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We present an elementary proof concerning reciprocal transmittances and reflectances. The proof is
direct, simple, and valid for the diverse objects that can be absorptive and induce diffraction and
scattering, as long as the objects respond linearly and locally to electromagnetic waves. The proof
enables students who understand the basics of classical electromagnetics to grasp the physical basis
of reciprocal optical responses. We show an example to demonstrate reciprocal response
numerically and experimentally. © 2007 American Association of Physics Teachers.
�DOI: 10.1119/1.2752820�
I. INTRODUCTION

Reciprocity, which was first found by Lorentz at the end of
19th century, has a long history1 and has been derived in
several formalisms. There are two typical reciprocal configu-
rations in optical responses as shown in Fig. 1. The configu-
rations in Figs. 1�a� and 1�b� are transmission reciprocal and
those in Figs. 1�a� and 1�c� are reflection reciprocal. As
shown in Fig. 1, we denote transmittance by T and reflec-
tance by R; the subscripts k and � stand for the incident
wavevector and angle, respectively. The reciprocal configu-
rations are obtained by symmetry operations on the incident
light of the wavevector: �kx ,kz�→ �−kx ,−kz� or �−kx ,kz�.
Reciprocity on transmission means that Tk=T−k, and that on
reflection is expressed as R�=R−�, which is not intuitively
obvious and is frequently surprising to students.

The most general proof was published by Petit in 1980,2

where reciprocal reflection as shown in Fig. 1 is derived for
asymmetric gratings such as an echelette grating. On the ba-
sis of the reciprocal relation for the solutions of the Helm-
holtz equation, the proof showed that reciprocal reflection
holds for periodic objects irrespective of absorption. It seems
difficult to apply the proof to transmission because it would
be necessary to construct solutions of Maxwell equations
that satisfy the boundary conditions at the interfaces of the
incident, grating, and transmitted layers. The history of the
literature on reciprocal optical responses has been reviewed
in Ref. 1.

Since the 1950s, scattering problems regarding light and
elementary particles have been addressed by using the scat-
tering matrix �S-matrix�. In the studies employing the
S-matrix, it is assumed that there is no absorption by the
object. The assumption leads to the unitarity of the S-matrix
and makes it possible to prove reciprocity. The reciprocal
reflection of lossless objects was verified in this formalism.3

In this paper we present a simple, direct, and general deri-
vation of the reciprocal optical responses for transmission
and reflection relying only on classical electrodynamics. We
start from the reciprocal theorem described in Sec. II and
derive the equation for the zeroth order transmission and
reflection coefficients in Sec. III. The equation is essential to

the reciprocity. A numerical and experimental example of
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reciprocity is presented in Sec. IV. The limitation and break-
down of reciprocal optical responses are also discussed.

II. RECIPROCAL THEOREM

The reciprocal theorem has been proved in various fields,
such as statistical mechanics, quantum mechanics, and
electromagnetism.4 Here we introduce the theorem for elec-
tromagnetism.

When two currents exist as in Fig. 2 and the induced elec-
tromagnetic �EM� waves travel in linear and locally respond-
ing media in which Di�r�=� j�ijEj�r� and Bi�r�=� j�ijHj�r�,
then

� j1�r� · E2�r� dr =� j2�r� · E1�r� dr . �1�

Equation �1� is the reciprocal theorem in electromagnetism.
The proof shown in Ref. 4 exploits plane waves and is
straightforward. Equation �1� is valid even for media with
losses. The integrands take nonzero values at the position r
where currents exist, that is, ji�r��0. The theorem indicates
the reciprocity between the two current sources ji �i=1,2�
and the induced electric fields Ei that are observed at the
position of the other source jk �k� i�.

III. RECIPROCAL OPTICAL RESPONSES

In this section, we apply the reciprocal theorem to optical
responses in both transmission and reflection configurations.
First, we define the notation used in the calculations of the
integrals in Eq. �1�. An electric dipole oscillating at the fre-
quency � emits dipole radiation, which is detected in the far
field. When a small dipole p along the z axis is located at the
origin, it is written as p�t�= p�t�ez and p�t�= p0ei�t, where ez

denotes the unit vector along the z axis and p0 the magnitude
of the dipole. The dipole in vacuum emits radiation,5 which
in the far field is

E�r,t� =
1 p̈�t��

2 sin �e� �2a�

4��0 c r
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=
− 1

4��0

p0�2

c2r
ei�t� sin �e�, �2b�

where polar coordinates �r ,� ,�� are used, the unit vector e�

is given by e�= �cos � cos � , cos � sin � ,−sin ��, and t�= t
−r /c. Because the dipole p is defined by p�r , t�
=�r��r , t� dr and conservation of charge density is given by
� · j+�� /�t=0, we obtain the current j associated with the
dipole p:

j�r,t� = ṗ�t���r�ez. �3�

Consider two arrays of N dipoles �long but finite� in the xz
plane as shown in Fig. 3. The two arrays have the same
length, and the directions are specified by normalized vectors
ni �i=1,2� and n1 �n2. In this case, the current is ji �ni. If the
dipoles coherently oscillate with the same phase, then the
emitted electric fields are superimposed and form a wave
front at a position far from the array in the xz plane as drawn
in Fig. 3. The electric field vector of the wave front, Ei,in,
satisfies Ei,in�ni and travels with wavevector ki,in. Thus, if
we place the dipole arrays far enough from the object, the
induced EM waves become slowly decaying incident plane
waves in the xz plane to a good approximation. The arrays of
dipoles have to be long enough to form the plane wave.

