日本発の独創的な IT デバイス「原子スイッチ」の実用化を祝う国際シンポジウム - NIMS で開発された原子スイッチが NEC によって実用化 -

International Symposium on

Atomic Switch: Invention, Practical Use and Future Prospects

ABSTRACTS of Presentations & PUBLICATION LIST related to the atomic switch

March 28, 2017

Meeting Room "SUBARU" Okura Frontier Hotel Tsukuba

Welcome address

The "atomic switch", which was invented in 2001 and has been investigated at MANA/NIMS for about 10 years with the support of JST and MEXT and in collaboration with NEC, has come into practical use as the "NEC AtomSW-FPGA", which will soon be used in robots and space satellites for example. This is because the atomic switch is not only compact and has low power-consumption, but also because it is scarcely influenced by electromagnetic noise and radiation (including cosmic rays).

To celebrate the practical use of the atomic switch, which is a novel nanoelectronics device originating in Japan, we hold a memorial symposium as follows. At the symposium, we will also present information about how the atomic switch has begun to be used for brain-type information processing and for completely novel functional nanodevices. We believe that this symposium will be useful for all the scientists and engineers who are interested in nanoscale devices in relation to AI and IoT. Please participate in this symposium.

私どもが 2001 年に発明し、JST や文部科学省の支援を受け、NEC と共同して、 MANA/NIMS において研究を続けてきた「原子スイッチ」が、このたび "NEC AtomSW-FPGA" として実用化され、ロボットや人工衛星などでの利用が目指されています。原子スイッチ は、コンパクトで低消費電力であるだけでなく、電磁ノイズや放射線(宇宙線)による誤 動作がほとんどないためです。

この機会に、日本発の独創的ナノエレクトロニクス・デバイスである 「原子スイッチ」 の実用化を祝うと共に、「原子スイッチ」 が脳型の情報処理や全く新しい高機能デバイス へと展開し始めている状況を展望するシンポジウムを開催することにしました。 AI や IoT に関心のある方には必ずお役に立つと信じます。ぜひご参加ください。

Masakazu Aono

Director,

WPI Center for Materials Nanoarchitectonics (MANA),

National Institute for Materials Science (NIMS)

PROGRAM

March 27th

	_	/ ·			
18.00 - 20.00	Recention	(Rar Continental	11 F Ok	zura Frontier	Hotel Tsukuha)
10.00 20.00	Reception	(Dur Commentai,	111,00		110ici 1Sunuou/

March 28th

09:00 - 09:30 *Registration*

Opening

09:30 - 09:40	Opening address (Scope of Symposium)
	Masakazu Aono (Director, MANA/NIMS)
09:40 - 09:50	Greeting
	Kazuhito Hashimoto (President of NIMS)
09:50 - 10:00	Greeting
	Motoo Nishihara (Senior Vice President, NEC Corp.)
10:00 - 10:10	Greeting
	Jun'ichi Sone (Senior Fellow, JST)

< Part I > From Invention to Practical Use of the Atomic Switch

(Chair: James K. Gimzewski)

(Chair: Tomonobu Nakayama)

10:10 - 10:50	Invention and Development of the Atomic Switch
	K. Terabe ¹ , T. Hasegawa ² , T. Nakayama ¹ , M. Aono ¹ (¹ MANA/NIMS,
	² Waseda Univ.)
10:50 - 11:30	Pathway to Atomic Switch based Programmable Logic
	T. Sakamoto ¹ , M. Tada ¹ , M. Miyamura ¹ , Y. Tsuji ¹ , R. Nebashi ¹ ,
	A. Morioka ¹ , N. Banno ¹ , K. Okamoto ¹ , N. Iguchi ¹ , H. Hada ¹ ,
	T. Sugibayashi ¹ , K. Terabe ² , T. Hasegawa ² , M. Aono ² (¹ NEC Corp.,
	² MANA/NIMS)
11:30 - 11:55	Atom-Switch FPGA Application for IoT Sensing System in Space
	H. Hihara (NEC Space Technologies, Ltd.)

11:55 - 12:10	Group Photo	
12:10 - 13:20	Lunch	
13:20 - 13:50	Poster Session with coffee	
< Part II > New	Developments of the Atomic Switch (Chair: Kazuya Terabe	:)
13:50 - 14:30	[Special Lecture]	
	Nanoscale Electrochemical Studies: How can We Use the Atomic Switch I. Valov ^{1,2} , T. Hasegawa ³ , S. Tappertzhofen ² , T. Tsuruoka ⁴ , M. Lübben ² , R. Waser ^{1,2} , M. Aono ⁴ (¹ Research Centre Jülich, ² RWTH-Aachen Univ., ³ Waseda Univ., ⁴ MANA/NIMS)	
14:30 - 14:55	 Development of Three-terminal Atomic Switches and Related Topics T. Hasegawa¹, T. Tsuruoka², C. Lutz^{1,2}, Q. Wang³, Y. Itoh², H. Tanaka⁴, T. Ogawa⁵, S. Watanabe⁶, S. Yamaguchi⁶, M. Aono² (¹Waseda Univ., ²MANA/NIMS, ³Lanzhou Uviv., ⁴Kyushu. Inst. Tech., ⁵Osaka Univ., ⁶Univ Tokyo) 	v.
14:55 - 15:20	 Artificial Synapses Realized by Atomic Switch Technology T. Tsuruoka¹, T. Ohno^{1,2}, A. Nayak^{1,3}, R. Yang^{1,4}, K. Terabe¹, T. Hasegawa^{1,5}, J. K. Gimzewski^{1,6}, M. Aono¹ (¹MANA/NIMS, ²Tohoku Univ., ³IIT-Patna, ⁴Huazhong Univ. Sci. Tech., ⁵Waseda Univ., ⁶UCLA) 	
15:20 - 15:35	Coffee Break	
	(Chair: Ilia Valov, Zdenka Kuncio	:)
15:35 - 16:00	Atom Switches for Neuroarchitectonics	
	J. K. Gimzewski ^{1,2} , A. Z. Stieg ² , R. Aguilera ² , K. Scharnhorst ² , E. C. Demis ² , H. O. Sillin ² , E. J. Sandouk ² , A. V. Avizienis ² , M. Aono (¹ MANA/NIMS, ² UCLA,)	2. 3 ¹
16:00 - 16:25	 Emerging Functionality of Neuromorphically Networked Structures T. Nakayama¹, R. Higuchi¹, Z. Kuncic², Y. Shingaya¹, J. K. Gimzewski^{1,3} M. Aono¹ (¹MANA/NIMS, ²Univ. Sydney, ³UCLA) 	,
16:25 - 16:50	Atomistic Simulations for Understanding Microscopic Mechanism of Atomic Switches	
	S. Watanabe, B. Xiao, W. Li (Univ. Tokyo)	
16:50 - 17:15	Atomic Switch Based Decision Making $S = L K_{inv}^{inv} T T_{inv}^{inv} I_{inv}^{inv} T L_{inv}^{inv} I_{inv}^{inv} T L_{inv}^{inv} I_{inv}^{inv} I_{inv}$	
	5. -J. KIM ⁻ , 1. ISURUOKa ⁻ , 1. Hasegawa ⁻ , M. Aono ⁻ , K. Terabe ⁺ , M. Aono ¹ (¹ MANA/NIMS ² Waseda Univ. ³ Tolyco Inst. Tash.)	
	IVI. AUTO (IVIATIVA/INTIVIS, IVIASCUA UTIIV., TOKYO HIST. TCCII.)	

Atomic Switch 2017

- 17:15 17:40 Nanoionic Devices for Physical Property Tuning and Enhancement
 T. Tsuchiya, T. Tsuruoka, K. Terabe, M. Aono (MANA/NIMS)
- 17:40 17:45 Closing Remarks Kazuya Terabe (MANA/NIMS)
- 18:00 20:00 Banquet (Banquet Hall "SUBARU", Annex 1F, Okura Frontier Hotel Tsukuba)

Steering Committee

- Gimzewski, James K. [Chair]
- Kuroki, Toshio
- Waser, Rainer
- Williams, Stan

Organizing Committee

- Aono, Masakazu [Chair]
- Hasegawa, Tsuyoshi
- Sakamoto, Toshitsugu
- Terabe, Kazuya
- Tsuchiya, Takashi
- Waser, Rainer

- Kishi, TeruoSone, Jun'ichi
- Welland, Mark
- Yamaguchi, Shu
- Gimzewski, James K.
- Nakayama, Tomonobu
- Sugibayashi, Tadahiko
- Tsuruoka, Tohru
- Valov, Ilia

Local Organizing Committee

- Aono, Masakazu
- Terabe, Kazuya [Co-chair]
- Tsuchiya, Takashi

- Nakayama, Tomonobu [Co-chair]
- Tsuruoka, Tohru
- Kobayashi, Michiko

Poster Session

P01 Development of Video Encoding using Atomic-Switch Based FPGA **T. Sakamoto**¹, M. Tada¹, M. Miyamura¹, X. Bai¹, Y. Tsuji¹, R. Nebashi¹, A. Morioka¹, N. Banno¹, K. Okamoto¹, N. Iguchi¹, H. Hada¹, T. Sugibayashi¹ (¹NEC Corp.) An Evaluation of Single Event Effect by Heavy Ion Irradiation on Atom Switch P02 ROM/FPGA K. Takeuchi¹, M. Tada², T. Sakamoto², H. Shindo¹, S. Kuboyama¹, A. Takeyama³, K. Suzuki¹ (¹JAXA, ²NEC Corp., ³QST) Solid-Polymer-Electrolyte-Based Atomic Switches **P03** T. Tsuruoka¹, K. Krishnan^{1,2}, S. R. Mohapatra^{1,3}, S. Wu^{1,4}, M. Aono¹ (¹MANA/NIMS, ²CSIR-CERI, ³NIT-Silchar, ⁴OHTZ) Psychological Memorization Model Demonstrated by Atomic Switches **P04 T. Ohno**^{1,2}, T. Hasegawa^{2,3}, T. Tsuruoka³, K. Terabe³, A. Navak^{2,4}, J. K. Gimzewski^{2,5}, M. Aono³ (¹Tohoku University, ²MANA/NIMS, ³Waseda Univ., ⁴IIT-Patra, ⁵CNSI/UCLA) Neuromorphic Atomic Switch Networks for Natural Computing P05 K. Scharmhorst¹, R. Aguilera¹, A. Stieg¹, J. K. Gimzewski^{1,2} (¹UCLA, ²MANA/NIMS) Investigation of Dynamic Phenomena in Polymer-coated Ag Nanowire Network **P06** R. Higuchi¹, Y. Shingaya¹, M. Li¹, Z. Kuncic², J. K. Gimzewski^{1,3}, M. Aono¹, T. Nakayama^{1,4} (¹MANA/NIMS, ²Univ. Sydney, ³CNSI/UCLA, ⁴Univ. Tsukuba) **P07** Conduction through Thermosenstive Networks **R.** G. Shrestra¹, R. Higuchi¹, Y. Shingaya¹, S. Samitsu², T. Nakayama¹ (¹MANA/NIMS, ²PMU/NIMS) Functionalized PANI Network Conductor towards Future Computation **P08** L. Qiao^{1,2}, R. Higuchi², Y. Shingaya², Y. Kato², K. Tanaka², T. Nakayama^{1,2} (¹Univ. Tsukuba, ²MANA/NIMS) MP-AFM Measurement of Metal and Polymer Nanowires as Basic Components of **P09** Neuromorphic Network System Y. Shingaya¹, R. Higuchi¹, M. Li¹, S. Endo², O. Kubo², M. Aono¹, T. Nakayama^{1,3} (¹MANA/NIMS, ²Osaka Univ., ³Univ. Tsukuba) **P10** 'Tug of War' Devices for Interconnection of Artificial Synapses C. Lutz^{1,2}, T. Hasegawa¹, T. Chikyo² (¹Waseda Univ., ²MANA/NIMS) Study of Atom Diffusion in Amorphous Structure with Neural Network Potentials P11 W. Li¹, Y. Ando², E. Minamitani¹, S. Watanabe^{1,3} (¹Univ. Tokyo, ²CD-FMat/AIST,

³CMI2/NIMS)

P12 Effects of the Composition of Ta_2O_5 Films on the Resistive Switching Properties of Ta_2O_5 -Based Atomic Switches

C. Mannequin^{1,2}, T. Tsuruoka², T. Hasegawa^{2,3}, M. Aono² (¹Univ. Tsukuba, ²MANA/NIMS, ³Waseda Univ.)

P13 Electrical-Pulse-Induced Resistivity Modulation in Pt/TiO₂₋/Pt Multilayer Device Relevant to Nanoionic-Based Neuromorphic Function

K. Kawamura¹, T. Tsuchiya², K. Terabe², T. Higuchi¹ (¹Tokyo Univ. Sci., ²MANA/NIMS)

P14 Surface Proton Conduction on Yttria-stabilized Zirconia Thin Film for Nanoionic Devices Application

M. Takayanagi¹, T. Tsuchiya², M. Minohara³, M. Kobayashi³, K. Horiba³, H. Kumigashira³, T. Higuchi¹ (¹Tokyo Univ. Sci. ²MANA/NIMS, ³KEK)

P15 Electrical Property of Nd_{0.6}Sr_{0.4}FeO₃ Thin Film Deposited by RF Magnetron Sputtering Method

W. Namiki¹, T. Tsuchiya², M. Minohara³, M. Kobayashi³, K. Horiba³, H. Kumigashira³, T. Higuchi¹ (¹Tokyo Univ. Sci., ²MANA/NIMS)

International Symposium on Atomic Switch 2017

Opening

Atomic Switch 2017

Opening address

Name (Title):	Masakazu Aono	
	(Director, MANA, NIMS)	
Affiliation:	National Institute for Materials Science (NIMS)	and
Address:	1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan	
Email:	AONO.Masakazu@nims.go.jp	
Home Page:	http://www.nims.go.jp/mana/about/director.html	

Greeting

Name (Title):	Kazuhito Hashimoto	
	(President, NIMS)	
Affiliation:	National Institute for Materials Science (NIMS)	19ter
Address:	1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan	
Email:	president@nims.go.jp	
Home Page:	http://www.nims.go.jp	

Greeting

Name (Title):	Motoo Nishihara	1 (23)
	(Senior Vice President, NEC Corp.)	
Affiliation:	NEC Corp.	ZASY
Address:	5-7-1 Shiba, Minato-ku, Tokyo 108-0014, Japan	
Email:		
Home Page:	http://jpn.nec.com	

Greeting

Name (Title):	Jun'ichi Sone	
	(Senior Fellow, JST)	
Affiliation:	Japan Science and Technology Agency (JST)	1251
Address:	4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan	
Email:	junichi.sone@jst.go.jp	
Home Page:	https://www.jst.go.jp	

International Symposium on Atomic Switch 2017

Oral Presentation

Presentation Title:	
Invention and Development of the Atomic Switch	
Authors:	
°Kazuya Terabe ¹ , Tsuyoshi Hasegawa ^{1,2} , Tomonobu	and a start of the
Nayakama ¹ , and Masakazu Aono ¹	
Affiliation:	
1. International Center for Materials Nanoarchitectonics	
(MANA), National Institute for Materials Science (NIMS),	
1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan	
2. Department of Applied Physics, Waseda University, 3-4-1	
Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan	
Email: TERABE.Kazuya@nims.go.jp	
	A BACK I

Abstract:

A great number of electronics devices are used in the information and communications equipment, and upgrading of that equipment largely depends on improving the performance of semiconductor devices, which are operated by the movement of electrons within semiconductors. Though semiconductor devices have seen remarkable progress with technological development in miniaturization and integration, it is currently feared that the progress is beginning to slow. Thus, it is also becoming essential to create devices that operate on a completely new set of principles.

