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In the vicinity of hole density, 1/8, of La-based high-Tc superconductors, static incommen-

surate antiferromagnetism (IC-AF) is observed. We explore the possible stability of static

IC-AF due to the existence of static charge density modulation (CDM) using Ginzburg-

Landau free energy based on the mean field theory of the t-J model. We show numerically

that on the plane of hole density and incommensurability of IC-AF fluctuation, there exists

a region where instability to static IC-AF is possible. In this case CDM is not necessarily a

stripe pattern.
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1. INTRODUCTION

In the vicinity of hole density,1 1/8, La-based high-Tc superconductors show anomalous

temperature dependence in various physical quantities such as in-plane resistivity, Hall coeffi-

cient, static magnetic susceptibility and thermoelectric power, and the following characteris-

tics are also observed: the suppression of d-wave superconductivity (dSC); the stabilization of

static incommensurate antiferromagnetism (IC-AF) with onset temperature, TN , higher than

those of other hole densities; the appearance of static charge density modulation (CDM);

and the structural phase transition. We call these phenomena ’1/8-phenomena’. This ’1/8-

phenomena’ has been discussed so far in the context of the stripe model first suggested by

Tranquada et al..2,3 But its justification has not been established either experimentally or

theoretically.

In this paper we will investigate ’1/8-phenomena’ searching for possible interrelationship

between the stabilization of static IC-AF and the existence of static CDM. In the following

’static CDM’ will be abbreviated to ’CDM’.
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2. GL FREE ENERGY

To explore the possible interrelationship between static IC-AF and CDM, we take the

following Ginzburg-Landau (GL) free energy:

F =
∑
q

1

2χ(q)
|M(q)|2 +

∑
qa,qb

g(qa, qb)N(qa + qb)M(−qa)M(−qb)

+
b

4

∑
qa,qb,qc

M(−qa)M(qb)M(−qb − qc)M(qa + qc) (1)

where N(qa + qb) is an order parameter of CDM whose existence is assumed a priori; M(q)

is an order parameter of static IC-AF; χ(q) > 0 is spin susceptibility; and the second term

is the lowest order interaction between static IC-AF and CDM, and g(qa, qb) is the coupling

constant. We consider only the static IC-AF having the same pattern as observed by neutron

scattering:2–6 (π, π±2πη) and (π±2πη, π). η is the degree of incommensurability. In this case,

CDMs which couple with this static IC-AF through the second term in eq. (1) are limited to

only four patterns: 1d-CDM(I) (Fig. 1 (a)), 2d-CDM(I) (Fig. 1 (b)), 1d-CDM(II) (Fig. 1 (c))

and 2d-CDM(II) (Fig. 1 (d)). Each figure shows spin and charge patterns in the wavevector

space, and η of CDM is taken as the same as that of static IC-AF. Here 1d-CDM(I) is the

stripe pattern proposed by Tranquada et al.2,3

In eq. (1) the coefficient of the second order of M(q) can change its sign when |N(qa+qb)|

becomes large. A critical amplitude of CDM, above which the sign of this coefficient becomes

negative, is given by: Ncr = 1/(g(q1, q1)χ(q1)) for 1d-CDM(I); Ncr = 2/(g(q1, q1)χ(q1)) for

2d-CDM(I); and Ncr = 1/
(
g(q1, q2)

√
χ(q1)χ(q2)

)
for both 1d-CDM(II) and 2d-CDM(II),

where q1 = (π, π + 2πη) and q2 = (π + 2πη, π). Since the charge density must be positive,

Ncr should be less than average hole density (doping rate), δ, if instability to static IC-AF

occurs. Depending on the value of a(η ; δ) ≡ Ncr/δ, we classify three regions: (1) a(η ; δ) < 1.

Static IC-AF can be stabilized by CDM (2) a(η ; δ)>∼1. CDM can not stabilize static IC-AF,

but effects of CDM is still strong and will affect IC-AF fluctuations (3) a(η ; δ) ≫ 1. Effects

of CDM are negligible and IC-AF fluctuation is controlled only by χ(q).

3. RESULTS OF NUMERICAL CALCULATIONS BASED ON THE t-J

MODEL

To estimate a(η ; δ) we calculate7 g(qa, qb) and χ(q) based on the mean field theory of the

t-Jmodel with LSCO-type Fermi surface8 in the singlet-RVB state at temperature, T = 0.02J ,

in the doping region, 0.10 ≤ δ ≤ 0.30. In the mean field theory χ(q) = χ0(q)/(1+2J(q)χ0(q))

where χ0(q) is spin susceptibility without interactions and J(q) = J̃(cos qx+cos qy) with J̃ =
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J . For explicit calculations we set J̃ = 0.2J to simulate the possible effects of renormalization

due to fluctuations or higher order contributions. This choice of J̃ = 0.2 J , however, is rather

arbitrary (see end of § 4).

