

Energy and Environmental Materials (GREEN)

国立研究開発法人 物質・材料研究機構 エネルギー・環境材料研究センター

センター長・副センター長・フェロー・特命研究員・運営室長

センター長

副センター長

フェロー

神谷 宏治

篠原

特命研究員

運営室長

和典 高田

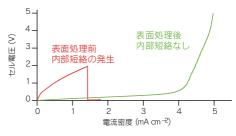
研究分野・

電池材料分野

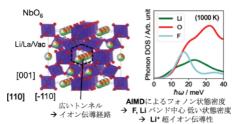
分野長 増田 卓也

- ・固体電池材料グループ
- ・電池界面制御グループ
- ・電池材料解析グループ
- ・太陽光発電材料グループ
- ニ次電池材料グループ
- ・固体電池イオニクスグループ
- ・環境制御観察グループ
- ・電気化学スマートラボチーム
- ・機能性電解液合成チーム

水素材料分野



分野長 神谷 宏治


- 磁気冷凍システムグループ
- 超伝導システムグループ
- ・水素製造触媒材料グループ
- ・先進超伝導線材グループ
- ・水素イオニクスグループ
- ・電気化学エネルギー変換チーム

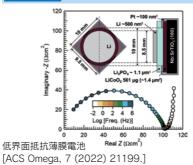
固体電池材料グループ

Topics 高性能固体電池の実現に向けて

固体電解質表面処理による短絡抑制 [ACS Appl. Energy Mater., 7 (2024) 5321.]

パイロクロア型固体電解質 Li_{2-x}La_{(1+x)/3}Nb₂O₆F [J. Mater. Chem. A, 12 (2024) 33099]

主幹研究員


高田 和典 JALEM Randy

電気自動車の普及や再生可能エネルギーの大 規模導入には、高い信頼性を蓄電池が必要と されています。固体電池材料グループでは、界 面イオン伝導現象の研究や原子レベルのシ ミュレーションとデータサイエンス手法を用い た超イオン伝導の支配因子の解明を通じて、 カーボンニュートラル達成に資する高性能固体 電池の開発を進めています。

電池界面制御グループ

Topics

酸化物系固体電解質を用いた全固体電池の開発

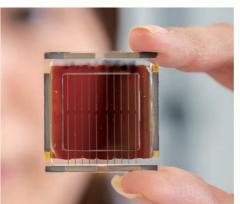
 $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ (LATP) l_{-}^2 Coをドーピングすることによる 低温焼結化 LiCoPO Li₅Co₂(PO₄)₃ (x=2) Co_{0.5}Ti₂(PO₄)₃ (y=0.5) Li₃PO₄ LiTiO(PO₄) LiTi₂(PO₄)₃ Ti₃(PO₄)₄ LiPO.

[ACS Appl. Energy Mater., 5 (2022) 7515.]

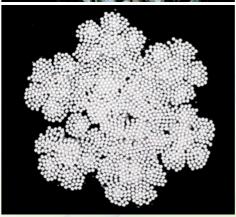
大西

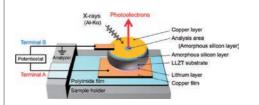
剛 三好 正悟

二次電池の高性能化には電池部材の高機 能化に加え、接合界面で生じる現象を正し く理解し高機能化することが重要です。全固 体電池は高い信頼性を持つ一方で出力密 度のさらなる向上が望まれております。電 池界面制御グループでは界面現象の研究を 通じこれら課題の解決に取り組んでいます。


エネルギー・環境材料に関する 世界トップ拠点を目指して

エネルギー・環境材料研究センター(GREEN)では、カーボンニュートラルの実現に向けて、次世代蓄電池、太陽電池、燃料電池、水素製造、水素貯蔵システム等に資するエネルギー変換・貯蔵材料とデバイスの研究開発を行っています。最先端の計測および計算科学による機構解明・材料設計に加え、自動実験を活用した材料探索のハイスループット化や産業界との密接な連携を通して、差し迫った社会課題解決への貢献を目指しています。


