The 109th GREEN Seminar

Catalysts design, mechanistic studies and degradation for electrochemical oxidation and reduction processes

Chair: Dr. Ken Sakaushi (GREEN)

Prof. Magda Titirici

(Imperial College London, Department of Chemical Engineering, UK)

To mitigate the climate change and reach a carbon neutral society before it is too late, a mix of sustainable energy technologies are needed. In this talk I will present research from my group in the area of green H_2 from the electrolysis of biomass derivatives as well as fuel cells free of Pt electrocatalysts for the cathodic reaction.

Green H₂ is also a key energy vector helping our transition to net zero. Green H₂ is commonly obtained from water electrolysis using various membranes such as alkaline, proton conductive, anion exchange or solid oxides. While the cathodic hydrogen evolution reaction happens with a minimum amount of Pt (> 0.05 mg/cm²) and with a low overpotential ($\eta_{HER} \sim 0.01V$ at 1.4 V), the anodic oxygen evolution reaction is sluggish and requires large amounts of IrO_x, a critical mineral₁ (<0.3mg/cm²) at high overpotentials ($\eta_{OER} \sim 0.4V$). I will present our research on new substates for electrocatalytic H₂ production based on biomass/plastic waste derivatives such as glycerol, ethylene glycol or 5-hydroxymethylfurfural with advantages in terms of lower potentials where the biomass/waste oxidation reactions occur and the advantages of producing other high value chemicals in addition to green H2, helping a circular economy.

I will also touch on the use of H_2 in fuel cells for zero carbon electricity production. The sluggish reaction here is the oxygen reduction reaction happening at the cathodes requiring Pt catalysts which are scarce and expensive. I will present research on bioinspired catalysts based on Fe single atoms coordinated to nitrogen atoms doped on a conductive carbon matrix and their activity emphasising the importance of determining the number of active sites, turnover frequency and understanding the issues hindering the stability of such catalysts.

Auditorium, 1F, NanoGREEN/WPI-MANA Bldg.,
Namiki-site
13:30-14:30, Wednesday, 28 August 2024
English
SAKAUSHI.Ken@nims.go.jp