The condition that χ(q) > 0 in eq. (1) is confirmed numerically. As reported earlier,8 χ(q)

takes a maximum at (π, π±2πη) and (π±2πη, π); we defined this η as ηχ. The η-dependences

of a(η ; δ) for both 1d-CDM(II) and 2d-CDM(II) are shown in Fig. 2. As a function of η, a(η ; δ)

decreases monotonically and takes a minimum at η ≡ ηa then suddenly increases for δ ≥ 0.22,

while it monotonically increases for δ ≤ 0.20. δ-dependence of ηχ and ηa is shown in Fig. 3,

where ηa grows rapidly around δ ≈ 0.20 and gets close to ηχ. Around the thick line in Fig. 3,

a(η ; δ) becomes less than 1. Thus both 1d-CDM(II) and 2d-CDM(II) can in principle stabilize

static IC-AF.

For 1d-CDM(I), a(η ; δ) becomes larger than that for both 1d-CDM(II) and 2d-CDM(II)

about a few % ∼ 10 % depending on η at each δ. For 2d-CDM(I), a(η ; δ) is twice as large

as that for 1d-CDM(I). Except for these quantitative differences, the η-dependence of a(η ; δ)

does not change among four CDMs.

4. CONCLUSION AND DISCUSSION

We have seen that both 1d-CDM(II) and 2d-CDM(II) can in principle stabilize static IC-

AF more easily than 1d-CDM(I) around the thick line in Fig. 3 (δ>∼0.26, η ≈ 0.13 ∼ 0.15).

The possibility of 2d-CDM(I) is much smaller than the other CDM patterns. CDM is not

necessarily a stripe pattern (1d-CDM(I)) in the present framework.

To get a global picture of how instability to static IC-AF occurs, we discuss δ-dependence

of η for IC-AF fluctuation. In the absence of the coupling between N and M , η of IC-AF

fluctuation is ηχ giving a maximum of χ(q) while we assume that η of CDM, ηκ, is equal to

1/8 resulting from some commensurability effects. In the presence of the coupling, if ηχ is not

equal to ηκ and effects of coupling are strong, N and M will tend to have the same η because

N couples with M having the same η. Since we have found numerically that a(η ; δ) ≫ 1

for ηχ < η < ηκ while a(η ; δ) ∼ 1 for ηκ < η < ηχ, we expect that the resulting η of

IC-AF fluctuation deviates from ηχ as shown by the dotted line in Fig. 3. That is, η tends

to saturate at high hole density and probably crosses the thick line at (η, δ) ≈ (0.13, 0.26),

where instability to static IC-AF can occur.

This global picture is consistent with experiments2–6,9 qualitatively. It is noteworthy that

the value of η ≈ 0.13 for static IC-AF is close to the observed one, η ≈ 0.12.2,3, 5, 6 But the

absolute value of hole density is much larger than that of experiments. To improve this prob-
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lem, the following theoretical consideration may be required: (1) effects of gauge fluctuation

on the mean field solutions (2) effects of disorders (3) and ambiguity of Fermi surface.

Finally we mention the value of J̃ = 0.2J . If J̃ is taken larger, a(η ; δ) becomes smaller

and the region of the thick line in Fig. 3 extends to lower hole density.
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Fig. 1. Four possible patterns of static CDMs are represented by ’•’ when static IC-AF has wavevec-

tors as shown by ’×’ in each figure: (a) 1d-CDM(I) has (±4πη, 0) or (0, ±4πη), and the case of

(0, ±4πη) is shown (b) 2d-CDM(I) (c) 1d-CDM(II) has (±2πη, ±2πη) or (±2πη, ∓2πη), and the

case of (±2πη, ∓2πη) is shown (d) 2d-CDM(II).

Fig. 2. The η-dependence of a(η ; δ) for both 1d-CDM(II) and 2d-CDM(II). The case of δ = 0.10, 0.15

is out of the frame and is not shown.
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Fig. 3. The δ-dependence of ηχ and ηa is shown for both 1d-CDM(II) and 2d-CDM(II). Around the

thick line a(η ; δ) becomes less than 1, thus CDM can induce static IC-AF. In the absence of the

coupling, IC-AF fluctuation has η = ηχ and we assume that η of CDM, ηκ, is equal to 1/8. We

expect that owing to the strong coupling with CDM, η of IC-AF fluctuation deviates from ηχ as

shown by the dotted line and crosses the thick line, where static IC-AF can be stabilized.
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