センター長 増田 卓也


実施中の主なプロジェクト

Materealize・全固体電池を実現する接合プロセス技術革新
JST MIRAI・磁気冷凍技術による革新的水素液化システムの開発
COI-NEXT・先進蓄電池研究開発(ABC)拠点
GteX・蓄電池および水素関連研究のための計測およびDX共通基盤技術の構築
K Program・孤立・極限環境に適用可能な酸化物型全固体電池の開発

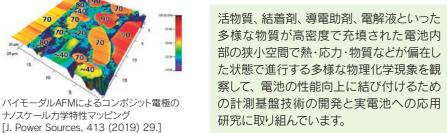
高田 和典 代表 西宮 伸幸 代表 金村 聖志 代表 増田 卓也 代表 高田 和典 代表

電池材料解析グループ

Topics マルチスケール電池反応解析

全固体電池のオペランドXPS 反応解析 [J. Phys. Chem. Lett., 11 (2020) 6649.]

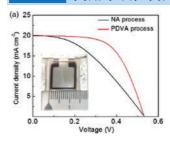
増田 卓也

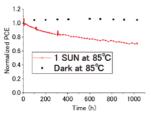


野口 秀典

石岡 邦江 伊藤 仁彦

久保田 圭


木内 久雄


太陽光発電材料グループ

Topics

高効率次世代太陽電池デバイスの開発

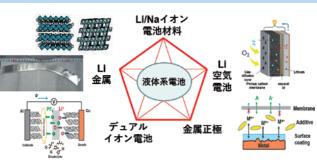
鉛フリー1cm角ペロブスカイト太陽電池 [Solar RRL., 3 (2019) 1900245.]

優れた耐久性を有するハロゲン化鉛ペロブスカイト太陽電池。 [Sol. Energy Mater. Sol. Cells, 195 (2019) 323.]

PC...BM

主任研究員 主幹研究員 主席研究員 白井 康裕 Ashraful Islam 柳田 真利 Dhruba B. Khadka

地球温暖化や環境問題の解決には太陽電 池のさらなる普及が不可欠です。我々のグ ループでは材料・デバイスの開発、及び発電 メカニズムなどの理解のもと、低コスト・低 環境負荷・高効率を実現する次世代太陽電 池の研究に取り組んでいます。


二次雷池材料グループ

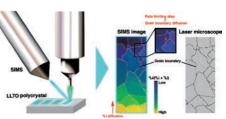
Topics 液体系電池の研究開発

研究テーマ:

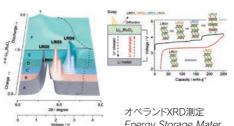
・リチウム/ナトリウム/ 雷池材料

- ・リチウム金属
- ・リチウム空気電池
- デュアルイオン電池
- ·金属正極

主幹研究員 ユデニス 西川

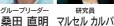

主任研究員 慶 野村 晃敬

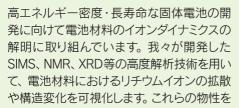
当グループでは、様々な電池システムにお ける活物質や電解液を開発し、電極/電解 質中のイオン輸送に影響を与える要因を理 解することで、次世代電池のエネルギー密 度、出力、安定性の向上、コスト削減を目指 しています。


固体電池イオニクスグループ

Topics

電池材料のイオンダイナミクス解析

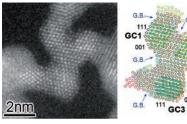



リチウム同位体拡散の可視化 J. Mater. Chem. A. 12, 731 (2024).

Energy Storage Mater., 63. 103051 (2023).

基礎として、固体電池への応用を目指します。

環境制御観察グループ


Topics 環境制御顕微鏡を用いたその場・オペランド観察

ガス加熱試料ホルダーとCH4ガス、450℃におけるグラ フェン成長のTEM観察 [Microscopy 70 (2021) 545.]

