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Performing the slave-boson mean-field approximation to the two-dimensional t–J model

under the assumption of the uniform charge density, we find two mechanisms that lead to

the breaking of fourfold symmetry of the Fermi surface (FS) and the magnetic excitation

spectrum. One mechanism originates from the J-term, which has an intrinsic instability

toward the formation of a quasi-one-dimensional FS. The other mechanism comes from the

inclusion of the small interlayer hopping t⊥, which can lead to the drastic breaking of fourfold

symmetry in the diagonal incommensurate magnetic peaks around (π, π). These findings are

discussed with emphasis on possible relevance to La2−xSrxCuO4 systems.
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1. Introduction

Elastic neutron scattering in Nd-doped La2−xSrxCuO4 (LSCO) around x ≈ 0.121,2) has

revealed some charge density modulation (CDM), which is accompanied by incommensu-

rate antiferromagnetic long-range order at lower temperature; the wavevector of the CDM

is just twice larger than that of the magnetic order. On the basis of this data, the so-called

‘spin-charge stripes’ scenario has been proposed:1) there may exist an intrinsic instability to-

ward one-dimensional (1d) charge ordering, namely ‘charge stripes’, in each CuO2 plane, by

which 1d incommensurate magnetic order (or fluctuations) may be realized. Recent finding

of ‘1d-like’ diagonal incommensurate magnetic order in LSCO with 0.02<∼x<∼0.053,4) is often

discussed as a strong support of this scenario, where the direction of ‘charge stripes’ is as-

sumed to be rotated by 45◦ from the Cu-O bond direction. The CDM, however, has not been

detected in such low doping region. On the theoretical side, the possible formation of the

‘spin-charge stripes’ has been argued in different contexts,5,6) but remains to be clarified.

On the other hand, leaving a possible formation of some CDM to a future study and

assuming the uniform charge density, we analyze the two-dimensional (2d) t–J model within

the slave-boson mean-field scheme. We find two mechanisms that lead to the breaking of

fourfold symmetry of the Fermi surface (FS) and the magnetic excitation spectrum. (i) One

1/9



J. Phys. Soc. Jpn. Letter

mechanism originates from the J-term, which has an intrinsic instability toward the formation

of a quasi-one-dimensional (q-1d) FS. The incommensurate (IC-) peaks at (π, π ∓ 2πηa)

(tetragonal notation) and (π ∓ 2πηb, π) lack the fourfold symmetry around (π, π), but the

degree of the symmetry breaking is not so strong that an 1d magnetic structure is realized.

The diagonal IC (DIC-) peaks at (π∓ 2πηc, π∓ 2πηc) and (π± 2πηd, π∓ 2πηd), on the other

hand, retain the fourfold symmetry around (π, π). (ii) The other mechanism comes from the

inclusion of the small interlayer hopping t⊥, which can lead to the drastic breaking of fourfold

symmetry in the DIC-peaks. We point out that these mechanisms may give another scenario

in discussing LSCO systems.

2. Model and Formalism

As a theoretical model for high-Tc cuprates, we use the 2d t–J model defined on a square

lattice

H = −
∑
i, j, σ

t (l)τ f †
i σbib

†
jfj σ +

∑
⟨i,j⟩

JτSi · Sj , (1)

∑
σ

f †
i σfi σ + b†ibi = 1 at each site i, (2)

where fi σ (bi) is a fermion (a boson) operator that carries spin σ (charge e), namely the

slave-boson scheme. t
(l)
τ = t(l) is a hopping integral between the l-th nearest neighbor (n.n.)

sites i and j (l ≤ 3) with τ being the bond direction τ = rj − ri. Jτ = J > 0 is the

superexchange coupling between the n.n. spins, and Si =
1
2

∑
α,β f

†
i ασαβfi β with Pauli matrix

σ. The constraint eq. (2) excludes double occupations at every site.