For the transmission configuration, we calculate �ji ·Ek dr
�i ,k=1,2 and i�k�. Figure 3 shows a typical transmission
configuration, which includes an arbitrary periodic object
asymmetric along the z axis. The relation between the cur-
rent ji, the direction ni of the dipole, and the wavevector ki,in

Fig. 1. Reciprocal configurations. �a� and �b� show reciprocal configurations
for transmission. Tk in �a� denotes the transmittance for the incident
wavevector k. T−k in �b� is defined similarly. The reciprocal relation is Tk

=T−k. �a� and �c� are reciprocal for reflection. R� in �a� is the reflectance for
the incident wavevector �kx ,kz� and R−� in �c� for �−kx ,kz�. The reciprocal
relation is R�=R−�.

Fig. 2. Schematic drawing of two currents ji and the electric fields Ei in-

duced by ji �i=1,2�. The curves denote the position where the currents exist.
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of the wave front is summarized as ji �ni and ni�ki,in. It is
convenient to expand the electric field into a Fourier series
for the calculation of periodic sources:

E�r� = �
m

E�m� exp �ikm · r� , �4�

where E�m� is the Fourier coefficient of E�r�, km

= �kx,m ,0 ,kz,m�= �kin,x+2�m /dx ,0 ,kz,m� �m=0, ±1, ±2, . . . �,
and dx is the periodicity of the object along the x axis �see
Fig. 3�. The z component is expressed in homogeneous me-
dia in vacuum as kz,m= ±	kin

2 −kx,m
2 , where the signs corre-

spond to the directions along the z axis.
When the dipole array is composed of sufficiently small

and numerous dipoles, the integration can be calculated to
good accuracy as

� j1�r� · E2�r� dr =� i�p0n1 · �
m

E2
�m� exp �ikm · sn1� ds

�5a�

=�
m

�m,0N�i�p0n1 · E2
�m�� �5b�

=i�Np0E2
�0�, �5c�

where E2
�0�= 
E2

�0�
. To ensure that the integration is propor-
tional to �m,0, the array of dipoles has to be longer than L:

L = �length of dipole�q , �6�

where q is the least common multiple of the diffraction chan-
nels that are open at the frequency �. This condition would
usually be satisfied when Ei,in forms a plane wave.

By permutating 1 and 2 in Eq. �5c�, we obtain �j2 ·E1 dr
= i�Np0E1

�0�. Equation �5c� and the reciprocal theorem in Eq.
�1� lead to the equation

E1
�0� = E2

�0�. �7�

Each electric vector Ei
�0� �i=1,2� is observed at the position

Fig. 3. Schematic drawing of reciprocal configuration for transmission. The
object has an arbitrary periodic structure, which is asymmetric along the z
axis. Currents ji induce electric fields Ei,in �i=1,2�.
r where there is another current jk�r� �k� i�. The integral in
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Eq. �1� is reduced to Eq. �5c�, which is expressed only by the
zeroth components of the transmitted electric field. The reci-
procity is thus independent of higher order harmonics, which
are responsible for the modulated EM fields in structured
objects. When there is no periodic object in Fig. 3, a similar
relation holds:

E1
no,�0� = E2

no,�0�. �8�

The transmittance Ti is given by

Ti = � Ei
�0�

Ei
no,�0��2

. �9�

From Eqs. �7�–�9�, we finally find the reciprocal relation T1
=T2.

The feature of the proof that T1=T2 is independent of the
detailed evaluation of Ei

�0� and therefore makes the proof
simple and general. The proof can be extended to two-
dimensional periodic structure by replacing the one-
dimensional periodic structure in Fig. 3 by a two-
dimensional structure.

Although we have considered periodic objects, the proof
can also be extended to nonperiodic objects. To do this ex-
tension, Eq. �4� has to be expressed in the general form
E�r�=�E�k� exp �ik·r� dk, and a more detailed calculation
for �ji ·Ek dr is required. Reciprocity for transmission thus
holds irrespective of absorption, diffraction, and scattering
by objects.

In Fig. 3 the induced electric fields Ei are polarized in the
xz plane. The polarization is called TM polarization in the
terminology of waveguide theory and is also often called p
polarization. For TE polarization �which is often called s
polarization� for which Ei has a polarization parallel to the y
axis, the proof is similar to what we have described except
that the dipoles are aligned along the y axis.