GC2

空気環境におけるPtナノワイヤの構造変化の STEM観察 [Nanomaterials 13 (2023) 2170.]

触媒などのエネルギー変換材料のその場・オ ペランド透過電子顕微鏡観察のために、試料 ホルダーを使ったガス中、液体中観察技術を 開発し、それらを用いた観察を行っています。 構造や組成の変化を捉え、高効率化・長寿命 化・低コスト化のカギとなる反応・劣化メカニ ズムの解明に向けて取り組んでいます。

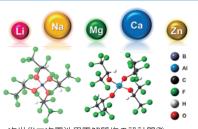

電気化学スマートラボチーム

Topics

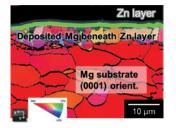
自動自律実験による電気化学材料の開発加速

並列電気化学セルによるハイスループット実験 [Scientific Reports, 9 (2019) 6211.]

データ科学的手法を用いた材料探索 [Cell Reports Phys Sci, 3 (2022) 100832.]


松田 翔一

自動実験ロボットを積極的に利用し、様々な 実験プロセスをハイスループット化すること で、大規模な実験データを短時間での取得 することができる。取得した一連の実験デー 夕群に対して、データ科学的手法を適用する ことで、革新的な電気化学材料の発見加速 を主目的として研究を進めている。


機能性電解液合成チーム

Topics

高機能電解液および界面の開発

次世代二次電池用電解質塩の設計開発 [ACS Appl. Mater. Interfaces 2020, 12, 39135; J. Phys. Chem. C 2023, 127, 7987.]

人工界面によるMg金属負極の短絡抑制 [Energy Storage Mater. 2024, 67, 103302]

万代 俊彦 次世代エネルギーデバイスのための、電解

液材料の設計開発と電極 - 電解液界面設計 に取り組んでいます。電気化学・溶液化学・構 造化学に基づき材料を設計し、有機/無機/ ナノ材料合成技術を組み合わせて具現化す ることで、既往技術基盤にブレイクスルーを もたらす革新的新材料の創製を目指します。

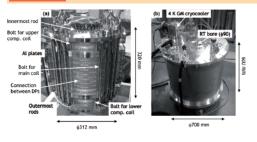
磁気冷凍システムグループ

高効率水素液化機の開発

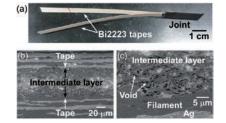
宇宙用推薬液化

グループリーダー 神谷 宏治

主幹研究員 夏目 恭平



主幹研究員 許亜

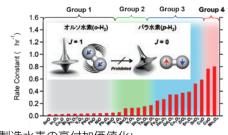

本グループの目的は、水素社会の実現に資す る、高効率な水素液化磁気冷凍機の開発です。 理想サイクルに基づく磁気冷凍法は、従来方式 を超える高効率液化が可能です。超伝導磁石、 磁性体コーティング、極低温ポンプなど多くの 開発要素で構成される磁気冷凍機は、水素液 化プラントはじめ、宇宙用推薬液化、量子コン ピュータなどにも応用可能です。

超伝導システムグループ

中高温度域応用超伝導機器の開発 Topics

磁気冷凍システム向け高温超伝導マグネット [IEEE Trans. Appl. Supercond., 33 (2023) 4602605]

高温超伝導線材の超伝導接合 [Supercond. Sci. Technol., 35 (2022) 02LT02]


武田 泰明 藤井 宏樹 松本 明善 퓼

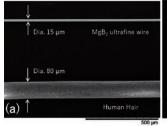
電気抵抗ゼロで電流を流すことができる超 伝導材料は究極の省エネルギー材料であ り、環境・エネルギー問題を解決する切り札 です。我々は来る水素社会において応用超 伝導機器を社会実装することを目指し、水 素温度以上の中高温度域で使える応用超伝 導機器や高機能超伝導線材を開発します。