Following the previous procedure,7,8) we introduce mean fields: χ
(l)
τ ≡

⟨∑
σ f

†
i σfi+τ σ

⟩
,⟨

b†ibi+τ

⟩
and ∆

(1)
τ ≡ ⟨fi ↑fi+τ ↓ − fi ↓fi+τ ↑⟩, where each is taken to be a real constant in-

dependent of lattice coordinates, but is allowed to depend on τ . (Note that the fourfold

symmetry, χ
(1)
x = χ

(1)
y and

∣∣∣∆(1)
x

∣∣∣ =
∣∣∣∆(1)

y

∣∣∣, was assumed in the previous study.7,8)) Also,

the local constraint eq. (2) is loosened to a global one,
∑

i

(∑
σ f

†
i σfi σ + b†ibi

)
= N with N

being the total number of lattice sites. We then decouple the Hamiltonian eq. (1) to obtain

the mean-field Hamiltonian. We approximate the boson to be condensed at the bottom of its

band, and determine the mean fields by minimizing the free energy. This approximation will

be reasonable at low temperature and leads to
⟨
b†ibi+τ

⟩
= δ where δ is the hole density.

Using the mean-field Hamiltonian, we calculate the ‘RPA’ dynamical magnetic suscepti-

bility

χ(q, ω) =
χ0(q, ω)

1 + 2rJ(q)χ0(q, ω)
, (3)
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Fig. 1. (a) T -dependence of χ
(1)
τ under the constraint ∆

(1)
τ ≡ 0. The fourfold symmetry is broken

spontaneously below Tq1d, that is χ
(1)
x ̸= χ

(1)
y . (b) Fermi surface for T > Tq1d (gray line) and that

for T < Tq1d (solid line).

where χ0(q, ω) is the irreducible dynamical magnetic susceptibility and J(q) = J(cos qx +

cos qy). In eq. (3), we introduce a numerical factor r for convenience. In the RPA, where r = 1,

χ(q, 0) diverges at low temperature in a wide doping region δ<∼0.17. This magnetic instability

will be an artifact, since such divergence of χ(q, 0) will be suppressed by higher order correc-

tions to χ0(q, ω). This aspect we take into account phenomenologically by reducing the value

of r to 0.35. As a result, the divergence of χ(q, 0) is limited to the region δ<∼0.02.

3. Result

Focusing our attention on LSCO systems, we take the band parameters as t(1)/J = 4,

t(2)/t(1) = −1/6 and t(3)/t(1) = 0.9) We first impose the constraint ∆
(1)
τ ≡ 0 and determine

the mean fields. Figure 1(a) shows χ
(1)
τ as a function of temperature T . It is found that

the fourfold symmetry of χ
(1)
τ is broken spontaneously below T = Tq1d through the second-

order phase transition. The resulting FS is q-1d (Fig. 1(b)). We find that this q-1d state is

stabilized below δ<∼δq1d ≈ 0.13 at T = 0.10) When we remove the constraint ∆
(1)
τ ≡ 0, the d-

wave pairing instability occurs before the q-1d instability and the q-1d state is not stabilized,

but the (isotropic) 2d state is.
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Fig. 2. q-dependence of Imχ(q, ω) for the q-1dFS(x) (χ
(1)
x > χ

(1)
y ) in the d-wave pairing state. The

inset shows the q-scan directions.

To investigate the origin of the q-1d instability, we expand the free energy in terms of

δχ ≡ (χ
(1)
x − χ

(1)
y )/2 up to the second order under the constraint ∆

(1)
τ ≡ 0:

F − F0 ∼
3J

4
(1− a)(δχ)2 , (4)

where F0 is the free energy in the (isotropic) 2d state. The right-hand side in eq. (4) originates

from the J-term in eq. (1), and

a =
3J

4

1

N

∑
k

(
−∂nF

∂ξk

)
(cos kx − cos ky)

2 > 0 , (5)

with nF being the Fermi-Dirac distribution function. We see that the coefficient, 1−a, in eq. (4)

becomes negative below T = Tq1d, signalling an instability toward the q-1d state. Since the

factor −∂nF
∂ξk

in eq. (5) limits k to a region close to the FS, and the factor (cos kx − cos ky)
2

takes a maximum at (π, 0) and (0, π), the q-1d instability is driven mainly by the fermions

on the FS near (π, 0) and (0, π). On the other hand, such fermions are also responsible to

the d-wave pairing instability, which thus competes with the q-1d instability. We find that

the condensation energy for the d-wave pairing state is larger than that for the q-1d state.10)

Therefore, the q-1d state is not stabilized when the constraint ∆
(1)
τ ≡ 0 is removed.