Our invention of an atomic switch with a novel operating principle, using the movement of atom (ion), was serendipitous in a sense. In earlier studies, we were working on an experiment where atoms were arranged into lines in order to draw on a substrate by generating a high electric field at a tip of a scanning tunneling microscope's (STM) probe made of an electron and ion mixed conductor materials, and dripping metal atoms one at a time from the tip. In doing so, without forethought, we found that by controlling the voltage applied to the STM tip, A protrusion at that tip, consisting of a small amount of metallic atoms, could be grown and shrunk. Fig. 1 shows the growth and shrinkage of Ag atom protrusion at the STM tip of electron and Ag ion mixed conductor Ag₂S. The Ag protrusion at the tip grew and shrank reversibly when the polarity of V_s and magnitude of I_t were changed, in which V_s and I_t are a sample bias and tunneling current, respectively. The conditions of V_s and I_t were changed in the order of 1, 2, 1, 3, 4, and 3, and this sequence was

repeated three times in Fig.1.¹

We immediately came up with the idea of using these reversible processes for atomic-scale electrical switching. In order to examine the atomic switch idea, we cut off the feedback function of the STM so as to keep the height of the STM tip relative to the substrate constant, and observed a switching hysteresis. Based on this discovery of the interesting solid electrochemical phenomena on the atomic scale, thereafter, we have found various unique properties and valuable functions in developed atomic switches.²⁻⁴

K. Terabe, T. Nakayama, H. Hasegawa, M. Aono, J. Appl. Phys. **91**, 10110 (2002), [2] K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Riken Rev. **37**, 7 (2001), [3] K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature, **433**, 47 (2005), [4] K. Terabe, M. Aono, Oyo Butsuri, **85** 364 (2016) *in Japanese*.

Presentation Title:	
Pathway to Atomic Switch Based Programmable Logic	
Authors:	
°T. Sakamoto ¹ , M. Tada ¹ , M. Miyamura ¹ , X. Bai ¹ , Y. Tsuji ¹ , R.	26
Nebashi ¹ , A. Morioka ¹ , N. Banno ¹ , K. Okamoto ¹ , N. Iguchi ¹ , H.	
Hada ¹ , T. Sugibayashi ¹ , K. Terabe ² , T. Hasegawa ² , and M. Aono ²	
Affiliation:	to to de
1. System Platform Research Laboratories, NEC Corp., Tsukuba	
305-8501, Japan	
2. International Center for Materials Nanoarchitectonics (MANA),	
National Institute for Materials Science (NIMS), 1-1 Namiki,	
Tsukuba, Ibaraki 305-0044, Japan	10
Email: t-sakamoto@dp.jp.nec.com	

Abstract:

We have been developing atomic-switch [1] based FPGA [2]. Atom switch with a large ON/OFF conductance ratio, non-volatility, and small feature size is suitable for configuration switch in FPGA. The novel switch is composed of the solid electrolyte sandwiched between Cu and Ru. The conduction bridge is formed in the solid electrolyte by applied a positive voltage to the Cu electrode, resulting in the low resistive state (Fig. 1(a)).

ASIC has the highest performance and lowest power consumption but it has very low flexibility. Compared with ASIC, FPGA has better flexibility. Compared with CPU, FPGA has better energy efficiency. Atomic-switch based FPGA achieves both high-energy efficiency and high performance (Fig. 1(b)).

Fig. 1 (a) SRAM and pass transistor in conventional FPGA is replaced by resistive switch (Atomic switch), resulting in reducing circuit area and power consumption. (b) Various Si chips in terms of energy efficiency and versatility.

References:

[1] K. Terabe, et al., "Quantized conductance atomic switch", Nature 433, 47 (2005).

[2] M. Miyamura, et al., "0.5-V Highly Power-Efficient Programmable Logic using Nonvolatile Configuration Switch in BEOL", Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 236-239 (2015).

Presentation Title:

Atom-Switch FPGA Application for IoT Sensing System in Space

Authors:

°Hiroki Hihara¹

Affiliation:

1. NEC Space Technologies, Ltd.

Abstract:

The Internet of Things (IoT) has been envisioned as a fundamental infrastructure that will bring about useful information and knowledge resulting in efficiency and growth in industry and improved comfort and safety in human life. Sensors, networks, and information technology (IT) are designated as key technology elements to make IoT a practical knowledge framework. IoT is to be used for supporting so-called lifeline as energy supply, water works, traffic control, logistics, broadcasting, and telecommunication. Everything is to be connected through Machine to Machine (M2M) network anytime and anywhere to realize the IoT framework.

Space systems, such as satellites, can be identified as sensor nodes and relay nodes among IoT applications. It is integrated with ground systems, and wide range of collected information must be transmitted through the limited transmission capacity of existing network. Therefore, the extraction of useful data through signal processing using embedded processors on satellites is essential as shown in Fig. 1. Re-writable Field Programmable Gate Arrays (FPGAs) without configuration memories, as atom-switch FPGAs, are required for the purpose, because the most

demanded characteristics on satellites is a continuous operation in harsh environment with background radiation on orbit, and thus soft-error free FPGAs as atom-switch FPGAs are most promising devices for satellite applications.

Low power consumption is another demanding characteristics for realizing less heat dissipation indispensable to space applications operating in exoatmosphere, because heat dissipation path is limited within chassis conduction. We found that atom-switch FPGAs also have idealistic characteristics for this issue.

[1] http://www.nec.com/en/global/solutions/space/remote_sensing/

Presentation Title:

Nanoscale Electrochemical Studies: How can We Use the Atomic Switch

Authors:

°Ilia Valov¹, Tsuyoshi Hasegawa², Stefan Tappertzhofen¹, Tohru Tsuruoka², Michael Lübben¹, Rainer Waser¹, and Masakazu Aono²

Affiliation:

- 1. Research Centre Juelich, PGI-7 (Electronic Materials), 52425 Juelich, Germany
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: i.valov@fz-juelich.de

Abstract:

Understanding and controlling the processes of transfer of mass and charge at the nano- and sub-nanoscale is of primary importance for modern science and technology in fields such as nanoelectronics, nanoionics, energy conversion and storage, information technology etc. However, approaching atomic dimensions, material instabilities and instrumentation limits restrict the resolution and hinder more detailed insight. A significant step ahead in that respect has been initiated by studies on resistive switching memories and the invention of the atomic switch.

Fig. 1 Atomic switch used for ultra-high resolved electrochemical studies

In this contribution the use of the atomic switch for nanoscale, and even atomically resolved electrochemical studies will be demonstrated. It will be shown that properties of matter changes and the border between definitions for insulators, semiconductors and electrolytes blurs at low dimensions and even high-k materials such as SiO₂, Ta₂O₅, HfO₂ etc. can conduct ions at the nanoscale.

Case samples of potentiostatic and potentiodynamic electrochemical measurements using atomic switch will be highlighted. The role of the electrode materials and their electrocatalytic activity will be discussed. It will be shown that STM in atomic switch approach allows to neglect the electronic conductivity of the samples and enables the highest mass and charge resolution measurements.

Presentation Title:
Development of Three-terminal Atomic Switches and Related Topics
Authors:
°Tsuyoshi Hasegawa ^{1,2} , Tohru Tsuruoka ² , Carolin Lutz ¹ , Qi
Wang ² , Yaomi Itoh ² , Hirofumi Tanaka ³ , Takuji Ogawa ⁴ , Satoshi
Watanabe ⁵ , Shu Yamaguchi ⁵ , and Masakazu Aono ²
Affiliation:
1. School of Advanced Science and Engineering, Waseda
University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
2. MANA, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
3. Graduate school of Life Science and Systems Engineering,
Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku,
Kitakyushu, 808-0196, Japan
4. Graduate School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka, 560-0043, Japan
5. Graduate School of Science, University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-0033, Japan
Email: thasega@waseda.jp

Abstract:

Atomic switch has supra advantages over other nonvolatile switches, such as its higher on/off ratio, very low resistance in its on state, and the scalability to the atomic scale. The novel characteristics brought us to use the device as a programmable switch in FPGAs, as introduced by Sakamoto et al. in this symposium.

When we compare the two-terminal structure and the three-terminal structure, the three-terminal structure has an advantage over two-terminal structures in logic applications. Since that the electrical connection and disconnection in the three-terminal structure is controlled by a gate that is electrically separated by a signal line, i.e., a source and a drain, power consumption can be much decreased than that of the two-terminal atomic switches. Although the cell (switch) size becomes larger than that of two-terminal atomic switches, this advantage brought us to develop several three-terminal atomic switches. Figure 1 shows one type of the three-terminal atomic switches, which we call 'Atom Transistor'.^{1,2} As expected, it operates with very much small power consumption both in the standby mode and the operating mode. In the operation, it is required to limit the amount of metal cations diffusing to the channel region. Although it was the most difficult challenge in the development, we solved the issue. Moreover, we developed another type of three-terminal atomic switch based on the understanding.^{3,4} In the presentation, we will introduce the history and the present status of these three-terminal atomic switches.

[1] T. Hasegawa et al., APEX 4, 15204 (2011).

- [2] Q. Wang et al., Adv. Mater. 27, 6029 (2015).
- [3] Q. Wang et al., Appl. Phys. Lett. **102**, 233508 (2013).
- [4] C. Lutz et al., Nanoscale 8, 14031 (2016).

Fig. 1 Schematics of the atom transistor

Presentation Title:

Artificial Synapses Realized by Atomic Switch Technology

Authors:

^oTohru Tsuruoka¹, Takeo Ohno^{1,2}, Alpana Nayak^{1,3}, Rui Yang^{1,4}, Kazuya Terabe¹, Tsuyoshi Hasegawa^{1,5}, James K. Gimzewski^{1,6}, and Masakazu Aono¹

Affiliation:

- 1. MANA, NIMS, 1-1 Namiki, Tsukuba, Japan
- 2. AIMR, Tohoku University, 2-1-1 Katahira, Sendai, Japan
- 3. IIT-Patna, Amhara Road, Bihta, Patna, Bihar, India
- 4. Huazhong Univ. Sci. Tech., 1037 Luoyu Road, Huhan, China
- 5. Waseda University, 3-4-1 Okubo, Tokyo, Japan
- 6. UCLA, 570 Westwood Plaza, CA, USA

Email: TSURUOKA.Tohru@nims.go.jp

Abstract:

In addition to bi-resistive switching, the unique characteristics of the atomic switch are conductance quantization and synaptic behaviors. The atomic switch synaptic plasticity when the device conductance varies depending on the history of the switching events and the bias voltage applied at the time. We demonstrated that sulfide-based gap-type atomic switches could emulate two types of memorization in the human brain through the use of input pulse repetition time: short-term memory (STM) and long-term memory (LTM) modes [3]. This plasticity is influenced by the presence of air or moisture and depends on temperature [4]. An Ag/Ta₂O₅/Pt atomic switch also exhibits the STM and LTM behaviors under the application of input voltage pulses with varied repetition times [5]. The transition between STM and LTM over a wide time scale can also be achieved using the transport of oxygen vacancies in a Pt/WO_{3-x}/Pt device [5].

Our results show that individual atomic switches enable a new functional element suitable for the design of neural systems that can work without the poorly scalable software and preprograming employed in current CMOS-based neural networks. These artificial synapses will contribute to the achievement of next-generation neural computing systems.

Fig. 1 (a) Atomic switches work as an artificial synapse. (b) An Ag/Ta₂O₅/Pt device shows LTM under high input repetition rates. (c) A Pt/WO_{3-x}/Pt device shows the transition from STM to LTM depending on input strength.

[1] Ohno et al., Nature Mater. **10**, 591 (2011), [2] Nayak et al., Adv. Funct. Mater. **22**, 3606 (2012), [3] Tsuruoka et al., Nanotechnology **23**, 435705 (2012), [4] Yang et al., ACS Nano **6**, 9515 (2012); Nanotechnology **24**, 384003 (2013).

Presentation Title:

Atom Switches for Neuroarchitectonics

Authors:

^oJames K. Gimzewski^{1,2,3}, Adam Z. Stieg², Renato Aguilera³, Kelsay Scharnhorst³, Eleanor C. Demis³, Henry O. Sillin³, Eric J. Sandouk³, Audrius V. Avizienis³, and Masakazu Aono¹

Affiliation:

- 1. MANA, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- California NanoSystems Institute (CNSI), UCLA, 570 Westwood Plaza, Los Angeles, CA 90095, USA
 Department of Chemistry and Biochemistry UCLA 607
- 3. Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA

Email: gimzewski@cnsi.ucla.edu

Abstract:

Atomic switch-based devices are a base configuration for neuromorphic logic and memory. They are CMOS compatible and are comprised of directed self-assembled wiring with nanoscale synaptic-like junctions¹. The atomic switch is an electroionic circuit exhibiting multi-state switching and volatile memory capabilities similar to biological synapses through a bias-driven filamentary switching mechanism. The Atomic Switch Network (ASN) is a radically divergent architecture in which the individual atomic switches are interconnected in a network inspired by neuronal mechanisms in the brain^{2,3}. Operation of atomic switch networks leads to a class of emergent behaviors (constantly reconfiguring energetic potential, power law dynamics, and distributed spatiotemporal switching events). The distributed dynamics of the ASN make it a hardware candidate for reservoir computing, (RC). We will discuss ASN's from the single switch level up to network operation for RC. Finally we will provide an outlook of their operation as hybrid devices and also as three-dimensional brain-like embodiments.

References:

[1] E. Demis, R.C Aguilera, H.O. Sillin, E.J. Sandouk, K. Scharnhorst, M. Aono, A.Z. Stieg and J.K Gimzewski. Nanotechnology **26**, 204003 (2015).

[2] J.K. Gimzewski, A.Z. Stieg, V. Vesna, *Handbook of Science and Technology Convergence* DOI 10.1007/978-3-319-04033-2_74-1 (2015).

[3] E. Demis, R.C Aguilera, K. Scharnhorst, M. Aono, A.Z. Stieg, J.K Gimzewski, *Japanese Journal of Applied Physics* 55, 1102B (2016).

Fig. 1 (Left) Schematic representation of a single atomic switch. (Center) Scanning electron microscope image of an ASN device comprising individual atomic switch elements embedded within a network of highly interconnected silver wires. (Right) Self-organized nanowires integrated into a CMOS-compatible device platform with 120 electrodes.

Presentation Title: Emerging Functionality of Neuromorphic Networked Structures Authors: °Tomonobu Nakayama^{1,2}, Rintaro Higuchi¹, Yoshitaka Shingaya¹, Zdenka Kuncic³, James K. Gimzewski^{1,4}, and Masakazu Aono¹ Affiliation: 1. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Japan 2. Graduate School of Pure and Applied Sciences, University of Tsukuba, Japan 3. School of Physics, University of Sydney, Australia 4. California Nano System Institute (CNSI), UCLA, USA **Email:** nakayama.tomonobu@nims.go.jp

Abstract:

As an emerging functionality of neruromorphically networked structures, we report associative memorization, which is considered to be a promising functionality towards future computation. In this presentation, we discuss three important features of the networks, such as a "small-world" property, existence of long-term/short-term memorization behaviors and 1/f characteristics, through our nano- and macro-scale electrical measurements, and finally leading us to propose brain-type computation for future information technology.

We prepared inorganic/organic neuromorphic nanowire networks of doped poly-aniline nanowires (PANI-NWs) and sliver nanowires (Ag-NWs) by wet-chemical methods and by drop-casting or spin-coating them onto insulating substrates such as mica and SiO₂. In the case Ag nanowires, about 1-nm thick insulating layer of polyvinylpyrrolidone (PVP) was formed over the surface of each nanowire. Then, we used multiple-probe scanning probe microscope (MP-SPM) [1] and related techniques to measure electrical properties of the PANI- and Ag-NW networks.