Reciprocal reflection is also shown in a similar way. The
configuration is depicted in Fig. 4. The two sources have to
be located to satisfy the mirror symmetry about the z axis.
The calculation of �ji ·Ek dr leads to the reciprocal relation
for reflectance R1=R2. Note that Ei

no,�0� in Eq. �8� has to be
evaluated by replacing the periodic object by a perfect mir-
ror.

IV. NUMERICAL AND EXPERIMENTAL
CONFIRMATION

An example of reciprocal optical response is shown here.
Figure 5�a� displays the structure of the sample and recipro-

Fig. 4. Schematic configuration for reciprocal reflection. The object has an
arbitrary periodic structure, which consists of asymmetric unit cells. The
currents ji yield electric fields Ei,in �i=1,2�.
cal transmission configuration. The sample consists of peri-
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odic grooves etched in metallic films of Au and Cr on a
quartz substrate. The periodicity is 1200 nm, as indicated by
the dotted lines in Fig. 5�a�. The unit cell has the structure of
Au:air:Au:air	3:1:4:5. The thicknesses of Au, Cr, and quartz

Fig. 5. �a� Schematic drawing of metallic grating profile modeled from AFM
images. The periodicity is 1200 nm. The dotted lines show the unit cells in
which the ratio is Au:air:Au:air	3:1:4:5. The thicknesses of Au, Cr, and the
quartz substrate are 40 nm, 5 nm, and 1 mm, respectively. �b� Numerically
calculated spectra for 10° incidence of k1,in �upper panel� and k2,in �lower
panel� of TM polarization. In both panels the reflectance �upper solid line�
and absorption �dotted line� are plotted using the left axis, while the trans-
mittance �lower solid line� uses the right axis. �c� Measured transmittance
spectra, corresponding to the transmittance spectra in �b�.
are 40 nm, 5 nm, and 1 mm, respectively. The structure is
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obviously asymmetric about the z axis. The profile was mod-
eled from an AFM image of the fabricated sample.

Figure 5�b� shows our numerical results. The incident light
has �=10° and TM polarization �the electric vector is in the
xz plane�. The numerical calculation was done with an im-
proved S-matrix method.6,7 The permittivities of gold and
chromium were taken from Refs. 8 and 9; the permittivity of
quartz is well known to be 2.13. In the numerical calculation,
the incident light is taken to be a plane wave, and harmonics
up to n= ±75 in Eq. �4� were used, which is enough to obtain
accurate optical responses. The result indicates that transmis-
sion spectra �lower solid line� are numerically the same in
the reciprocal configurations, while reflection �upper solid
line� and absorption �dotted line� spectra show a definite dif-
ference. The absorption is plotted along the left axis. The
difference implies that surface excitations are different on
each side and absorb different numbers of photons. Nonethe-
less, the transmission spectra are the same for incident
wavevectors k1,in and k2,in.

Experimental transmission spectra are shown in Fig. 5�c�
and are consistent within experimental error. Reciprocity is
thus confirmed both numerically and experimentally. There
have been a few experiments on reciprocal transmission �see
references in Ref. 1�. In comparison with these results, Fig.
5�c� shows the excellent agreement of reciprocal transmis-
sion and is the best available experimental evidence support-
ing reciprocity.

We note that transmission spectra in Figs. 5�b� and 5�c�
agree quantitatively above 700 nm. On the other hand, they
show a qualitative discrepancy below 700 nm. The result
could come from the difference between the modeled profile
in Fig. 5�a� and the actual profile of the sample. The dip at
660 nm stems from a surface plasmon at the metal-air inter-
face, so that the measured transmission spectra would be
affected significantly by the surface roughness and the devia-
tion from the modeled structure.

V. REMARKS AND SUMMARY

As described in Sec. II, the reciprocal theorem assumes
that all media are linear and show local response. The recip-
rocal optical responses do not have to hold for nonlinear or
nonlocally responding media. Reference 10 discusses the dif-
ference of the transmittance for a reciprocal configuration in
a nonlinear optical crystal of KNbO3:Mn. The values of the
transmittance deviate by a few tens of percent in the recip-
rocal configuration. The crystal has a second-order response
such that Di�r�=� j�ijEj�r�+� j,k�ijkEj�r�Ek�r�. The break-

down of reciprocity comes from the nonlinearity.
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Does reciprocity also break down in nonlocal media? In
nonlocal media the induction D is given by D�r�
=���r ,r��E�r�� dr�. Although a general proof for this case
has not been reported to our knowledge, it has been shown
that reciprocity holds in a particular stratified structure com-
posed of nonlocal media.11

In summary, we have presented an elementary and heuris-
tic proof of the reciprocal optical responses for transmittance
and reflectance. When the reciprocal theorem in Eq. �1�
holds, the reciprocal relations come from geometrical con-
figurations of light sources and observation points, and are
independent of the details of the objects. Transmission reci-
procity has been confirmed both numerically and experimen-
tally.
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