Nonetheless, when we introduce a small spatial anisotropy, t
(1)
x ̸= t

(1)
y and Jx ̸= Jy, as a

weak perturbation coming from the coupling to the low-temperature tetragonal (LTT) lattice

distortion11,12) or its fluctuations13) in LSCO systems, it is found10) that the anisotropy is

largely enhanced with decreasing T and the q-1d state is realized even in the d-wave pairing

state, although the anisotropy is somewhat suppressed by the onset the d-wave pairing order.

We next investigate the magnetic excitation spectrum Imχ(q, ω) for the q-1dFS(x), where

χ
(1)
x > χ

(1)
y , in the d-wave pairing state. In Fig. 2, we show the q-scan through the IC-peak
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Fig. 3. (a) The alternate stacking of the q-1dFS(x) and the q-1dFS(y) along the c-axis. (b) The

resulting FSs, q-1dFS(x)+q-1dFS(y), in the presence of the interlayer hopping t⊥. They consist of

the inner FS (gray line) and the outer FS (solid line). The scattering processes between the d-wave

gap nodes (solid circles) on the FSs, which may cause the DIC-peak at q = (π∓2πηc, π∓2πηc, 0),

are shown by the solid lines with arrows for the intraband scattering process and by the dashed

lines with arrows for the interband scattering process. (Each process is a little shifted away for

clarity.)

positions at (π, π−2πηa) and (π−2πηb, π), and the DIC-peak positions at (π−2πηc, π−2πηc)

and (π+2πηd, π−2πηd). The IC-peaks lack the fourfold symmetry as expected, but the overall

line shapes are 2d rather than 1d even for the q-1dFS. In the DIC-peaks, on the other hand,

the fourfold symmetry is retained, since Imχ(q, ω) is symmetric under qx → 2π − qx.

We find that with the inclusion of a small interlayer hopping t⊥, the fourfold symmetry

in the DIC-peaks can be broken drastically. We take a model that the q-1dFS is stacked

alternately along the c-axis (Fig. 3(a)). This alternate stacking may be reasonable if we con-

sider the coupling to the LTT lattice distortion11,12) or its fluctuations,13) which will in-

duce the spatial anisotropy alternating along the c-axis. As a c-axis dispersion ϵk, we take

ϵk ∝ t⊥ cos kx
2 cos

ky
2 cos kz

2 , which is consistent with the symmetry of the crystal structure in

LSCO systems where the adjacent CuO2 plane is relatively shifted by [12 ,
1
2 ,

1
2 ] (tetragonal

notation). The resulting FS, shown in Fig. 3(b), recovers the fourfold symmetry.
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Fig. 4. q-dependence of Imχ(q, ω) for several choices of t⊥ in the d-wave pairing state for the q-

1dFS(x)+q-1dFS(y) shown in Fig. 3(b).

Using this FS, we calculate Imχ(q, ω) for several choices of t⊥; qz is fixed to 0. Figure 4

shows that the IC-peaks get broader with t⊥ and retain the fourfold symmetry around (π, π)

because of the symmetry of Imχ(q, ω) under the transformation (qx, qy) → (qy, qx). However,

we find a drastic breaking of fourfold symmetry in the DIC-peaks with the small t⊥, that is,

the DIC-peak at qDIC
c = (π ∓ 2πηc, π ∓ 2πηc, 0) is largely suppressed while the DIC-peak

at qDIC
d = (π ± 2πηd, π ∓ 2πηd, 0) is not. This symmetry breaking itself is not surprising

since χ(q, ω) is not symmetric under the transformation qx → 2π − qx for the present c-axis

dispersion. But why is such symmetry breaking drastic with the small t⊥?