The resistances measured for the PANI nanowire networks indicated "small-world" characteristics of the networks [2]. The Ag nanowire network was highly resistive (OFF-state) because the thin insulating PVP layer prevented metal to metal contacts between Ag nanowires. Interestingly, the resistance of the Ag-NW network was orders of magnitude lowered by an application of appropriate voltages across the network. The low-resistance state (ON-state) returned to the OFF-state after some retention time, indicating the network itself can memorize information to some extent. Also, the Ag nanowire networks show 1/f fluctuation as a result of ON-OFF switching phenomena and dynamic fluctuation of current paths as confirmed by both experiments and simulations. We propose and demonstrate that the above features can be devised to associative memory devices for future computation.

References:

[1] T. Nakayama, O. Kubo, Y. Shingaya, S. Higuchi, T. Hasegawa, C.-S. Jiang, T. Okuda, Y. Kuwahara, K. Takami, and M. Aono, "Development and Application of Multiple-Probe Scanning Probe Microscopes", Advanced Materials **24**, 1675-1692 (2012).

[2] D. J. Watts and S. H. Strogatz, "Collective dynamics of 'small-world' networks", Nature **393**, 440-442 (1998).

Presentation Title:	
Atomistic Simulations for Understanding Microscopic Mechanism or	f Atomic Switch
Authors:	
°Satoshi Watanabe ^{1,2} , Bo Xiao ^{1,3} , and Wenwen Li ¹	
Affiliation:	
1. Department of Materials Engineering, The University of Tokyo,	1000
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan	12 and 1
2. Center for Materials Research by Information Integration	
(CMI ²), National Institute for Materials Science (NIMS), 1-2-1	
Sengen, Tsukuba, Ibaraki 305-0047, Japan	
3. School of Chemistry and Chemical Engineering, Yantai	
University, Yantai 264005, China	
Email: watanabe@cello.t.u-toyko.ac.jp	
Abstract	

Abstract:

We performed simulations aiming at obtaining atomistic understanding on the behaviors of atomic switches. As an example, we examined Cu/amorphous-Ta₂O₅/Pt heterostructure [1]. Simulations within the density functional theory (DFT) reveals that single Cu chains in Ta₂O₅ cannot work as conductive filaments (CFs), while Cu nanowires with a diameter of three atoms or larger can work as CFs. The stability of the Cu nanowires has been checked by ab initio molecular dynamics. We also discuss the difference in the atomistic features between Cu/Ta₂O₅ and Pt/Ta₂O₅ interfaces: In the former, considerable number of interface Cu atoms tend to migrate to the amorphous Ta_2O_5 layer, while similar behavior is not seen in the latter [2].

In addition, we describe our attempt to construct simplified neural network (NN) interatomic potentials [3] for simulations of Cu migration behavior in amorphous-Ta₂O₅ with achieving computation speed and reliability simultaneously. The structures and data for the NN training are obtained using DFT. The pathways and barrier energies for Cu diffusion calculated using the NN potential agree well with those obtained from DFT calculations [4]. This part of the present works was partly supported by the Support Program for Starting up Innovation hub from Japan Science and Technology Agency (JST), and CREST-JST, Japan.

References:

[1] B. Xiao, T. Gu, T. Tada, and S. Watanabe, J. Appl. Phys. 115, 034503 (2014). [2] B. Xiao and S. Watanabe, ACS Appl. Mater. Interfaces 7, 519 (2015).

[3] J. Behler and M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401.

[4] W. Li, Y. Ando, and S. Watanabe, submitted.

Fig. 1 (Left) Schematics of Cu conductive filaments obtained in our simulations. (Right) Corresponding local density of states At the Fermi level.

Presentation Title:	
Atomic Switch Based Decision Making	
Authors:	
°Song-Ju Kim ¹ , Tohru Tsuruoka ¹ , Tsuyoshi Hasegawa ^{1,2} , Masashi	
Aono ^{3,4} , Kazuya Terabe ¹ , and Masakazu Aono ¹	
Affiliation:	
1. MANA, NIMS, Ibaraki 305-0044, Japan	tent tent
2. Department of Applied Physics, Waseda University, Tokyo,	i = I
169-8555, Japan	
3. Earth-Life Science Institute, Tokyo Institute of Technology,	
Tokyo 152–8550, Japan	
4. PRESTO JST, Saitama 332-0012, Japan	
Email: KIM.Songju@nims.go.jp	• • • M

Abstract:

We considered a popular decision-making problem studied in the context of reinforcement learning, the multi-armed bandit problem (MAB); the problem of finding, as accurately and quickly as possible, the most profitable option from a set of options that gives stochastic rewards. These decisions are made as dictated by each volume of precipitated metal atoms, which is moved in a manner similar to the fluctuations of a rigid body in a tug-of-war game.

The "tug-of-war (TOW) dynamics" of the atomic switch-based decision maker (ASDM) exhibits higher efficiency than conventional reinforcement-learning algorithms. We show analytical calculations that validate the statistical reasons for the ASDM to produce such high performance, despite its simplicity. The proposed scheme will open up a new direction in physics-based analog-computing paradigms, which will include such things as "intelligent nanodevices" based on self-judgment.

- [2] S. -J. Kim, M. Aono, & E. Nameda, New J. Phys. 17, 083023 (2015).
- [3] M. Naruse S. -J. Kim, et al., Sci. Rep. 5, 13253 (2015).
- [4] S. -J. Kim, M. Naruse, M. Aono, M. Ohtsu & M. Hara, Sci. Rep. 3, 2370 (2013).

Presentation Title: Nanoionic Devices for Physical Property Tuning and Enhancement Authors: °Takashi Tsuchiya¹, Tohru Tsuruoka¹, Kazuya Terabe¹, and Masakazu Aono¹ Affiliation: 1. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan Email: TSUCHIYA.Takashi@nims.go.jp

Abstract:

Nanoionic devices have been developed to generate novel functions overcoming limitations of conventional materials synthesis and semiconductor technology.^[1,2] Various physical properties can be tuned and enhanced by local ion transport near the solid/solid interface. Two electronic carrier doping methods can be used to achieve extremely high-density electronic carriers: one is electrostatic carrier doping using an electric double layer (EDL); the other is electrochemical carrier doping using a redox reaction. Atomistic restructuring near the solid/solid interface driven by a DC voltage, namely, interface nanoarchitechtonics, has huge potential (Figure 1). For instance, the use of EDL enables high-density carrier doping in potential superconductors, which can hardly accept chemical doping, in order to achieve room-temperature superconductivity. Optical bandgap and photoluminescence can be controlled for various applications including smart windows and biosensors. *In situ* tuning of magnetic properties is promising for low-power-consumption spintronics.

Fig. 1 Schematic illustration of comparing electronic devices, conventional material synthesis, and nanoionic devices.

References:

[1] T. Tsuchiya et al. Jpn. J. Appl. Phys. 55 (2016) 1102A4.

[2] K. Terabe et al. Nanoscale 8 (2016) 13873.

International Symposium on Atomic Switch 2017

Poster Presentation

P01: Presentation Title:

Demonstration of Video encoding using atomic-switch based FPGA

Authors:

^oT. Sakamoto¹, M. Tada¹, M. Miyamura¹, X. Bai¹, Y. Tsuji¹, R. Nebashi¹, A. Morioka¹, N. Banno¹, K. Okamoto¹, N. Iguchi¹, H. Hada¹, and T. Sugibayashi¹

Affiliation:

1. System Platform Research Laboratories, NEC Corp., Tsukuba 305-8501, Japan

Abstract:

We demonstrate the video encoding using atomic-switch based FPGA. A 64x64 programmable-logic cell array includes a 9.2-Mbit atomic switch as the routing switch and configuration memory of LUT (Fig. 1). Each cell has two 4-input LUT and a total number of LUTs is 8.2k which correspond to 20k-ASIC gate.

The encoding algorism is implemented on atomic-switch FPGA. We develop a mapping tools, where the configuration data is generated from RTL code of the encoding algorism. The video data is introduced and encoded in the atomic-switch based FPGA. Then, the encoded stream data is decoded by using PC, showing the video image on the display (Fig. 2). FPGA performs 30 flames/sec of 8bit-gray scale video image with 640x480 pixels.

Fig. 1 64x64 atomic-switch based FPGA.

P02: Presentation Title:	
An Evaluation of Single Event Effect by Heavy Ion Irradiation on	Atom Switch ROM / FPGA
Authors:	
^o K. Takeuchi ¹ , M. Tada ² , T. Sakamoto ² , H. Shindo ¹ , S.	
Kuboyama ¹ , A. Takeyama ³ , T. Ohshima ³ , and K. Suzuki ¹	
Affiliation:	Constant and the second second
1. Research and Development Directorate, Japan Aerospace	No a reality
Exploration Agency (JAXA), Tsukuba, Japan	A CONTRACT
2. System Platform Research Laboratories, NEC Corp.,	6.0
Tsukuba, Japan	
3. National Institutes for Quantum and Radiological Science and	Testar.
Technology (QST), Chiba, Japan	
Email: takeuchi.kozo@jaxa.jp	

Abstract:

"Normally-off computing" featuring a next generation non-volatile memory, which enables to shut the power down whenever not being used, is one of the most promising methodologies to reduce the power consumption in LSI and electronic devices [1]. In this work, we investigate a radiation tolerance of the new memory to achieve "Normally-off computing" in aerospace. NanoBridge (a.k.a. Atom switch) as the nonvolatile memory/switch is subject to be irradiated in a radiation facility, and SEU cross-section against high LET heavy ion was evaluated.

The radiation tolerance of both Atom switch ROM and CAS (complementary atom switch) FPGA were evaluated by using the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) in the National Institutes for Quantum and Radiological Science and Technology (QST). Atom switch ROM and CAS FPGA were initially developed by LEAP (Low-power electronics Association & Project) and now NEC continues to develop them as NanoBridge[®]. The chips were irradiated by Xe ion. LET (Linear energy transfer) of Xe was calculated to be 68.9 [MeV/(mg/cm²)] at Si surface [2].

No SEU (Single Event Upset or bit flip) was observed through experiment. Atom switch was programmed for either ON or OFF state and validated before and after the radiation test by LSI tester. Since actual cell area of Atom switch is 1.5×10^{-11} [cm²], about 19 or 122 particles were expected to hit somewhere in Atom switches on ROM or FPGA respectively. Figure 1 shows estimated SEU cross section against Xe ion which has 69.8 [MeV/(mg/cm²)] in LET. In-house Cf-252 data [3] was also plotted in 30 [MeV/(mg/cm²)] in Fig. 1. It was revealed that SEU cross sections against heavy ions are much smaller than the Atom switch cell itself irrespective of voltage conditions or cell states.

 K. Ando, FED Journal, vol. 12, no. 4, pp. 89-95, 2001.
 http://www.srim.org/
 K. Takeuchi et al., poster material, MEWS28, Oct., 2015

P03: Presentation Title:

Solid-Polymer-Electrolyte-Based Atomic Switches

Authors:

^oTohru Tsuruoka¹, Karthik Krishnan^{1,2}, Saumya R. Mohapatra^{1,3}, Shouming Wu^{1,4}, and Masakazu Aono¹

Affiliation:

- 1. MANA, NIMS, 1-1 Namiki, Tsukuba, Japan
- 2. CSIR, Central Electrochemical Research Institute, Karaikudi, India
- 3. National Institute of Technology Silchar, Assam, India
- 4. Quzhou Hi-Tech Industrial Development Zone, Zhejiang, China

Email: TSURUOKA.Tohru@nims.go.jp

Abstract:

We have demonstrated that the atomic switch operation can be realized using a solid polymer electrolyte (SPE). Ag/SPE/Pt devices, in which an Ag-salt incorporated polyethylene oxide (Ag-PEO) film is used as SPE, showed bipolar resistive switching with a high ON/OFF resistance ratio under bias voltage sweeping [1]. The observed switching behavior is found to result from formation and dissolution of an Ag metal filament inside the SPE film, as in the case of inorganic solid-electrolyte-based atomic switches. We subsequently succeeded in fabricating a cross-point structured cell on a plastic substrate using an inkjet-printed Ag-PEO film, and obtained stable switching characteristics when the substrate was bent [2]. This result indicates that the SPE-printed atomic switch could be a promising candidate for flexible switch/memory applications.

Recently, successful *in situ* optical microscopy and *ex situ* SEM observations were made of conducting filament growth behavior in a planar structure [3]. It was found that the filament growth is significantly influenced by the properties of the polymer matrix, such as its crystallinity and ionic conductivity, which are determined by the addition of metal salts, and by changing experimental parameters such as the compliance current and the voltage sweep rate. Moreover, highly reproducible conductance quantization was demonstrated in an Ag/PEO/Pt structure, and a comparison between the experimental and theoretical results provides additional insight that allows a fundamental understanding of resistive switching behavior, as well as quantized conductance variations.

Fig. 1 Conductance quantization observed in a PEO-based atomic switch

[1] Wu et al., Adv. Funct. Mater. 21, 93 (2011).

- [2] Mohapatra et al., AIP Ad. 2, 022144 (2012); J. Mater. Chem. C 3, 5715 (2015).
- [3] Krishnan et al., Adv. Mater. 28, 640 (2016); Nanoscale 8, 9009 (2016); Jpn. J. Appl. Phys.

[4] Krishnan et al., Adv. Funct. Mater., published online (2017); Jpn. J. Appl. Phys. (in press).

⁵⁵, 06GK02 (2016).

P04: Presentation Title:

Psychological Memorization Model Demonstrated by Atomic Switches

Authors:

°Takeo Ohno^{1,2,4}, Tsuyoshi Hasegawa^{3,4}, Tohru Tsuruoka⁴, Kazuya Terabe⁴, Alpana Nayak^{4,5}, James K. Gimzewski^{4,6}, and Masakazu Aono⁴

Affiliation:

- 1. WPI-AIMR, Tohoku University, Sendai, Japan
- 2. PRESTO, JST, Kawaguchi, Japan
- 3. Dep. Applied Physics, Waseda University, Shinjuku, Japan
- 4. MANA, NIMS, Tsukuba, Japan
- 5. Dep. Physics, Indian Institute of Technology-Patna, India
- 6. California NanoSystems Institute, UCLA, Los Angeles, USA
- Email: t-ohno@wpi-aimr.tohoku.ac.jp

Abstract:

Atomic switch is generally known as nanoionics switching memory devices that operate by controlling the movement of metallic cations/atoms and their reduction/oxidation processes to make conductive paths. At the beginning stage of this research, an ON/OFF switching operation with quantized conductance was reported [1]. After that, we have found that atomic switches possess novel characteristics, such as learning ability depending on the history of input signals [2,3] and time-dependent operation similar to that of a biological synapse [4–6]. In addition, several fascinating behaviors, psychological human memories, have been demonstrated by atomic switches. The atomic switch exhibits time-dependent electrical conductance, which enables a formation of the human memory such as sensory memory, short-term memory and long-term memory [4,7]. On the basis of these results, multi-store memorization model and forgetting curve of human memory in psychology were demonstrated. These novel behaviors of atomic switches will enable the development of beyond von-Neumann architecture. Recently, in order to improve the psychological and neuromorphic operation, we are fabricating a gapless-type atomics switch with a nanometer-thick metallic oxide film as an ionic conductor [8].

Fig. 1 (left) The psychological model of human memory proposed by Atkinson and Shiffrin. (right) Simplified memorization model in the atomic switch, which was inspired by the multistore model.

