FSD instability would occur for h = 0, for example, by tuning the chemical potential in our model (1), the second term of eq. (A1) would vanish, leading to a cusp of χ at the *d*FSD instability, as shown in Fig. 3(b) in our original paper. Since the uniform magnetic susceptibility has not been measured thus far in the static limit for Sr₃Ru₂O₇, the present addendum is possibly relevant to future experiments

J. Phys. Soc. Jpn.

on Sr₃Ru₂O₇, which can be the first system to exhibit a jump of χ at a continuous phase transition.

J. Phys. Soc. Jpn.

References

- 1) H. Yamase and A. A. Katanin: J. Phys. Soc. Jpn. **76** (2007) 073706.
- 2) H. Yamase and P. Jakubczyk: Phys. Rev. B
 ${\bf 82}$ (2010) 155119.

J. Phys. Soc. Jpn.

Addenda

Fig. A1. T dependence of χ for two different values of h for g = 1.0; the dashed lines are results for g = 0; the choice of the parameters is the same as that in the original paper.