
Student Seminar Program, NIMS Joint Graduate School Programs with Hokkaido University-NIMS graduate School Program

& The 112th GREEN Seminar

Prof. Masaki Matsui

(Department of Chemistry, Hokkaido University)

Layered LiCoO₂ (LCO) is usually synthesized at high temperatures \ge 800 $^{\circ}$ C by conventional solid-state process. The LCO has another polymorph with a spinel structure, which is synthesized around 400 $^\circ\,$ C. Hence, the layered LCO and the spinel LCO have been called HT-LCO and LT-LCO, respectively.[1] Conversely, firstprinciples calculations predicted that the layered LCO is thermodynamically stable even at low temperatures.[2] Here, we propose an effective synthesis approach called the "hydroflux process" to synthesize a highly crystalline layered LCO at low temperatures of \leq 300 $^{\circ}$ C within a short duration of \leq 1 h.[3] A series of XRD studies revealed that the layered LiCoO₂ formation occurs even at 150 $^{\circ}$ C. We also confirmed that the water molecules in the molten mixed hydroxides significantly accelerate the crystal growth of layered LCO. The soluble HCoO₂⁻ anion species under strong alkaline conditions, enable the low-temperature fast crystal growth of LiCoO₂ without spinel Co₃O₄ formation. In the present study, we successfully proved that the layered LiCoO₂ can be synthesized as the thermodynamically stable phase even at low temperatures. Furthermore, the hydroflux process could be a rapid and scalable production process for the layered LCO and other cathode active materials for Li-ion batteries.

Venue:	Auditorium, 1F, NanoGREEN/WPI-MANA Bldg.,
	Namiki-site
Date & Time:	13:00-13:45, Thursday, 19 December 2024
Language:	English
Contact:	SHINOHARA.Yoshikazu@nims.go.jp