- [1] K. Terabe et al., Nature 433, 47-50 (2005).
- [2] T. Hasegawa et al., Advanced Materials 22, 1831–1834 (2010).
- [3] T. Hasegawa et al., Applied Physics A 102, 811–815 (2011).
- [4] T. Ohno et al., Nature Materials 10, 591-595 (2011).
- [5] A. Nayak et al., Advanced Functional Materials 22, 3606–3613 (2012).
- [6] T. Tsuruoka et al., Nanotechnology 23, 435705 (2012).
- [7] T. Ohno et al., *Applied Physics Letters* **99**, 203108 (2011).
- [8] T. Ohno et al., Applied Physics Letters 106, 173110–1–4 (2015).

International Center for Materials Nanoarchitectonics (MANA), NIMS

P05: Presentation Title:

Neuromorphic Atomic Switch Networks for Natural Computing

Authors:

Kelsey Scharnhorst¹, Renato Aguilera¹, ^oAdam Stieg^{2,3}, and James Gimzewski^{1,2,3}

Affiliation:

- Department of Chemistry and Biochemistry, UCLA, 607 1 Charles E Young Dr E, 90095, Los Angeles, CA, USA
- California NanoSystems Institute (CNSI), UCLA, 570 2. Westwood Plaza, Building 114, 90095, Los Angeles, CA, USA
- 3. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: stieg@cnsi.ucla.edu

Abstract:

Attempts to realize a low-power, dynamically complex system for computation become imperative as the limits of CMOS technology are approached. Biological brains exist as inspiring natural system that hold an enormous computational power via information processing, storage and logic while only requiring small amounts of energy. Utilizing nanoarchitectonics, or a mixture of top-down and bottom-up methods, we fabricate highly interconnected atomic switch networks (ASNs) that structurally resemble neuronal networks (Figure 1)^{1,2}. Individual elements consist of a metal insulator metal (MIM) junction that switches ON/OFF with applied bias. These purpose-built systems exhibit the collective interaction of nonlinear circuit elements with one another, leading to behaviors more complex than those of individual elements.³ Emergent

Fig. 1 SEM image of an atomic switch network (Scale bar = 50μm)

behaviors include spatially and temporally distributed switching, long and short term memory, and nonlinear transformation of information into higher dimensional space. These emergent behaviors make ASNs suitable for alternative natural computing paradigms, or computing inspired by nature.⁴ Specifically, our group specializes in the experimental implementation of reservoir computation using the ASN as a complex physical platform for this paradigm.⁵

References:

[1] A.V. Avizienis, C. Martin-Olmos, H.O. Sillin, M. Aono, J.K Gimzewski and A.Z. Stieg. Crystal Growth & Design 13, 465 (2013).

[2] E.C. Demis, R. Aguilera, H.O. Sillin, K. Scharnhorst, E.J. Sandouk, M. Aono, A.Z. Stieg and J.K. Gimzewski. Nanotechnology 26, 204003 (2015).

[3] A.Z. Stieg, A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, M. Aono and J.K.Gimzewski. Advanced Materials 24, 286 (2012).

[4] E.C. Demis, R. Aguilera, K.S. Scharnhorst, M. Aono, A.Z. Stieg and J.K. Gimzewski. Jpn. J. Appl. Phys. 55, 1102B2 (2016).

[5] H.O. Sillin, R. Aguilera, H.H. Shieh, A.V. Avizienis, M. Aono, A.Z. Stieg and J.K. Gimzewski. Nanotechnology 38, 384004 (2013).

P06: Presentation Title:

Investigation of dynamic phenomena in polymer-coated Ag nanowire network

Authors:

^oRintaro Higuchi¹, Yoshitaka Shingaya¹, Ming Li¹, Zdenka Kuncic², James K. Gimzewski^{1,3}, Masakazu Aono¹, and Tomonobu Nakayama^{1,4}

Affiliation:

- 1. WPI-MANA/NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- 2. University of Sydney, Camperdown, NSW 2006, Australia
- 3. CNSI/UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA
- 4. University of Tsukuba, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: HIGUCHI.Rintaro@nims.go.jp

Abstract:

Neuromorphic circuits composed of electronic devices are required to realize brain-like information processing such as learning and recognition which are observed in a biological system. "Atomic switches" have attracted attention as the materials for mimicking the functions of synapses.[1,2] Recently atomic switch networks have been studied for generating the neuromorphic structure and function by interconnecting numerous atomic switches each other.[3] However the phenomena occurring in the network have yet to be revealed. In this study, we analyze the fluctuation observed in the polymer-coated Ag nanowire (pc-AgNW) network, one of the atomic switch networks, for understanding the network dynamics.

Scanning electron microscopy (SEM) revealed that AgNWs formed a random network structure on the substrate (Fig. 1a). The spontaneous fluctuation in output current was observed when the constant voltage was applied to pc-AgNW network. Figure 1b shows a typical power spectral density (PSD) of current signal obtained by fast Fourier transform. The PSD followed the inverse of frequency, which behavior is well-known as 1/f noise. It was found that the exponent of 1/f (slope of PSD) changes with the

Fig. 1 (a) SEM image of AgNW network. The inset shows optical micrograph of double probes and sample. Scale bar = 10 mm. (b) PSD of measured current.

conductance of network, and expected that this behavior should correlate to the network dynamics.

References:

[1] K. Terabe et al., Nature 433, 47 (2005).

[2] T. Ohno et al., Nat. Mater. 10, 591 (2011).

[3] A. V. Avizienis et al., PLoS One 7, e42772 (2012).

P07: Presentation Title:

Conduction through Thermosensitive Networks

Authors:

[°]Rekha Goswami Shrestha¹, Rintaro Higuchi¹, Yoshitaka Shingaya¹, Sadaaki Samitsu², and Tomonobu Nakayama¹

Affiliation:

- 1. Nano Functionality Integration Group, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Separation Functional Materials Group, Polymer Materials Unit, Advanced Key Technologies Division, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: Goswami.Shrestharekha@nims.go.jp

Abstract:

A gel formed in surfactant mixture possesses entangled networks. An incorporation of polymer into this gel retains these entangled networks. This incorporation of polymer in surfactant mixture enhances rheological properties of networks formed by surfactant mixtures only: like viscosity, elasticity and relaxation time as confirmed by rheological measurements. The rheological property of both gels is dependent on concentration of components, temperature. The polymer-incorporated gel possesses enhanced conducting properties. Measurements show that the conductivity is sensitive to temperature, concentration of components. Interesting temperature dependent potential and current distribution pattern were observed through the network in the matrix of gel. These temperature dependent pattern were assigned to the temperature induced structural transformation in the gel.

Fig. 1 Self-Standing Conducting Gel (above), and TEM images of the gel at different temperatures (below).

P08: Presentation Title:

Functionalized PANI Network Conductor towards Future Computation

Authors:

^oLi Qiao^{1,2}, Rintaro Higuchi², Yoshitaka Shigaya², Yasuko Kato², Keiko Tanaka², and Tomonobu Nakayama^{1,2}

Affiliation:

- 1. University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: LI.qiao@nims.go.jp

Abstract:

The memristive resistor has been a long time candidate for the artificial neural network as it has similar short-term plasticity and long-term potentiation as neuro synapse¹. Recent works on resistive switching access memory² give the confidence to achieve computation on the memristive device. Most efforts have been worked on regular resistor network which needs complex lithographic technology². Here we propose a simple approach with functionalized polyaniline complex network. PANI is a widely used conductive polymer which is flexible and stable in the air but does not have switching behavior. 1/f noise measurement shows PANI network is scale-free, which has also been found in our brain³. We firstly functionalized PANI with gold nanoparticles(GNP) to form GNP/PANI fibers. GNP/PANI film has been proved to have bistable switching behavior. Our I-V measurement on GNP/PANI nanofibers shows similar bistable switch behavior. Test of the memristive efficiency on our complex network is on the going.

Fig. 1 (a) Optical image of smaple with two probes. (b) 1/f noise measurent result versus volatge with different probe distances.

References:

J. Joshua Y., Dmitri B. S. & Duncan R. S. Memristive devices for computing. *Nature Nanotec.* 8, 13–24 (2013).
 Kim, W. et al. Multistate memristive tantalum oxide devices for ternary arithmetic. *Sci.* Rep. 6, 36652 (2016).
 Victor M. E. et al. Scale-free brain functional networks. *Phys. Rev. Lett.* 94, 018102 (2005).

International Symposium on Atomic Switch 2017

P09: Presentation Title:

MP-AFM Measurement of Metal and Polymer Nanowires as Basic Components of Neuromorphic Network System

Authors:

°Yoshitaka Shingaya¹, Rintaro Higuchi¹, Ming Li¹, Satoshi Endo², Osamu Kubo², Masakazu Aono¹, and Tomonobu Nakayama^{1,3}

Affiliation:

- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- 2. Osaka University, Osaka 565-0871, Japan
- 3. University of Tsukuba, Ibaraki 305-0005, Japan
- Email: SHINGAYA.Yoshitaka@nims.go.jp

Abstract:

Neuromorphic network systems are fascinating research target, since they have potential to realize huge parallel computing with low power consumption. We have constructed network system with nanomaterials such as polyaniline nanofibers or polymer coated Ag nanowires (Fig.1) and electrical property of the network system was investigated. To understand electrical property of the network, measurement of electrical property of each component such as single nanowire and single nanowire junction is very important. We applied multiple-probe atomic force microscope (MP-AFM) for that measurement. The MP-AFM which we have developed, has independently driven four probes and four-probe electrical measurement is possible at designated positions with nanoscale precision on a sample. Figure 2 shows overlapped AFM image of Ag nanowires obtained simultaneously with four probes. Four probe electrical measurements were carried out with probe configuration as shown in the figure. Slightly larger electrical resistivity than that of bulk Ag was obtained. Electrical properties of single nanowire junctions were also observed with MP-AFM.

Fig. 1 (a) SEM image of Ag nanowire network. (b) SEM imgae of isolated Ag nanowires on SiO_2 substrate.

Fig. 2 AFM image obtained with four probes simultaneously. Four dots show probe position for four probe electrical measurement.

P10: Presentation Title: 'Tug of War' Devices for Interconnection of Artificial Synapses Authors: °Carolin Lutz^{1,2}, Tsuyoshi Hasegawa¹, and Toyohiro Chikyow² Affiliation: 1. Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan 2. National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044 Japan Email: carolin.lutz@suou.waseda.jp

Abstract:

Neuromorphic systems are an alternative for common Von Neumann computers as they should one day achieve a higher processing power on succeeded in demonstrating the function using a solid-state three-terminal device [2], based on a Ag_2S gap-type atomic switch, as shown in Fig. 1. In the 'Tug of War' operation, the growth of the right Ag filament pulls back the left Ag filament to the center Ag_2S electrode. This operation becomes possible when the total volume of Ag in the system is limited.

'Tug of War' elements are promising candidates for CMOS-free neuromorphic networks, however the first devices showed problems such as cluster formation within the gap-material. We found that this can be avoided using electronically by conductive materials with low

Fig. 1 Schematic of common atomic switches and the special Tug of War processing. a) A filament grows when a bias is applied. b) in common atomic switches, filaments only shrink when a bias of opposite sign is applied. c) In Tug of War operation, however, a filament will shrink, when a new filament is grown towards the second counter electrode. This is similar to neuronal connections being weakened when an opposing information is learned.

ionic conductivity, such as π -conjugated polymers, independent of being n- or p-type [3]. The main goal of this study is to make these devices ready for

implementation in the first CMOS-free networks. For this we optimize the gap-material and sample design and do the first systematic data collection for this new technology. We analyzed different π -conjugated polymers, such as the n-type polymer ActiveInk N2200, and the p-type polymers P3EHT and P3HT showing much lower ion conductivity compared to the previously used PEO+BTOE. P3HT with very low chain length is especially promising for this application. Furthermore, we added a channel structure to our device design to better control the electric field and by this the direction of Ag-filament growth within the gap-material. The device fabrication was mainly done using electron beam lithography and electron beam deposition. The polymers are deposited by spin coating. In the experiments, we applied a bias voltage to the counter electrodes using an IV measurement system and switch the 'Tug of War' resistive switch alternatingly between the two counter electrodes as schematically depicted in Fig. 1. The technology will be utilized when 'Tug of War' is implemented in first non-hybrid CMOS-free neuromorphic systems.

[1] S.-J. Kim, M. Aono, M. Hara, BioSystems 101, 29 (2010).

[2] C. Lutz, T. Hasegawa, T. Chikyow, *Nanoscale* **21**, 613 (2016).

[3] C. Lutz, T. Hasegawa, T. Tsuchiya, C. Adelsberger, R. Hayakawa, T. Chikyow, submitted to JJAP.

P11: Presentation Title:

Study of Atom Diffusion in Amorphous Structures with Neural Network Potentials

Authors:

°Wenwen Li¹, Yasunobu Ando², Emi Minamitani¹, and Satoshi Watanabe^{1,3}

Affiliation:

- 1. Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
- Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
 Email: wenwen li@cello.t.u-tokyo.ac.jp

Abstract:

Theoretical study of metal atom diffusion in amorphous insulator layers is important to understand the mechanism of atomic switches. Reliable computational methods like density functional theory (DFT) are capable of clarifying the atomic diffusion behavior, but require heavy computation.

In this study, we demonstrate that two methods based on the neural network (NN) interatomic potential [1] can be used to study the atomic diffusion in amorphous materials. The first one is the simplified NN potential that focuses on only diffusing atoms. We have investigated the single Cu atom diffusion paths and activation energies in amorphous Ta_2O_5 (*a*- Ta_2O_5) with this method. The second one is the high-dimensional NN potential [1]. Using this method together with nudged elastic band method and molecular dynamics, we have characterized Li diffusion in amorphous Li₃PO₄. Figures 1 and 2 show examples of calculation results obtained using the first and second methods, respectively. From these figures, we can see that both the first and second NN potential methods give good agreement with DFT calculations.

Fig. 1 Energy profile along a Cu diffusion path in amorphous Ta_2O_5 calculated by DFT and simplified NN potential.

Fig. 2 Time evolution of mean square displacement of Li atoms in amorphous Li_3PO_4 in molecular dynamics simulation.

[1] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).

P12: Presentation Title:

Effects of the composition of Ta_2O_5 films on the resistive switching properties of Ta_2O_5 based atomic switches

Authors:

°Cedric Mannequin^{1,2}, Tohru Tsuruoka², Tsuyoshi Hasegawa^{1,3}, and Masakazu Aono²

Affiliation:

- 1. Graduate School of Pure and Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan.
- 2. MANA, NIMS, 1-1 Namiki, Tsukuba 305-0044, Japan
- 3. Department of Applied Physics, Waseda University, 3-4-1 Okuba, Shinjuku-ku, Tokyo, 169-8555, Japan

Email: mannequin.cedric.ga@u.tsukuba.ac.jp

Abstract:

Resistive switching memory based on cation migration in a thin oxide film is considered as a good candidate for next generation, non-volatile memory applications, thanks to their promising properties such as high speed, low power consumption, and high compatibility with CMOS technologies, ensured by a basic metal/insulator/metal (MIM) structure [1]. Because of its similarity to the operating mechanism of 'gap-type atomic switch' [2], cation-migration- based MIM cells can be referred to as 'gapless-type atomic switch' [3]. Here, we present how the oxide film composition affects the switching behavior, in relation to moisture absorption from

the ambient surrounding [4,5] and the cell configurations such as the electrode material.

Cu/Ta₂O₅/metal cells were investigated, in which the Ta₂O₅ film was formed by electron-beam deposition (EB) or RF sputtering (SP). XRD and XRR revealed an amorphous nature for both films and a lower film density in the EB film. FT-IR spectra exhibited the existence of peroxo species and a large number of absorbed water in the EB film. XPS analyses revealed oxygen rich composition for both films and a higher O/Ta ratio in the EB film.