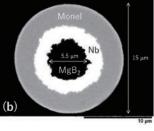
水素製造触媒材料グループ

クリーン水素製造のための高性能触媒材料とシステム開発

製造水素の高付加価値化: オルソパラ水素変換触媒

Explorations 20230040 (2024) doi.org/10.1002/EXP.20230040



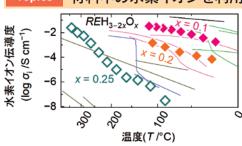

主任研究員 研究員 加古 哲也 庄司 州作 阿部 英樹


炭化水素などのさまざまな水素資源から二 酸化炭素を大気放出することなく安価・大 量に水素を製造する(クリーン水素製造)た めの高性能触媒材料と反応システムの研 究・開発を行っています。

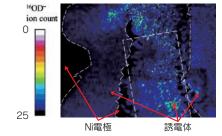
先進超伝導線材グループ

フレキシブル超極細超伝導線材 Topics

世界最細の外径15ミクロンのMgB2超伝導線材。(a) 頭髪との比較。(b) 線材断面構造。(c) 直径300ミクロンの 小さなループ。



主幹研究員 菊池 章弘 伴野 信哉


核融合炉や高エネルギー粒子加速器などの各 種の応用機器に資する超伝導線材の高性能化 に取り組んでいます。また、超伝導接続等の関 連技術の開発も行います。さらに液体水素の冷 熱を利用する新しい電動航空機や液体水素ポ ンプなどへの応用を目指した超極細超伝導線 材及びフレキシブルケーブルの研究開発を推 進しています。

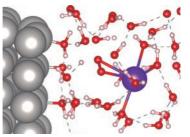
水素イオン材料グループ

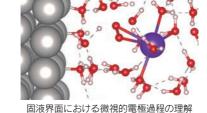
材料中の水素イオンを利用した機能開拓とその解明 **Topics**

世界最高のヒドリドイオン伝導度を示す 酸水素化ランタン [JACS, (2022).]

SIMSを用いた水素拡散によるMLCC劣化の実測 [JJAP. (2021).]

主席研究員


主席研究員 飯村 壮史 鈴木 拓 坂口

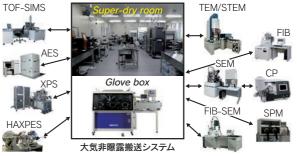

材料中の水素は正負の価数を持つイオン から原子状水素にまで姿かたちを変え、化 学機能や拡散能、電子機能など多様な機能 を担います。本グループは材料中や表面に おける水素に着目し、新規エネルギー・環 境材料の創出、および水素が材料機能に果 たす役割の解明に取り組んでいます。

電気化学エネルギー変換チーム

実験-理論計算-データ科学が連携した電気化学材料創製 Topics

[Angew. Chem. Int. Ed., 62 (2023) e202312841.]

人と人工知能が連携した加速的材料探索 [ACS Cent. Sci., 9 (2023) 2216.]


電解装置や燃料電池を駆動させる電気化学 の基礎原理と材料の研究を通して、現代のエ ネルギー問題解決に取り組んでいます。 具体的 には、実験と理論計算・データ科学との連携に よる、(1)モデル電極を活用した反応機構の解 明・開拓、および(2)新規な電極材料の設計・ 合成の2点を重視して研究を行っております。

蓄電池基盤プラットフォーム

世界トップレベルの次世代蓄電池の研究施設 **Topics**

充放電試験機 C600熱量計 ARC

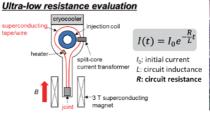
蓄電池基盤プラットフォームは、次世代畜電池 技術の開発を支える最先端設備を備えていま す。研究環境は質と規模の両面で世界トップレ ベルを誇り、セルの試作、電池性能・安全性の 評価、さらに材料やセルレベルでの詳細な構 造解析まで、包括的に対応が可能です。JST GteXプログラムを主要な支援対象とし、次世 代蓄電池の研究開発を強力に支援します。