In the presence of the interlayer hopping, particle-hole scattering consists of two processes,

the intraband scattering and the interband scattering: χ0(q, ω) = χintra
0 (q, ω) + χinter

0 (q, ω).

It can be shown14) that χintra
0 (q, ω) is reduced to χintra

0 (q, ω) ∝
∑

k(1+ sign(ϵkϵk+q))× · · · ,

and similarly χinter
0 (q, ω) ∝

∑
k(1 − sign(ϵkϵk+q)) × · · · : the former (latter) consists of the

scattering process with ϵkϵk+q > 0(< 0). In Fig. 3(b), the possible main low-energy scattering

processes of the DIC-peak at q = qDIC
c are shown. For these processes, the sign of ϵkϵk+q is

positive. By transforming qx → 2π− qx and kx → −kx, the possible main scattering processes

for the DIC-peak at q = qDIC
d are obtained; the sign of ϵkϵk+q is then negative. Therefore, the

DIC-peak at qDIC
c comes mainly from the intraband scattering process whereas the DIC-peak

at qDIC
d comes mainly from the interband process. That is, the DIC-peaks at qDIC

c and qDIC
d

are essentially different entities, which leads to the drastic breaking of fourfold symmetry in

the DIC-peaks.

It should be noted that although we have taken the q-1dFS here, the use of the q-1dFS

is not essential to the symmetry breaking in the DIC-peaks, but the form of the c-axis dis-
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persion is. In fact, we find such symmetry breaking also for the 2dFS with the present c-axis

dispersion.14)

4. Conclusion and Discussion

Focusing our attention on the LSCO systems, we have analyzed the 2d t–J model within

the slave-boson mean-filed scheme. We have shown that the J-term has an intrinsic instability

toward the formation of the q-1dFS. This instability is driven mainly by the fermions on

the FS near (π, 0) and (0, π).15) The q-1d instability, however, is usually masked by the

more prominent d-wave instability. Nonetheless, the presence of the small spatial anisotropy

is sufficient for the q-1d state to appear in the d-wave pairing state. By taking the c-axis

dispersion ϵk ∝ t⊥ cos kx
2 cos

ky
2 cos kz

2 , we have also shown that the inclusion of the small

t⊥ leads to the drastic breaking of fourfold symmetry in the DIC-peaks. This is because the

DIC-peak at qDIC
c comes mainly from the intraband scattering process while the DIC-peak at

qDIC
d comes mainly from the interband process.

On the basis of the mechanism due to the J-term, we propose a q-1d picture of the FS for

LSCO systems as shown in Fig. 3(a).16) With this picture, both the angle-resolved photoe-

mission spectroscopy data17) and the inelastic neutron scattering data18) can be understood

consistently.16,19) The mechanism due to the t⊥-term (Fig. 4) may give a scenario to under-

stand the ‘1d-like’ DIC-peak observed in LSCO with 0.02<∼x<∼0.05.3,4) The following aspects,

however, should be noted, which will be crucial to further discussions. (i) The form of the

c-axis dispersion, which has not been clarified yet experimentally. (ii) The use of the d-wave

pairing state in Fig. 4. This is reasonable from the view of the resonating-valence-bond (RVB)

picture,20) but would not from the experimental viewpoint since the existence of the spin gap

has not been clarified yet in 0.02<∼x<∼0.05 where the ground state is the spin-glass phase.

In YBCO systems, the band parameters may be taken as t(1)/J = 4, t(2)/t(1) = −1/6 and

t(3)/t(1) = 1/5,9) for which we have found that the FS is almost 2d at least in 0.05<∼δ<∼0.30

even if the small spatial anisotropy is introduced in t(1) and J .10) This is because the location

of the (original) FS is away from (π, 0) and (0, π) more than that for the band parameters

appropriate to LSCO systems. Therefore, the mechanism due to the J-term is less effective.

The c-axis dispersion in YBCO is proposed to be ϵk ∝ t⊥(cos kx − cos ky)
2 in the band

calculation.21) For this c-axis dispersion, χ(q, ω) is equivalent between q = qDIC
c and qDIC

d .

The present mechanism due to the t⊥-term does not work.
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