Figure 1 shows the variation of the SET (from the OFF state to the ON state) and RESET (form the ON state to the OFF state) voltages with changes in the ambient atmosphere, measured for $Cu/Ta_2O_5/Pt$ cells.

Fig. 1 SET and RESET voltages of Cu/ Ta_2O_5/Pt cells for different ambient pressures.

The SET process corresponds to the formation of a Cu filament by precipitation on the Pt electrode, while the RESET process is attributed to the dissolution of the filament due to oxidation of Cu assisted by Joule heating [6]. The decreased SET and RESET voltages in vacuum of the cell with the EB film can be explained by enhanced Cu dissolution and subsequent ion migration in a hydrogen-bond network of the Ta_2O_5 matrix, resulting from formation of hydroxylated tantalum oxides (Ta-OH) and chemisorption of water on them. This finding is very important in understanding and controlling the performance of oxide-based atomic switches.

[1] I. Valov et al., Nanotechnology 22, 254003 (2011).
[2] K. Terabe et al., Nature 433, 47 (2005).
[3] T. Hasegawa et al., MRS Bull. 34, 929 (2009).
[4] C. Mannequin, et al., Appl. Surf. Sci. 385, 426 (2016).
[5] C. Mannequin et al., in preparation.
[6] T. Tsuruoka et al., Nanotechnology 21, 425205 (2010); 22, 254013 (2011).

P13: Presentation Title:

Electrical-Pulse-Induced Resistivity Modulation in Pt/TiO_{2-d}/Pt Multilayer Device Relevant to Nanoionics-Based Neuromorphic Function

Authors:

°Kinya Kawamura¹, Takashi Tsuchiya², Kazuya Terabe¹, and Tohru Higuchi¹

Affiliation:

- 4. Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Email: 1515609@ed.tus.ac.jp

Abstract:

Resistivity modulation behavior in $Pt/TiO_{2-d}/Pt$ multilayer devices was investigated relevant to nanoionics-based neuromorphic function. The current relaxation behavior, which corresponds to short-term memorization and long-term memorization in neuromorphic function, was analyzed by using electrical pulses. The memorizations are shown in figure 1 (a) and (b).

In contrast to the huge difference of ionic conductivity for bulk crystal materials of TiO_2 and WO_3 , the difference in the relaxation behavior was small. Rutherford backscattering spectrometry and hydrogen forward scattering spectrometry evidenced that 5.6at% of protons are incorporated in the TiO_2 thin film. The result indicated that the neuromorphic function in TiO_2 -based devices is caused by extrinsic proton transport presumably through grain boundary.

Fig. 1 (a) Short-term and (b) Long-term memorization obtained by using electrical pulse.

References:

- [1] K. Kawamura et al., Jpn. J. Appl. Phys., in press (2017).
- [2] R. Yang et al Nanotechnology 24, 384003 (2013).

P14: Presentation Title:

Surface Proton Conduction on Yttria-Stabilized Zirconia Thin Film for Nanoionic Devices Application

Authors:

^oMakoto Takayanagi¹, Takashi Tsuchiya², Makoto Minohara³, Masaki Kobayashi³, Koji Horiba³, Hiroshi Kumigashira³, and Tohru Higuchi¹

Affiliation:

- 6. Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan

8. Photon Factory, KEK, Tsukuba, Ibaraki 305-0801, Japan

Email: Takayanagi.Makoto@nims.go.jp

Abstract:

We report structural and electrical properties of $Zr_{0.92}Y_{0.08}O_{2-8}$ (YSZ) thin film prepared by RF magnetron sputtering. This material is promising solid electrolyte materials with high oxygen ion conduction at high temperature region, which is used for gas sensor, solid oxide fuel cells (SOFCs) and electric double layer transistor.

The conductivity of 80 and 120 nm thicknesses in wet air was higher than that in dry air below 450 °C as shown in Fig. 1. Activation energy in wet air of thin film with thicknesses of 80 and 120 nm were 0.56, 0.52 eV, respectively. The Arrhenius plot of 80 and 120 nm thicknesses in wet air was nonlinear at low temperature region. The conductivity and activation energy of 160 nm was independent of air. Furthermore, thickness wet-annealed YSZ thin film had hydrogen-induced level in the band gap energy region as shown in Fig. 2. These results indicate that the YSZ thin film exhibited proton conduction at the surface state of wet air in the intermediate temperature region from 300 to 450 °C. Observation of hydrogen-induced level from XAS spectrum at the surface state of YSZ is the direct evidence of surface proton conductivity.

Fig. 2 Valence bands and Conduction bands obtained from PES and XAS spectra, respectively.

P15: Presentation Title:

Electrical Property of Nd_{0.6}Sr_{0.4}FeO₃ Thin film Deposited by RF Magnetron Sputtering Method **Authors:**

^oWataru Namiki¹, Takashi Tsuchiya², Makoto Minohara³, Masaki Kobayashi³, Koji Horiba³, Hiroshi Kumigashira³, and Tohru Higuchi¹

Affiliation:

- 9. Department of Applied Physics, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
- 10. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

11. Photon Factory, KEK, Tsukuba, Ibaraki 305-0801, Japan

Email: 1516626@ed.tus.ac.jp **Abstract:**

 $La_{1-x}Sr_{x}FeO_{3}$ (LSFO) thin film is expected for cathode electrode material for solid oxide fuel cells (SOFCs). In the research of electrochemistry, LSFO thin film is well known as electron-oxygen ion mixed conductor. Although the LSFO is promising material for activation at the interface reaction between electrolyte and electrode, the chemical stability has not been proved thus far. It has reported that the chemical stability of Nd_{0.6}Sr_{0.4}FeO₃ (NSFO) is higher than that of LSFO. However, it has not been reported about the conductivity of NSFO thin film. Therefore, we have revealed about the conductivity of NSFO thin film deposited on Al₂O₃ (0006) substrate.

We have prepared NSFO thin film with various thickness by RF magnetron sputtering method. The film thickness was changed between 42nm and 112nm. The conductivity of the thin film exhibited thermal activation type and increased with increasing film thickness as shown in Fig.1. The activation energy of the thin film was ~ 0.5 eV. The valence band of the thin film consists of Fe 3d and bonding state hybridized with O 2p (α peak) as shown in Fig.2. The value of the band gap corresponded to that of the activation energy. This result indicates NSFO thin film exhibits mainly electron conduction.

International Symposium on Atomic Switch 2017

Achievements of Atomic Switch Research

1. Peer-reviewed papers

2001

 "Quantum point contact switch realized by solid electrochemical reaction" K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono Riken Review **37** (2001) 7-8. ISSN:0919-3405

2002

- "Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring"
 K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono Applied Physics Letters 80 (2002) 4009-4011.
 DOI: 10.1063/1.1480887
- "Formation and disappearance of a nanoscale silver clusters realized by solid electrochemical reaction"
 K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono Journal of Applied Physics 91 (2002) 10110-10114.
 DOI: 10.1063/1.1481775

2003

4. "Nanometer-scale switches using copper sulfide"
T, Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono Applied Physics Letters 82 (2003) 3032-3034.
DOI: 10.1063/1.1572964

2004

 "A nonvolatile programmable solid electrolyte nanometer switch"
 T, Sakamoto, S. Kaeriyama, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and M. Aono
 2004 IEEE International Solid-State Circuits Conference Digest of Technical Papers 290-291.

- "Quantized conductance atomic switch"
 K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono Nature 433 (2005) 47-50.
 DOI: 10.1038/nature03190
- 7. "Ionic-electronic conductor nanostructures: template-confined growth and nonlinear electrical transport"
 C. H. Liang, K. Terabe, T. Hasegawa, R. Negishi, T. Tamura, and M. Aono Small 10 (2005) 971-975.
 DOI: 10.1002/smll.200500155
- "A nonvolatile programmable solid-electrolyte nanometer switch"
 S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, and M. Aono IEEE J. Solid-State Circuits 40 (2005) 168-176. DOI: 10.1109/JSSC.2004.837244

"Three terminal solid-electrolyte nanometer switch"
 T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa, and M. Aono
 2005 International Electron Device Meeting, 489-492.
 DOI: 10.1109/IEDM.2005.1609383

2006

- 10. "Template synthesis of M/M₂S (M = Ag,Cu) hetero-nanowires by electrochemical technique"
 C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono Solid State Ionics 177 (2006) 2527-2531.
 DOI: 10.1016/j.ssi.2006.02.037
- 11. "Formation and metastable silver nanowire of hexagonal structure an their structure transformation under electron beam irradiation"
 C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono Japanese Journal of Applied Physics 45 (2006) 6046-6048.
 DOI: 10.1143/JJAP.45.6046
- 12. "Fabrication of nanoscale gaps using a combination of self-assemble molecular and electron beam lithographic technique"
 R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa Applied Physics Letters 88 (2006) 223112.
 DOI: 10.1063/1.2209208
- 13. "Effects of sulfurization conditions and post deposition annealing treatment on the structural and electrical properties of silver sulfide films"
 M. Kundu, K. Terabe, T. Hasegawa, and M. Aono Journal of Applied Physics 99 (2006) 103501.
 DOI: 10.1063/1.2199067
- 14. "Switching properties of atomic switch controlled by solid state electrochemical reaction" T. Tamura, T. Hasegawa, K. Terabe, T. Nakayama, T. Sakamoto, H. Sunamura, H. Kawaura, S. Hosoki, and M. Aono Japanese Journal of Applied Physics 45 (2006) L364-L366. DOI: 10.1143/JJAP.45.L364
- 15. "Solid-electrolyte nanometer switch"
 N. Banno, T. Sakamoto, N. Iguchi, H. Kawaura, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa, and M. Aono IEICE Transactions on Electronics 11 (2006) 1492-1498. DOI: 10.1093/ietele/e89-c.11.1492
- "Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch" N. Banno, T. Sakamoto, T. Hasegawa, K. Terabe, and M. Aono Japanese Journal of Applied Physics 45 (2006) 3666-3668. DOI: 10.1143/JJAP.45.3666

2007

17. "Control of local ion transport to create unique functional nanodevices based on ionic conductors"

K. Terabe, T. Hasegawa, C. H. Liang, and M. Aono Science and Technology of Advanced Materials **8** (2007) 536-542. DOI: 10.1016/j.stam.2007.08.002

- "Resistance switching of an individual Ag₂S/Ag nanowire heterostructure" C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono Nanotechnology 18 (2007) 458202. DOI: 10.1088/0957-4484/18/48/485202
- 19. "Anomalous phase transition and ionic conductivity of AgI nanowire grown using porous alumina"
 C. H. Liang, K. Terabe, N. Iyi, T. Hasegawa, and M. Aono Journal of Applied Physics 102 (2007) 124308. DOI: 10.1063/1.2828141
- 20. "AgI/Ag heterojunction nanowire: Facile electrochemical synthesis, photoluminescence, and enhanced ionic conductivity"
 C. H. Liang, K. Terabe, T. Tsuruoka, M. Osada, T. Hasegawa, and M. Aono Advanced Functional Materials 17 (2007) 1466-1472.
 DOI: 10.1002/adfm.200600590
- 21. "Material dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide"
 T. Tamura, T. Hasegawa, K. Terabe, T. Nakayama, T. Sakamoto, H. Sunamura, H. Kawaura, and M. Aono Journal of Physics: Conference Series 61 (2007) 1157-1161. DOI: 10.1088/1742-6596/61/1/229
- 22. "Electronic transport in Ta₂O₅ resistive switch"
 T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono Applied Physics Letters **90** (2007) 223112.
 DOI: 10.1063/1.2777170
- 23. "A Ta₂O₅ solid-electrolyte switch with improved reliability"
 T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, K. Terabe, T. Hasegawa, and M. Aono
 2007 IEEE Symposium on VLSI Technology, 38-39.
 DOI: 10.1109/VLSIT.2007.4339718
- 24. "Nonequilibrium quantum transport properties of a silver atomic switch"
 Z. Wang, T. Kadohira, T. Tada, and S. Watanabe
 Nano Letters 7 (2007) 2688-2699.
 DOI: 10.1021/nl0711054

2008

25. "Resistance switching in Anodic oxidized amorphous TiO₂ films"
C. H. Ling, K. Terabe, T. Hasegawa, and M. Aono Applied Physics Express 1 (2008) 064002. DOI: 10.1143/APEX.1.064002

- "Structural studies of copper sulfide films: Influence of ambient atmosphere" M. Kundu, T. Hasegawa, K. Terabe, K. Yamamoto, and M. Aono Science and Technology of Advanced Materials 9 (2008) 035011. DOI: 10.1088/1468-6996/9/3/035011
- 27. "Effect of sulfurization condition on structural and electrical properties of copper sulfide films"
 M. Kundu, T. Hasegawa, K. Terabe, and M. Aono Journal of Applied Physics 103 (2008) 073523.
 DOI: 10.1063/1.2903599
- 28. "A solid electrolyte nanometer switch"
 T. Sakamoto, S. Kaeriyama, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, and M. Aono Electrical Engineering in Japan 165 (2008) 68-73.
 DOI: 10.1002/eej.20542
- 29. "Diffusivity of Cu ions in solid electrolyte and its effect on the performance of nanometer-scale switch"
 N. Banno, T. Sakamoto, N. Iguchi, H. Sunamura, K. Terabe, T. Nakayama, and M. Aono IEEE Transaction on Electron Devices 55 (2008) 3283-3287.
 DOI: 10.1109/TED.2008.2004246
- 30. "On-state reliability of solid-electrolyte switch"
 N. Banno, T. Sakamoto, S. Fujieda, and M. Aono
 2008 IEEE International Reliability Physics Symposium, 707-708.
 DOI: 10.1109/RELPHY.2008.4558999
- "Excess-silver-induced bridge formation in a silver sulfide atomic switch"
 Z. Wang, T. Gu, T. Tada, and S. Watanabe
 Applied Physics Letters 93 (2008) 152106.
 DOI: 10.1063/1.2963197

- 32. "Nanoionics switching devices: Atomic switches T. Hasegawa, K. Terabe, T. Sakamoto, and M. Aono MRS Bulletin 34 (2009) 929-934. DOI: 10.1557/mrs2009.215
- 33. "Nonvolatile solid-electrolyte switch embedded into Cu interconnect"
 T. Sakamoto, M. Tada, N. Banno, Y. Tsuji, Y. Saitoh, Y. Yabe, H. Hada, N. Iguchi, and M. Aono
 2009 Symposium on VLSI Technology, 130-131.
- 34. "Cu-ion diffusivity in SiO₂-Ta₂O₅ solid electrolyte and its impact of the yield of resistance switching after BEOL processes"
 N. Banno, T. Sakamoto, H. Hada, N. Kasai, N. Iguchi, S. Fujieda, T. Ichihashi, T. Hasegawa, and M. Aono
 2009 IEEE International Reliability Physics Symposium, 359-399.
 DOI: 10.1109/IRPS.2009.5173285

International Symposium on Atomic Switch 2017

- 35. "Highly scalable nonvolatile TiO_x/TaSiO_y solid-electrolyte crossbar switch integrated in local interconnect for low power reconfigurable logic"
 M. Tada, T. Sakamoto, Y. Tsuji, N. Banno, Y. Saitoh, Y. Yabe, S. Ishida, M. Terai, S. Kotsuji, N. Iguchi, M. Aono, H. Hada, and N. Kasai 2009 IEEE International Electron Device Meeting, 1-4. DOI: 10.1109/IEDM.2009.5424287
- 36. "First-principles simulations on bulk Ta₂O₅ and Cu/Ta₂O₅/Pt heterojunction: Electronic structures and transport properties"
 T. Gu, Z. Wang, T. Tada, and S. Watanabe Journal of Applied Physics 106 (2009) 103713. DOI: 10.1063/1.3260244
- 37. "Nonstoichiometry-induced carrier modification in gapless type atomic switch device using Cu₂S mixed conductor"
 T. Tsuchiya, Y. Oyama, S. Miyoshi, and S. Yamaguchi
 Applied Physics Express 2 (2009) 055002.
 DOI: 10.1143/APEX.2.055002

- 38. "Toward sub-20nm hybrid nanofabrication by combining the molecular method and electron beam lithography"
 C. B. Li, T. Hasegawa, H. Tanaka, H. Miyazaki, S. Osada, K. Tsukagoshi, and M. Aono Nanotechnology 21 (2010) 495304.
 DOI: 10.1088/0957-4484/21/49/495304
- "Rate-limiting processes determining the switching time of a Ag₂S atomic switch" A. Nayak, T. Tamura, T. Tsuruoka, K. Terabe, S. Hosaka, T. Hasegawa, and M. Aono Journal of Physical Chemistry Letters 1 (2010) 601-608. DOI: 10.1021/jz900375a
- 40. "Learning abilities achieved by a single solid-state atomic switch"
 T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J. K. Gimzewski, and M. Aono
 Advanced Materials 22 (2010) 1381-1384.
 DOI: 10.1002/adma.200903680
- 41. "Photo-assisted formation of atomic switch"
 T. Hino, H. Tanaka, T. Hasegawa, M. Aono, and T. Ogawa Small 6 (2010) 1745-1748.
 DOI: 10.1002/smll.201000472
- 42. "Forming and switching mechanisms of a cation-migration-based oxide resistive memory" T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono Nanotechnology 21 (2010) 425205. DOI: 10.1088/0957-4484/21/42/425205
- 43. "The atomic switch" M. Aono and T. Hasegawa Proceedings of the IEEE 98 (2010) 2228-2236.