先進蓄電池研究開発拠点

Topics 電池解析・設計開発プロトコル

代表研究者 金村 聖志

先進リチウム電池 全固体電池 元素戦略電池 チウム空気電池 反応、物質・熱輸送、劣化 計算科学 機構など、マルチスケー


電池先端計測

電池解析・設計開発プロトコルに より次世代蓄電池の研究開発お よび社会実装を大幅に加速する。 高度なIoT化、輸送・物流革新、自 然エネルギー利用拡大に資する 多様な蓄電池を創出して、人・モ ノ・環境・データをつなぐクリーン エネルギー社会を実現する。

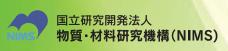
応用超伝導基盤研究

超伝導接合技術の研究

北口

NMR・MRIマグネット 用途ではコイル全体を 超伝導閉ループとする 方式が用いられ、この ために極めて低抵抗 (10-14~10-90)の超 伝導線材間接続が必 要です。接続形成プロ セスや極低抵抗 (10-14~10-9Ω)評価 技術の開発を行ってい

NIMSで発見されたBi系高温超伝導酸化物 線材の実用化を進めるために、応用超伝導 (線材の材料科学、機器応用のためのマグ ネット技術)分野の研究を行っています。特 に、NMR・MRI用途で必要とされる精密安 定磁場を実現するための要素技術として、 超伝導接続に関する開発を行っています。


エネルギー・環境材料研究センターの沿革

2009 (H21)	ナノ材料科学環境拠点 (GREEN) 発足 (10月)
2011 (H23)	GREENがTIAナノグリーンの中核的プロジェクトとなる
2012 (H24)	新研究棟移転(5月)
2013 (H25)	GREEN 特別推進チーム(全固体電池、リチウム空気電池)発足(4月)
2014 (H26)	GREEN 特別推進チーム(ペロブスカイト太陽電池)発足(10月)
2011 (1120)	蓄電池基盤プラットフォーム発足(10月)
2016 (H28)	ナノ材料科学環境拠点、蓄電池基盤プラットフォームを内包する形でエネルギー・環境材料研究拠点発足(4月)
	第13回 GREEN シンポジウム開催 (6月)
2017 (H29)	第 1 4 回 GREEN シンポジウム開催 (2 月)
	界面エネルギー変換に関する国際シンポジウム開催(5月、共催)
	第 15 回 GREEN シンポジウム開催 (6月)
	第3回東北大&GREEN合同シンポジウム (第16回シンポジウム) (12月)
2018 (H30)	第17回シンポジウム (東京) (1月)
	第18回シンポジウム (6月)
2019 (H31)	第19回シンポジウム (東京) (1月)
	第20回シンポジウム (国際) (2月)
2020 (R2)	第21回シンポジウム (東京) (3月)
2021 (R3)	第22回シンポジウム (WEB開催) (3月)
	先進蓄電池研究開発拠点発足(6月)
2022 (R4)	第23回シンポジウム (WEB開催) (3月)
2023 (R5)	第24回シンポジウム (3月)
	組織改編に伴い、「エネルギー・環境材料研究拠点」から 「エネルギー・環境材料研究センター」に名称を変更(4月)
2024 (R6)	第25回シンポジウム (2月)

エネルギー・環境材料研究センター

(千現地区) 〒305-0047 茨城県つくば市千現 1-2-1 (並木地区) 〒305-0044 茨城県つくば市並木 1-1 (桜 地 区) 〒305-0003 茨城県つくば市桜 3-13 TEL: 029-860-4953 FAX: 029-860-4981 HP: https://www.nims.go.jp/nims-green/

