NIMS Award 2022 Winner

Prof. Kazuhiko Ishihara

Specially Appointed Professor, Graduate School of Engineering, Osaka University Emeritus Professor, The University of Tokyo

Research Field

Polymer Chemistry, Biomaterials Science and Engineering

History

1984	Doctor of Engineering (Applied Chemistry), Waseda University
1984~1986	Research Associate, Sagami Chemical Research Center
1987~1990	Assistant Professor, Tokyo Medical and Dental University
1991~1998	Associate Professor, Tokyo Medical and Dental University
1998~2000	Associate Professor, The University of Tokyo
2000~2021	Professor, The University of Tokyo
2021	Emeritus Professor, The University of Tokyo
2021~Present	Specially Appointed Professor, Osaka University

Major Awards

2000	Technical Progress Award, Japanese Society of Artificial Organs
2001	Award of Japanese Society for Biomaterials (2001)
2004	Harushige Inoue Prize, Japan Science and Technology Agency
2004	SPSJ Mitsubishi Chemical Award, Society of Polymer Science, Japan (2004)
2006	Frank Stinchfield Award, The Hip Society, The American Academy
	of Orthopedic Surgeons
2009	Clemson Award, Society for Biomaterials
2011	High-technology Award: Award of METI
2011	Technical Progress Award, Japanese Society of Artificial Organs
2013	Industrial Award, Fine Ceramic Society, Japan
2014	Award of Society of Polymer Science, Japan (2014)
2017	Prizes for Science and Technology from MEXT, Development Category
2017	Science and Technology of Advanced Materials 2017 Altmetrics Award
2018	Samuel F. Hulbert Award, Clemson University
2018	The Prize of METI National Commendation for Invention
2018	The Japan Medical Research and Development Grand Prize, Award of Ministry
	of Health, Labor and Welfare, Japan
2020	Japan Techno-Economics Society President Award
2020	Cosmetology Research Award, KOSÉ Cosmetology Research Foundation
2020	SPSJ Award for Outstanding Achievement in Polymer Science and
	Technology, Society of Polymer Science, Japan (2020)

- The Award for Distinguished Contribution in Advancement of Biomaterials Science, Japanese Society for Biomaterials (2021)
- Japan Bioindustry Award, Japan Bioindustry Association

Major Publications/Books

- 1) Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membrane. *Polym J* 1990;**23**:355-360.
- 2) Ishihara K, Aragaki R, Ueda T, Watanabe A, Nakabayashi N. Reduced thrombogenicity of polymers having phospholipid polar groups. *J Biomed Mater Res.* 1990;**24**(8):1069-1077.
- 3) Ishihara K, Ziats NP, Tierney BP, Nakabayashi N, Anderson JM. Protein adsorption from human plasma is reduced on phospholipid polymers. *J Biomed Mater Res.* 1991;**25**(11):1397-1407.
- 4) Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? *J Biomed Mater Res.* 1998 **39**(2):323-30.
- 5) Ishihara K. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. *Sci Technol Adv Mater.* 2000;**1**(3):131-138.
- 6) Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung UI, Nakamura K, Kawaguchi H. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. *Nat Mater*. 2004;**3**(11):829-836.
- 7) Ishihara K, Chen W, Liu Y, Tsukamoto Y, Inoue Y. Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells. *Sci Technol Adv Mater.* 2016;**17**(1):300-312.
- 8) Ishihara K, Mu M, Konno T, Inoue Y, Fukazawa K. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). *J Biomater Sci Polym Ed.* 2017;**28**(10-12):884-899.
- 9) Ishihara K, Mu M, Konno T. Water-soluble and amphiphilic phospholipid copolymers having 2-methacryloyloxyethyl phosphorylcholine units for the solubilization of bioactive compounds. *J Biomater Sci Polym Ed.* 2018;**29**(7-9):844-862.
- 10) Ishihara K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. *J Biomed Mater Res A*. 2019;**107**(5):933-943.
- 11) Ishihara K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. *Langmuir*. 2019;**35**(5):1778-1787.
- 12) Ishihara K, Oda H, Konno T. Spontaneously and reversibly forming phospholipid polymer hydrogels as a matrix for cell engineering. *Biomaterials*. 2020;**230**:119628.
- 13) Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. *J Mater Chem B*. 2022;**10**(18):3397-3419.