DOI: 10.1109/JPROC.2010.2061830

- 44. "Off-state and turn-on characteristics of solid electrolyte switch"
 Y. Tsuji, T. Sakamoto, N. Banno, H. Hada, and M. Aono Applied Physics Letters 96 (2010) 023504. DOI: 10.1063/1.328577
- 45. "Structural characterization of amorphous Ta₂O₅ and SiO₂-Ta₂O₅ used as solid electrolyte for nonvolatile switches"
 N. Banno, T. Sakamoto, N. Iguchi, M. Matsumoto, H. Imai, T. Ichihashi, S. Fujieda, S. Watanabe, S. Yamaguchi, T. Hasegawa, and M. Aono Applied Physics Letters 97 (2010) 113507. DOI: 10.1063/1.3488830
- 46. "Nonvolatile crossbar switch using TiO_x/TaSiO_y solid electrolyte" M. Tada, T. Sakamoto, N. Banno, M. Aono, H. Hara, and N. Kasai IEEE Transactions on Electron Devices 57 (2010) 1987-1995. DOI: 10.1109/TED.2010.2051191
- 47. "Polymer solid-electrolyte (PSE) switch embedded in 90 nm CMOS with forming-free and 10 nsec programming for low power, nonvolatile programmable logic (NPL)"
 M. Tada, T. Sakamoto, K. Okamoto, M. Miyamura, N. Banno, Y. Katou, S. Ishida, N. Iguchi, N. Sakimura, and H. Hada
 2010 International Electron Devices Meeting, 16.5.1-16.5.4.
 DOI: 10.1109/IEDM.2010.5703376
- 48. "Reliable solid-electrolyte crossbar switch for programmable logic"
 N. Banno, T. Sakamoto, M. Tada, M. Miyamura, Y. Tabe, Y. Saitoh, S. Ishida, K. Okamoto, H. Hada, and N. Kasai
 2010 Symposium on VLSI Technology: Digest of Technical Papers (2010) 115-116.
 DOI: 10.1109/VLSIT.2010.5556192
- 49. "Conductive path formation in the Ta₂O₅ atomic switch: First-principle analysis" T. Gu, T. Tada, and S. Watanabe ACS Nano 4 (2010) 6477-6482. DOI: 10.1021/nn101410s
- 50. "Numerical simulation of switching behavior in Cu/Cu₂S nanometer-scale switch" Y. Okajima, Y. Shibuta, T. Tsuchiya, S. Yamaguchi, and T. Suzuki Applied Physics Express 3 (2010) 065202. DOI: 10.1143/APEX.3.065202

- "Short-term plasticity and long-term potentiation in a single Ag₂S inorganic synapse" T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono Nature Materials 10 (2011) 591-595. DOI: 10.1038/NMAT3054
- 52. "Volatile/nonvolatile dual-functional atom transistor"T. Hasegawa, Y. Itoh, H. Tanaka, T. Hino, T. Tsuruoka, K. Terabe, H. Miyazaki, K.

International Symposium on Atomic Switch 2017

Tsukagoshi, T. Ogawa, S. Yamaguchi, and M. Aono Applied Physics Express **4** (2011) 015204. DOI: 10.1143/APEX.4.015204

- 53. "A polymer-electrolyte-based atomic switch"
 S. Wu, T. Tsuruoka, K. Terabe, T. Hasegawa, J. P. Hill, K. Ariga, and M. Aono Advanced Functional Materials 21 (2011) 93-99. DOI: 10.1002/adfm.201001520
- 54. "Memristive operations demonstrated by gap-type atomic switches"
 T. Hasegawa, A. Nayak, T. Ohno, K. Terabe, T. Tsuruoka, J. K. Gimzewski, and M. Aono Applied Physics A 102 (2011) 811-815. DOI: 10.1007/s00339-011-6317-0
- 55. "Temperature effects on the switching kinetics of a Cu-Ta₂O₅-based atomic switch" T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono Nanotechnology 22 (2011) 254013. DOI: 10.1088/0957-4484/22/25/254013
- 56. "Atomic switches: Atomic-movement controlled nanodevices for new types of computing" T. Hino, T. Hasegawa, K. Terabe, T. Tsuruoka, A. Nayak, T. Ohno, and M. Aono Science and Technology of Advanced Materials 12 (2011) 013003. DOI: 10.1088/1468-6996/12/1/013003
- 57. "Switching kinetics of a Cu₂S gap-type atomic switch" A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono Nanotechnology 22 (2011) 235201. DOI: 10.1088/0957-4484/22/23/235201
- "Theoretical investigation of kinetics of a Cu₂S-based gap-type atomic switch" A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono Applied Physics Letters **98** (2011) 233501. DOI: 10.1063/1.3597154
- "Sensory and short-term memory formations observed in an Ag₂S gap-type atomic switch" T. Ohno, T. Hasegawa, A. Nayak, T. Tsuruoka, J. K. Gimzewski, and M. Aono Applied Physics Letters **99** (2011) 203108. DOI: 10.1063/1.3662390
- 60. "Bulk and surface nucleation processes in Ag₂S conductance switches"
 M. Morales-Masis, S. J. van den Molen, T. Hasegawa, and J. M. van Ruitenbeek Physical Review B 84 (2011) 115310. DOI: 10.1103/PhysRevB.84.115310
- "Three-terminal nanometer metal switches utilizing solid electrolytes"
 H. Kawaura, T. Sakamoto, N. Banno, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa, and M. Aono
 Electronics and Communications in Japan 94 (2011) 55-61.
 DOI: 10.1002/ecj.10214

- 62. "Polymer solid-electrolyte switch embedded on CMOS for nonvolatile crossbar switch" M. Tada, K. Okamoto, T. Sakamoto, M. Miyamura, N. Banno, and H. Hada IEEE Transactions on Electron Devices 58 (2011) 4398-4406. DOI: 10.1109/TED.2011.2169070
- 63. "On-state reliability of solid-electrolyte switch under pulsed alternating current stress for programmable logic device"
 N. Banno, T. Sakamoto, M. Tada, M. Miyamura, K. Okamoto, H. Hada, and M. Aono Japanese Journal of Applied Physics 50 (2011) 074201.
 DOI: 10.1143/JJAP.50.074201
- 64. "Conducting mechanism of atom switch with polymer solid-electrolyte"
 K. Okamoto, M. Tada, T. Sakamoto, M. Miyamura, N. Banno, N. Iguchi, and H. Hada 2011 International Electron Devices Meeting, 12.2.1-12.2.4. DOI: 10.1109/IEDM.2011.6131538
- 65. "Highly reliable, complementary atom switch (CAS) with low programming voltage embedded in Cu BEOL for nonvolatile programmable logic"
 M. Tada, T. Sakamoto, M. Miyamura, N. Banno, K. Okamoto, N. Iguchi, and H. Hada 2011 International Electron Devices Meeting, 30.2.1-30.2.4. DOI: 10.1109/IEDM.2011.6131642
- 66. "Programmable cell array using rewritable solid-electrolyte switch integrated in 90 nm CMOS"
 M. Miyamura, S. Nakaya, M. Tada, T. Sakamoto, K. Okamoto, N. Banno, S. Ishida, K. Ito, H. Hada, N. Sakimura, T. Sugibayashi, and M. Motomura 2011 International Solid-State Circuits Conference, 228-229. DOI: 10.1109/SSCC.2011.5746296
- 67. "X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with large extent of oxygen nonstoichiometry"
 T. Tsuchiya, H. Imai, S. Miyoshi, P. –A. Glans, J. Guo, and S. Yamaguchi Physical Chemistry Chemical Physics 13 (2011) 17013-17018. DOI: 10.1039/clcp21310e

- 68. "Atomic Switch; the atom/ion movement controlled device for beyond von-Neumann computer"
 T. Hasegawa, K. Terabe, T. Tsuruoka, and M. Aono Advanced Materials 24 (2012) 252-267. DOI: 10.1002/adma.201102597
- 69. "Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches"
 T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, and M. Aono Advanced Functional Materials 22 (2012) 70-77. DOI: 10.1002/adfm.201101846
- 70. "Controlling the synaptic plasticity of a Cu₂S atomic switch"
 A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa, J. K. Gimzewski, and M. Aono

Advanced Functional Materials **22** (2012) 3606-3613. DOI: 10.1002/adfm.201200640

- 71. "Flexible resistive switching memory using inkjet printing of a solid polymer electrolyte"
 S. R. Mohapatra, T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono AIP Advances 2 (2012) 022144. DOI: 10.1063/1.4727742
- 72. "Conductance quantization and synaptic behavior of a Ta₂O₅-based atomic switch" T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono Nanotechnology 23 (2012) 435705. DOI: 10.1088/0957-4484/23/43/435705
- 73. "Impacts of temperature and moisture on the resistive switching characteristics of a Cu-Ta₂O₅-based atomic switch"
 T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono Mater. Res. Soc. Symp. Proc. 1430 (2012). DOI: 10.1557/opl.2012.901
- 74. "Flexible polymer atomic switches using ink-jet printing technique"
 S. R. Mohapatra, T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono Mater. Res. Soc. Symp. Proc. 1430 (2012).
 DOI: 10.1557/opl.2012.1022
- 75. "Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces"
 I. Valov, I., Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, and R. Waser
 Nature Materials 11 (2012) 530-535.
 DOI: 10.1038/NMAT3307
- 76. "Oxygen migration process in the interfaces during bipolar resistive switching behavior of the WO_{3-x}-based nanoionics devices"
 R. Yang, K. Terabe, T. Tsuruoka, T. Hasegawa, and M. Aono Applied Physics Letters 100 (2012) 231603. DOI: 10.1063/1.4726084
- 77. "On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration"
 R. Yang, K. Terabe, G. Liu, T. Tsuruoka, T. Hasegawa, J. K. Gimzewski, and M. Aono ACS Nano 6 (2012) 9515-9521.
 DOI: 10.1021/nn302510e
- 78. "Improved OFF-state reliability of nonvolatile resistive switch with low programming voltage"
 M. Tada, T. Sakamoto, M. Miyamura, N. Banno, K. Okamoto, N. Iguchi, and H. Hada IEEE Transactions on Electron Devices 59 (2012) 2357-2362. DOI: 10.1109/TED.2012.2204263
- 79. "First demonstration of logic mapping on nonvolatile programmable cell using complementary atom switch"

M. Miyamura, M. Tada, T. Sakamoto, N. Banno, K. Okamoto, N. Iguchi, and H. Hada 2012 International Electron Devices Meeting, 10.6.1-10.6.4. DOI: 10.1109/IEDM.2012.6479020

- 80. "Improved reliability and switching performance of atom switch by using ternary Cu-alloy and RuTa electrodes"
 M. Tada, T. Sakamoto, N. Banno, K. Okamoto, M. Miyamura, N. Iguchi, and H. Hada 2012 International Electron Devices Meeting, 29.8.1-29.8.4.
 DOI: 10.1109/IEDM.2012.6479133
- "Nonvolatile 32x32 crossbar atom switch block integrated on a 65-nm COMS platform" N. Banno, M. Tada, T. Sakamoto, K. Okamoto, M. Miyamura, N. Iguchi, and H. Hada 2012 Symposium on VLSI Technology, 39-40. DOI: 10.1109/VLSIT.2012.6242450
- 82. "Neuromorphic atomic switch networks"
 A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, H. H. Shieh, M. Aono, A. Z. Stieg, and J. K. Gimzewski
 PLOS ONE 7 (2012) e42772.
 DOI: 10.1371/journal.pone.0042772
- "Emergent criticality in complex tuning B-type atomic switch networks"
 A. Z. Stieg, A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, M. Aono, and J. K. Gimzewski Advanced Materials 24 (2012) 286-293. DOI: 10.1002/adma.201103053

- 84. "Rate-limiting processes in the fast SET operation of a gapless-type Cu-Ta₂O₅ atomic switch" T. Tsuruoka, T. Hasegawa, I. Valov, R. Waser, and M. Aono AIP Advances 3 (2013) 032114. DOI: 10.1063/1.4795140
- 85. "Volatile and nonvolatile selective switching of a photo-assisted atomic switch" T. Hino, T. Hasegawa, H. Tanaka, T. Tsuruoka, K. Terabe, T. Ogawa, and M. Aono Nanotechnology 24 (2013) 384006. DOI: 10.1088/0957-4484/24/38/384006
- 86. "Generic relevance of counter charges for cation-based nanoscale resistive switching memories"
 S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, and M. Aono ACS Nano 7 (2013) 6396-6402. DOI: 10.1021/nn4026614
- 87. "Nonvolatile three-terminal operation based on oxygen vacancy drift in a Pt/Ta₂O_{5-x}/Pt,Pt structure"
 Q. Wang, Y. Itoh, T. Hasegawa, T. Tsuruoka, S. Watanabe, S. Yamaguchi, and M. Aono Applied Physics Letters 102 (2013) 233508. DOI: 10.1063/1.4811122
- 88. "Quantized conductance and neuromorphic behavior of a gapless-type Ag-Ta $_2O_5$ atomic

switch" T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono Mater. Res. Soc. Symp. Proc. **1562** (2013). DOI: 10.1557/opl.2013.719

- 89. "Synaptic plasticity and memory functions achieved in WO_{3-x}-based nanoionics device by using principle of atomic switch operation"
 R. Yang, K. Terabe, Y. Yao, T. Tsuruoka, T. Hasegawa, J. K. Gimzewski, and M. Aono Nanotechnology 24 (2013) 384003.
 DOI: 10.1088/0957-4484/24/38/384003
- 90. "Improved ON-state reliability of atom switch using alloy electrodes"
 M. Tada, T. Sakamoto, N. Banno, K. Okamoto, N. Iguchi, H. Hada, and M. Miyamura IEEE Transactions on Electron Devices 60 (2013) 3534-3540.
 DOI: 10.1109/TED.2013.2275188
- 91. "Bidirectional TaO-diode-selected, complementary atom switch (DCAS) for area-efficient, nonvolatile crossbar switch block"
 K. Okamoto, M. Tada, N. Banno, T. Sakamoto, M. Miyamura, N. Iguchi, and H. Hada 2013 Symposium on VLSI Technology, T242-T243.
- 92. "Room temperature RedOx reaction by oxide ion migration at carbon/Gd-doped CeO₂ hetero-interface probed by in-situ hard X-ray photoemission and soft X-ray absorption spectroscopy"
 T. Tsuchiya, S. Miyoshi, Y. Yamashita, H. Yoshikawa, K. Terabe, K. Kobayashi, and S. Yamaguchi
 Science and Technology of Advanced Materials 14 (2013) 045001.
 DOI: 10.1088/1468-6996/14/4/045001
- 93. "Direct observation of redox state modulation at carbon/amorphous tantalum oxide thin film hetero-interface probed by in-situ hard X-ray photoemission spectroscopy"
 T. Tsuchiya, S. Miyoshi, Y. Yamashita, H. Yoshikawa, K. Terabe, K. Kobayashi, and S. Yamaguchi
 Solid State Ionics 253 (2013) 110-118.
 DOI: 10.1016/j ssi 2013.09.015
- 94. "All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO₂ on SrTiO₃ single crystal"
 T. Tsuchiya, K. Terabe, and M. Aono Applied Physics Letters 103 (2013) 073110.
 DOI: 10.1063/1.4818736
- 95. "Morphological transitions from dendrites to nanowires in the electroless deposition of silver" A. V. Avizienis, C. Martin-Olmos, H. O. Sillin, M. Aono, J. K. Gimzewski, and Adam Z. Stieg Crystal Growth Design 13 (2013) 465-469. DOI: 10.1021/cg301692n
- 96. "A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing"

H. O. Sillin, R. Aguilera, H. H. Shieh, A. V. Avizienis, M. Aono, A. Z. Stieg, and J. K. Gimzewski
Nanotechnology 24 (2013) 384004.
DOI: 10.1088/0957-4484/24/38/384004

- 97. "Two types of on-sate observed in the operation of redox-based three-terminal device"
 Q. Wang, Y. Itoh, T. Tsuruoka, T. Hasegawa, S. Watanabe, S. Yamaguchi, and M. Aono Key Engineering Material 596 (2014) 111-115.
 DOI: 10.4028/www.scientific.net/KEM.596.111
- 98. "Influence of atmosphere on photo-assisted atomic switch operations"
 T. Hino, T. Hasegawa, H. Tanaka, T. Tsuruoka, T. Ogawa, and M. Aono Key Engineering Material 596 (2014) 116-120.
 DOI: 10.4028/www.scientific.net/KEM.596.116
- 99. "Impact of overshoot current on set operation of atom switch"
 T. Sakamoto, M. Tada, M. Miyamura, N. Banno, K. Okamoto, N. Iguchi, and H. Hada, Japanese Journal of Applied Physics 53 (2014) 04ED07.
 DOI: 10.7567/JJAP.53.04ED07
- 100. "Low-power programmable-logic cell arrays using nonvolatile complementary atom switch" M. Miyamura, T. Sakamoto, M. Tada, N. Banno, K. Okamoto, N. Iguchi, and H. Hada, Fifteenth International Symposium on Quality Electronic Design 2014, 330-334. DOI: 10.1109/ISQED.2014.6783344
- 101. "A fast and low-voltage Cu complementary-atom-switch 1Mb array with high-temperature retention"
 N. Banno, M. Tada, T. Sakamoto, M. Miyamura, K. Okamoto, N. Iguchi, and H. Hada, 2014 Symposium on VLSI Technology, 1-2. DOI: 10.1109/VLSIT.2014.6894437
- 102. "Improved switching voltage variation of Cu atom switch for nonvolatile programmable logic"
 N. Banno, M. Tada, T. Sakamoto, K. Okamoto, M. Miyamura, N. Iguchi, and H. Hada, IEEE Transactions on Electron Devices 61 (2014) 3827-3832.
 DOI: 10.1109/TED.2014.2355830
- 103. "Three-terminal nonvolatile resistive-change device integrated in Cu-BEOL" M. Tada, K. Okamoto, N. Banno, T. Sakamoto, and H. Hada IEEE Transactions on Electron Devices 61 (2014) 505-510. DOI: 10.1109/TED.2013.2296036
- 104. "Atom switch technology for low-power nonvolatile logic application"
 M. Tada, T. Sakamoto, M. Miyamura, N. Banno, K. Okamoto, and H. Hada ECS Transactions 61(6) (2014) 57-64.
 DOI: 10.1149/06106.0057ecst
- 105. "Conduction paths in Cu/amorphous-Ta₂O₅/Pt atomic switch: First-principles studies" B. Xiao, T. Gu, T. Tada, and S. Watanabe

Journal of Applied Physics **115** (2014) 034503. DOI: 10.11063/1.4861724

- 106. "In-situ monitoring of oxide ion induced breakdown in amorphous tantalum oxide thin film using acoustic emission measurement"
 T. Tsuchiya, K. Ito, S. Miyoshi, M. Enoki, and S. Yamaguchi Materials Transactions 55 (2014) 1553.
 DOI: 10.2320/matertrans.M2014198
- 107. "Oxygen vacancy effects on an amorphous-TaO_x-based resistive switch: A first principles studies"
 B. Xiao and S. Watanabe
 Nanoscale 6 (2014) 10169-10178.
 DOI: 10.1039/C4NR02173H
- 108. "In situ and non-volatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor"
 T. Tsuchiya, K. Terabe, and M. Aono Advanced Materials 26 (2014) 1087-1091.
 DOI: 10.1002/adma.20134770
- 109. "Micro x-ray photoemission and Raman spectroscopy studies on bandgap tuning of graphene oxide achieved by solid state ionics devices"
 T. Tsuchiya, K. Terabe, and M. Aono Applied Physics Letters 105 (2014) 183101.
 DOI: 10.1063/1.4901103
- 110. "Self-organized atomic switch networks"
 A. Z. Stieg, A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, M. L. Lam, M. Aono, and J. K. Gimzewski
 Japanese Journal of Applied Physics 53 (2014) 01AAA02.
 DOI: 10.7567/JJAP.53.001AA02

- 111. "Dynamic moderation of an electric field using a SiO₂ tunneling layer in TaO_x-based ReRAM"
 Q. Wang, Y. Itoh, T. Tsuruoka, S. Ohtsuka, T. Shimizu, S. Shingubara, T. Hasegawa, and M. Aono
 Physica Status Solidi Rapid Research Letters 9 (2015) 166-170.
 DOI: 10.1002/pssr.201409531
- 112. "Position detection and observation of a conducting filament hidden under a top electrode in a Ta₂O₅-based atomic switch"
 A. Nayak, Q. Wang, Y. Itoh, T. Tsuruoka, T. Hasegawa, L. Boodhoo, H. Mizuta, and M. Aono
 Nanotechnology 26 (2015) 145702.
 DOI: 10.1088/0957-4484/26/14/145702
- 113. "Redox reactions at Cu,Ag/Ta₂O₅ interfaces and the effects of Ta₂O₅ film density on the forming process in atomic switch structures"

T. Tsuruoka, I. Valov, S. Tappertzhofen, J. van den Hurk, T. Hasegawa, R. Waser, and M. Aono
Advanced Functional Materials 25 (2015) 6347-6381.
DOI: 10.1002/adfm.201500853

- 114. "Effects of temperature and ambient pressure on the resistive switching behavior of a polymer-based atomic switch"
 S. R. Mohapatra, T. Tsuruoka, K. Krishnan, T. Hasegawa, and M. Aono Journal of Materials Chemistry C 3 (2015) 5715-5720. DOI: 10.1039/c5tc00842e
- 115. "Ultra-low voltage and ultra-low power consumption nonvolatile operation of a three-terminal atomic switch"
 Q. Wang, Y. Itoh, T. Tsuruoka, M. Aono, and T. Hasegawa Advanced Materials 27 (2015) 6029-6033.
 DOI: 10.1002/adma.201502678
- 116. "Nanosecond fast switching processes observed in gapless-type, Ta₂O₅-based atomic switches"
 T. Tsuruoka, T. Hasegawa, and M. Aono Mater. Res. Soc. Symp. Proc. **1729** (2015).
 DOI: 10.1557/opl.2015.93
- 117. "Observation of a Ag protrusion on a Ag₂S island using a scanning tunneling microscope" T. Ohno and T. Hasegawa Results in Physics 5 (2015) 182-183. DOI: 10.1016/j.rinp.2015.08.004

118. "Low-power embedded read-only memory using atom switch and silicon-on-thin-buried-oxide transistor"
T. Sakamoto, M. Tada, Y. Tsuji, H. Makiyama, T. Hasegawa, Y. Yamamoto, S. Okanishi, N. Banno, M. Miyamura, K. Okamoto, N. Iguchi, Y. Ogasahara, H. Oda, S. Kamohara, Y. Yamagata, N. Sugii, and H. Hada
Applied Physics Express 8 (2015) 045201.
DOI: 10.7567/APEX.8.045201

- 119. "Mechanism of OFF-state lifetime improvement in complementary atom switch"
 N. Banno, M. Tada, T. Sakamoto, H. Makiyama, K. Okamoto, N. Iguchi, T. Nohisa, and H. Hada
 Japanese Journal of Applied Physics 54 (2015) 04DD08.
 DOI: 10.7567/JJAP.54.059201
- 120. "Logic comparable process technology for embedded atom switch in CMOS" K. Okamoto, M. Tada, N. Banno, N. Iguchi, T. Sakamoto, and H. Hada Japanese Journal of Applied Physics 54 (2015) 05ED05. DOI: 10.7567/JJAP.54.05ED05
- 121. "Cu atom switch with steep time-to-ON-state versus switching voltage using Cu ionization control"

N. Banno, M. Tada, T. Sakamoto, H. Makiyama, K. Okamoto, N. Iguchi, and H. Hada

IEEE Transactions on Electron Devices **62** (2015) 2966-2971. DOI: 10.1109/TED.2015.2443120

- 122. "0.39-V, 18.26-μW/MHz SOTB CMOS Microcontroller with embedded atom switch ROM" T. Sakamoto, Y. Tsuji, M. Tada, H. Miyamaki, T. Hasegawa, Y. Yamamoto, S. Okanishi, K. Maekawa, N. Banno, M. Miyamura, K. Okamoto, N. Iguchi, Y. Ogasahara, H. Oda, S. Kamohara, Y. Yamagata, N. Sugii, and H. Hada 2015 IEEE Symposium in Low-Power and High-Speed Chips, 1-3. DOI: 10.1109/CoolChips.2015.7158658
- 123. "Sub-µW standby power, <18µW/DMIPS@25MHz MCU with embedded atom-switch programmable logic and ROM"
 Y. Tsuji, X. Bai, M. Miyamura, T. Sakamoto, M. Tada, N. Banno, K. Okamoto, N. Iguchi, N. Sugii, and H. Hada
 2015 Symposium on VLSI Circuits, T86-T87. DOI: 10.1109/VLSIC.2015.7231363
- 124. "A novel two-varistors (a-Si/SiN/a-Si) selected complementary atom switch (2V-1CAS) for nonvolatile crossbar switch with multiple fan-outs"
 N. Banno, M. Tada, K. Okamoto, N. Iguchi, T. Sakamoto, H. Makiyama, Y. Tsuji, H. Hada, H. Ochi, H. Onodera, M. Hashimoto, and T. Sugibayashi
 2015 IEEE International Electron Devices Meeting (IDEM), 2.5.1-2.5.4.
 DOI: 10.1109/IEDM.2015.7409614
- 125. "A silicon-on-thin-buried-oxide CMOS microcontroller with embedded atom-switch ROM" T. Sakamoto, Y. Tsuji, M. Tada, H. Makiyama, T. Hasegawa, Y. Yamamoto, S. Okanishi, K. Maekawa, N. Banno, M. Miyamura, K. Okamoto, N. Iguchi, H. Oda, S. Kamohara, Y. Yamagata, N. Sugii, H. Hada, and Y. Ogasahara IEEE Micro **35** (2015) 13-23. DOI: 10.1109/MM.2015.142
- 126. "Effect of ionic conductivity on response speed of SrTiO₃-based all-solid-state electric-double-layer transistor"
 T. Tsuchiya, M. Ochi, T. Higuchi, K. Terabe, and M. Aono ACS Applied Materials & Interfaces 7 (2015) 12254-12260. DOI: 10.1021/acsami.5b02998
- 127. "In situ and non-volatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide"
 T. Tsuchiya, T. Tsuruoka, K. Terabe, and M. Aono ACS Nano 9 (2015) 2102-2110.
 DOI: 10.1021/nn507363g
- 128. "Atomic switch networks nanoarchitectonic design of a complex system of natural computing"
 E. C. Demis, R. Aguilera, H. O. Sillin, K. Scharnhorst, E. J. Sandouk, M. Aono, A. Z. Stieg, and J. K. Gimzewski
 Nanotechnology 26 (2015) 204003.
 DOI: 10.1088/0957-4484/26/204003

- 129. "Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches"
 K. Krishnan, T. Tsuruoka, C. Mannequin, and M. Aono Advanced Materials 28 (2016) 640-648.
 DOI: 10.1002/adma.201504202
- 130. "Direct observation of anodic dissolution and filament growth behavior in polyethylene-oxide-based atomic switch structures"
 K. Krishnan, T. Tsuruoka, and M. Aono Japanese Journal of Applied Physics 55 (2016) 06GK02.
 DOI: 10.7567/JJAP.55.06GK02
- 131. "Humidity effects on the redox reactions and ionic transport in a Cu/Ta₂O₅/Pt atomic switch structure"
 T. Tsuruoka, I. Valov, C. Mannequin, T. Hasegawa, R. Waser, and M. Aono Japanese Journal of Applied Physics 55 (2016) 06GJ09. DOI: 10.7567/JJAP.55.06GJ09
- 132. "Composition of thin Ta₂O₅ films deposited by different methods and the effect of humidity on their resistive switching behavior"
 C. Mannequin, T. Tsuruoka, T. Hasegawa, and M. Aono Japanese Journal of Applied Physics 55 (2016) 06GG08. DOI: 10.7567/JJAP.55.06GG08
- 133. "Decision maker based on atomic switches"
 S. -J. Kim, T. Tsuruoka, T. Hasegawa, M. Aono, K. Terabe, and M. Aono AMIS Materials Science 3 (2016) 245-259.
 DOI: 10.3934/matersci.2016.1.245
- 134. "Identification and roles of nonstoichiometric oxygen in amorphous Ta₂O₅ thin films deposited by electron beam and sputtering processes"
 C. Mannequin, T. Tsuruoka, T. Hasegawa, and M. Aono Applied Surface Science 385 (2016) 426-435.
 DOI: 10.1016/j.apsusc.2016.04.099
- 135. "Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices"
 K. Krishnan, M. Aono, and T. Tsuruoka Nanoscale 8 (2016) 13976-13984.
 DOI: 10.1039/c6nr00569a
- 136. "Area-efficient nonvolatile carry chain based on pass-transistor/atom-switch hybrid logic"
 X. Bai, Y. Tsuji, T. Sakamoto, A. Morioka, M. Miyamura, M. Tada, N. Banno, K. Okamoto, N. Iguchi, and H. Hada
 Japanese Journal of Applied Physics 55 (2016) 04EF01.
 DOI: 10.7567/JJAP.55.04EF01
- 137. "Nanoionic devices enabling a multitude of new features" K. Terabe, T. Tsuchiya, R. Yang, and M. Aono

Nanoscale **8** (2016) 13873-13879. DOI: 10.1039/c6nr00956e

- 138. "In situ tuning of magnetization and magnetoresistance in Fe₃O₄ thin film achieved with all-solid-state redox devices"
 T. Tsuchiya, K. Terabe, M. Ochi, T. Higuchi, M. Osada, Y. Yamashita, S. Ueda, and M. Aono
 ACS Nano 10 (2016) 1655-1661.
 DOI: 10.1021/acsnano.5b07374
- 139. "Comparison of subthreshold swing in SrTiO₃-based all-solid-state electric-double-layer transistors wit Li₄SiO₄ or Y-stabilized ZrO₂ solid electrolyte"
 T. Tsuchiya, M. Ochi, T. Higuchi, and K. Terabe Japanese Journal of Applied Physics 55 (2016) 06GJ03. DOI: 10.7567/JJAP.55.06GJ03
- 140. "Nanoionic devices: Interface nanoarchitectonics for physical property tuning and enhancement"
 T. Tsuchiya, K. Terabe, R. Yang, and M. Aono Japanese Journal of Applied Physics 55 (2016) 1102A4.
 DOI: 10.7567/JJAP.55.1102A4
- 141. "Ag₂S atomic switch-based 'tug of war' for decision making" C. Lutz, T. Hasegawa, and T. Chikyow Nanoscale 8 (2016) 14031-14036. DOI: 10.1039/c6nr00690f

142. "Robust Cu atom switch with over-400°C thermally tolerant polymer-solid electrolyte (TT-PSE) for nonvolatile programmable logic"
K. Okamoto, M. Tada, N. Banno, N. Iguchi, H. Hada, T. Sakamoto, M. Miyamura, Y. Tsuji, R. Nebashi, A. Morioka, X. Bao, and T. Sugibayashi
2016 IEEE Symposium on VLSI Technology, 1-2. DOI: 10.1109/VLSIT.2016.7573403

143. "A 2x logic density programmable logic array using atom switch fully implemented with logic transistors at 40 nm –node and beyond"
Y. Tsuji, X. Bai, A. Morioka, M. Miyamura, R. Nebashi, T. Sakamoto, M. Tada, N. Banno, K. Okamoto, N. Iguchi, H. Hada, and T. Sugibayashi
2016 IEEE Symposium on VLSI Circuits, 1-2. DOI: 10.1109/VLSITC.2016.7573461

- 144. "Highly reproducible and regulated conductance quantization in a polymer-based atomic switch"K. Krishnan, M. Muruganathan, T. Tsuruoka, H. Mizuta, and M. Aono Advanced Functional Materials (published online).DOI: 10.1002/adfm.201605104
- 145. "Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using thin oxide layers"

T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono Journal of Electroceramics (published online). DOI: 10.1007/s10832-016-0063-9

- 146. "Quantized conductance operation near a single-atom point contact in a polymer-based atomic switch"K. Krishnan, M. Muruganathan, T. Tsuruoka, H. Mizuta, and M. Aono Japanese Journal of Applied Physics (in press).
- 147. "Electrical-pulse-induced resistivity modulation in Pt/TiO_{2-δ}/Pt multilayer device related to nanoionics-based neuromorphic function"
 K. Kawamura, T. Tsuchiya, M. Takayanagi, K. Terabe, and T. Higuchi Japanese Journal of Applied Physics (in press).

2. 解説記事·書籍私

- 148. 青野正和,中山知信,長谷川剛,田中啓文,新ヶ谷義隆,大川祐司,桑原裕司,赤井恵,寺 部一弥,「ナノワイヤーの電気伝導」,学術月報 54(10), pp.49-55 (2001). 私
- 149. 青野正和, 寺部一弥, 長谷川剛, 中山知信, 「原子スイッチ」, ナノテクノロジー最前線, pp.83-87, 東京教育情報センター (2002).
- 150. 長谷川剛, 「原子スイッチ」, ナノテクノロジーハンドブック, pp.150-154, オーム社 (2003).
- 151. 長谷川剛, 「原子スイッチ」, ナノテクノロジー大辞典, pp.234-240, 工業調査会(2003).
- 152. 塚本茂,長谷川剛,「点接触導電体」,ナノテクノロジー大辞典, pp.67-74, 工業調査会(2003).
- 153. 川浦久雄, 坂本利司, 砂村潤, 帰山隼一, 水野正之, 長谷川剛, 中山知信, 寺部一弥, 青野 正和,「高性能LSIの機能切り替えを可能にするスイッチ素子」,工業材料 52, pp.46-50 (2004).
- 154. 坂本利司,帰山隼一,砂村潤,水野正之,川浦久雄,長谷川剛,中山知信,寺部一弥,青野 正和,「固体電解質を用いたナノスイッチ」,電子情報通信学会技術報告書 104, pp.46-50 (2004).
- 155. 長谷川剛, 寺部一弥, 中山知信, 阪本利司, 青野正和, 「原子スイッチを用いた実用的論理 回路演算回路」, OHM 92 (12), pp.10-11 (2005).
- 156. 長谷川剛, 寺部一弥, 中山知信, 青野正和, 「究極的なナノデバイス「原子スイッチ」の開発」, 未来材料 5(6), pp.31-37 (2005).
- 157. 寺部一弥,長谷川剛,中山知信,青野正和,「量子化伝導原子スイッチの開発」,まてりあ 44(9), pp.757-763 (2005).
- 158. 長谷川剛, 青野正和, 「固体電気化学反応を利用した実用デバイス「原子スイッチ」の開発」, 化学と工業 58(11), pp.1336-1338 (2005).
- 159. 阪本利司,帰山隼一,砂村潤,水野正之,川浦久雄,長谷川剛,寺部一弥,青野正和,「固体電解質ナノスイッチ」,電気学会論文誌C「次世代LSIデバイス・プロセス技術の課題と展望」特集 126, pp.714-719 (2006).

International Symposium on Atomic Switch 2017

- 160. 阪本利司, 伴野直樹, 井口憲幸, 帰山隼一, 水野正之, 川浦久雄, 寺部一弥, 長谷川剛, 青 野正和, 「3端子固体電解質ナノスイッチ」, 電子情報通信学会技術報告書 105, pp.13-16 (2006).
- 161. 寺部一弥,長谷川剛,中山知信,青野正和,「原子スイッチ-原子(イオン)の移動を利用したナノデバイス-」,表面科学 27(4), pp.232-238 (2006).
- 162. 阪本利司, 帰山隼一, 長谷川剛, 寺部一弥, 「固体メモリー」, 応用物理 75(9), pp.1126-1130 (2006).
- 163. 阪本利司, 帰山隼一, 水野正之, 寺部一弥, 長谷川剛, 青野正和, 「LSI回路の再構成を可能 とするナノブリッジ」, NEC技報 60(1), pp.73-76 (2007).
- 164. 寺部一弥, 長田実, 長谷川剛, 「ナノプローブ加工技術を用いたナノイオニクス素子の開発」, ナノイオニクス-最新技術とその展望-, pp.268-276, シーエムシー出版(2008).
- 165. 川浦久雄, 阪本利司, 伴野直樹, 帰山隼一, 水野正之, 寺部一弥, 長谷川剛, 青野正和, 「固体電解質を用いた3端子型ナノメートル金属スイッチ」, 電気学会論文誌C 128(6), pp.890-895 (2008).
- 166. 長谷川剛, 「超分子サイエンス&テクノロジー」, 第3章2節12「原子スイッチ」, pp.412-417, 共立出版 (2009).
- 167. 長谷川剛, 寺部一弥, 阪本利司, 鶴岡徹, 青野正和, 「電気化学反応を用いた金属ナノワイ ヤーの形成とそのデバイス応用」, 真空 52(6), pp.340-346 (2009).
- 168. 岡島義尚, 澁田靖, 山口周, 鈴木俊夫, 「Ag/Ag₂S系原子スイッチにおけるAg柱成長とスイ ッチング挙動の数値シミュレーション」日本金属学会誌 73, pp.589-594 (2009).
- 169. T. Hasegawa, K. Terabe, T. Sakamoto, and M. Aono, "Nanoionics and its device applications", The Oxford Handbook of NANOSCIENCE AND TECHNOLOGY Vol.3: Applications, Oxford University Press, pp.294-311 (2010).
- 170. 長谷川剛, 「環境・エネルギー材料ハンドブック」, 材料編第3章9.1「原子スイッチ材料」, pp.567-571, オーム社 (2011).
- 171. 長谷川剛, 「アトムトランジスタの開発」, 電気協会報 1042, pp.25-27 (2011).
- 172. 寺部一弥, 「電子情報分野ナノイオニクスデバイスの開発」, ケミカルエンジニアリング 56(10), pp.12-18 (2011).
- 173. 長谷川剛, 伊藤弥生美, 鶴岡徹, 青野正和「アトムトランジスタ」, 応用物理 81(1), pp.55-58 (2012).
- 174. 鶴岡徹,長谷川剛,「酸化物ナノ薄膜を用いた原子スイッチ型抵抗変化メモリとその応用」, 応用物理学会分科会シリコンナノテクノロジー 173, pp.78-83 (2014).
- 175. 長谷川剛, 「原子一個を動かす「アトムトランジスタ」とは?」, 身のまわりの表面科学, pp.213-215, 日本表面科学会編, 講談社, 第6章(2015).
- 176. K. Terabe, T. Tsuruoka, T. Hasegawa, A. Nayak, T. Ohno, T. Nakayama, and M. Aono, "Atomic Switches", Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Wiley, pp.515-545 (2016).

- 177. 鶴岡徹, 「酸化物薄膜中のカチオン伝導を利用した原子スイッチ型抵抗変化メモリ」, 電子 情報通信学会技術研究報告 116, pp.25-30 (2016).
- 178. 寺部一弥, 青野正和, 「固体イオニクスの新たな展開」, 応用物理 85(5), pp.364-376 (2016).

3. 受賞等

- 177. 寺部一弥,長谷川剛,田村拓郎, Manisha Kundu,根岸良太,梁長浩,阪本利司,青野正和, 未踏科学技術協会インテリジェント材料・システムフォーラム高木賞「ナノイオニクス現象 を利用した原子スイッチの開発」,2005年3月.
- 178. 青野正和,長谷川剛,寺部一弥,中山知信,文部科学大臣表彰科学技術賞「原子スイッチの 研究」,2007年4月.
- 179. 寺部一弥,長谷川剛,中山知信,青野正和,表面科学会誌賞「原子スイッチ-原子イオンの移動を利用したナノデバイス」,2007年11月.
- 180. 青野正和, 2010年ファインマン賞(実験部門), 2011年2月.
- 181. 長谷川剛,伊藤弥生美,田中啓文,日野貴美,鶴岡徹,寺部一弥,宮崎久生,塚越一仁,小 川琢治,山口周,青野正和,第34回(2012年度)応用物理学会優秀論文賞「Volatile/Nonvolatile Dual-Functional Atom Transistor」,2012年8月.
- 182. T. Tsuchiya, K. Terabe, M. Aono, 2014 MRS Fall Meeting & Exhibit, Best Poster Award, "In situ and Nonvolatile Bandgap Tuning of Graphene Oxide in Solid State Ionics Device", 2014年12月.
- 183. 土屋敬志, 電気化学会田川記念固体化学奨励賞「ナノイオニクスデバイスの研究」, 2016年1月.
- 184. K. Krishnan, T. Tsuruoka, M. Aono, 2016 MANA International Symposium, Best Poster Award, "Filament Growth Kinetics on Resistive Switching Behavior in Solid Polymer Electrolyte Based Planar Devices", 2016年3月.
- 185. K. Kawamura, T. Tsuchiya, M. Takayanagi, K. Terabe, T. Higuchi, 26th Annual Meeting of MRS-J, Award for Encouragement of Research, "Pulse-Reacted Long-Term and Short-Term Memorization of Pt/Ti₂₋/Pt Cross-Point Structure with Electron-Ion Mixed Conduction", 2016年12月.

4. 新聞発表等

- 186. 「固体電解質中の原子移動を利用した金属スイッチ技術を開発」, PC Watch, 2004年2月16日.
- 187. 「パソコン並みケータイできる」, 読売新聞15面, 2005年1月6日.
- 188.「省エネ・高速ナノスイッチ」,朝日新聞2面,2005年1月6日.
- 189. 「原子スイッチを開発」,毎日新聞21面,2005年1月8日.
- 190. 「光照射で電源オン」,日刊工業11面,2010年7月14日.

International Symposium on Atomic Switch 2017

- 191.「ナノサイズの光スイッチ」,日経産業新聞11面,2010年7月14日.
- 192. 「光ナノスイッチ開発」, 化学工業日報5面, 2010年7月14日.
- 193. 「超省エネトランジスター」,読売新聞2面,2010年12月24日.
- 194.「消費電力100万分の1 演算・記憶トランジスタ」,毎日新聞4面,2010年12月24日.
- 195.「消費電力100万分の1のトランジスタ開発」,朝日新聞2面,2010年12月24日.
- 196. 「脳型コンピューターに一歩」,日本経済新聞34面,2010年12月24日.
- 197.「演算と記憶の複合素子を開発」、日刊工業新聞20面、2010年12月24日.
- 198.「不要な情報忘れる人工シナプス」,毎日新聞6面,2011年6月27日.
- 199. 「人間のように記憶・忘却 脳型素子を開発」,日刊工業新聞17面,2011年6月27日.
- 200.「不要な情報は「忘却」次世代素子を開発」,茨城新聞21面,2011年6月27日.
- 201. 「記憶も忘却もする素子 脳シナプスに相当」,日経産業新聞9面,2011年6月27日.
- 202.「不要な情報忘れる 脳型コンピューターに道」、日本経済新聞11面、2011年6月27日.
- 203. 「「記憶」「忘却」どちらも可能 物材機構チームが「脳型素子」開発」,科学新聞2面,2011 年7月8日.
- 204. 「「最小」操る技極める」,朝日新聞22面,2012年4月2日.
- 205.「金属イオンの析出 原子レベルで観察」、日刊工業新聞11面、2012年4月30日.
- 206.「化学反応時の原子観察 燃料電池の電極で」,日経産業新聞9面,2012年5月15日.
- 207. 「脳神経伝達物質を模倣 素子が環境変化に反応」,日刊工業新聞21面,2012年5月24日.
- 208. 「環境で応答変化 新型素子を開発」,日経産業新聞11面,2012年5月24日.
- 209. 「酸化グラフェンのバンドギャップ その場で自在に制御」,科学新聞4面,2014年1月17日.
- 210. 「NanoBridgeに対応した新しいLSI設計技術を開発」, JCN Newswire, 2015年9月7日.
- 211. 「NB-FPGAの設計時間が1/10に」, EE Times Japan, 2015年9月8日.
- 212.「高集積化が可能な低電流スピントロニクス素子開発」,科学新聞4面,2016年1月29日.
- 213. 「低電流で磁性制御可能な素子開発」,日刊産業新聞15面,2016年1月14日.
- 214. 「人間くさいAIで1万倍省電力化する「脳型コンピューティング」など最先端の研究を紹介」、
 PC Watch, 2016年12月16日
- 215.「宇宙環境向けに放射線耐性のNanoBridge技術を搭載したLSIを開発」,日本経済新聞,2017 年3月7日

216. 「宇宙での利用を想定した高放射線耐性のNanoBridge式FPGAを開発」, PC Watch, 2017年3 月7日

International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS)