THEORETICAL STUDY OF SPIN WAVE EXCITATION IN PERPENDICULARLY MAGNETIZED SINGLE LAYER

Toshiki YAMAJI¹ and Hiroshi IMAMURA²

AIST, Spintronics RC, Tsukuba, Japan, toshiki-yamaji@aist.go.jp
 AIST, Spintronics RC, Tsukuba, Japan, h-imamura@aist.go.jp

I. INTRODUCTION

Microwave assisted switching (MAS) of magnetization has attracted much attention as a novel switching technique to reduce the switching field of ultra-high-density magnetic recording media [1]. The reduction of the switching field of MAS of a nano-magnet is well understood by analyzing the dynamics of a macrospin-model in a rotating frame synchronized with the applied radio frequency (rf) field. In the rotating frame, the rf field acts as a static field parallel to the rotating axis and reduces the switching field. For MAS, however a certain critical frequency, f_c exits [1-2]. A switching field, h_{sw} monotonically decreases with increase of rf frequency, f and it takes a minimum value h_{min} at f_c . Once f exceeds f_c the h_{sw} shows sudden increase and takes almost the same value as that without rf field. Thus in principle the h_{sw} can't be reduced below the h_{min} on MAS.

Recently S. Okamoto et al. has reported that a significant reduction of the h_{sw} is realized in a single Co/Pt nanodot with perpendicular magnetic anisotropy by applying a large rf field but one much smaller than the effective anisotropy field [2]. The large amplitude nonuniform magnetization motion, that is, spin wave (SW) was exited in the Co/Pt nanodot with the large diameter whereas that was not observed in the Co/Pt nanodot with the small diameter. The h_{sw} of the Co/Py with the small diameter was conventionally analyzed by the macrospin model. It was found that the f_c increase due to the excitation of the large amplitude SW and the reduction of the h_{sw} is consequently much more significant than the theoretical prediction based on the single macrospin model.

So far we have studied the MAS behavior and its dynamics of a perpendicularly magnetized single layer by a Landau-Lifshitz-Gilbert (LLG) numerical simulation and theoretical analysis. It was revealed from the LLG numerical simulation that the large amplitude SW is exited above a certain critical layer thickness, $d_{c(SW)}$ and that the f_c increases due to the excitation of the large amplitude SW above a certain critical layer thickness $d_{c(f)}$. It was furthermore found that the $d_{c(SW)}$ is not equal to $d_{c(f)}$ ($d_{c(SW)} < d_{c(f)}$). In this study the analytical estimation of the $d_{c(SW)}$ a was established from the analysis of **P**-modes and SW instabilities on LLG phase diagram.

II. P-MODE AND SPIN WAVE INSTABILITY

By setting $d\theta/dt = d\varphi/dt = 0$ in a normalized LLG equation expressed by the zenith and azimuth angles, θ and φ , one obtains the equations (1) and (2) for the fixed points, i.e., **P**-modes of the magnetization dynamics in the rotating frame:

$$\nu_{0} = \frac{\mathbf{h}_{az} - \omega}{\cos \theta_{0}} + \kappa_{\text{eff}},$$

$$\nu_{0}^{2} = \frac{\mathbf{h}_{a\perp}^{2}}{\sin^{2} \theta_{0}} - \alpha^{2} \omega^{2},$$
(1)
(2)

where $v_0 = \alpha \omega \cot \varphi_0$. α and ω are the damping constant and the angular frequency of the rf field. h_{az} and $h_{a\perp}$ are the static magnetic field, H_{dc} and the circularly polarized rf field, H_{rf} normalized by the saturation magnetization, M_s , respectively. θ_0 and φ_0 are the angles identifying the **P**-modes. The effective anisotropy field, κ_{eff} :

$$\kappa_{\rm eff} = \kappa + N_\perp - N_z \tag{3}$$

Hiroshi IMAMURA E-mail: h-imamura@aist.go.jp tel: +81-29-862-6713 fax: +81-29-861-3422

DP-29

where the normalized anisotropy field $\kappa = 2K_1 / \mu_0 M_s^2$. K_1 is the physical anisotropy constant, μ_0 is the magnetic permeability of vacuum. N_{\perp} and N_z are the demagnetization factors. The demagnetization factors satisfy the relation: $N_z + 2N_{\perp} = 1$.

The SW instability matrix A_q is as follows,

$$A_{\rm q} = \frac{1}{1+\alpha^2} \begin{pmatrix} 1 & -\alpha \\ \alpha & 1 \end{pmatrix} \begin{pmatrix} -\alpha\omega\cos\theta_0 & -\nu_{\rm q} \\ \nu_{\rm q} - \kappa_{\rm q}\sin^2\theta_0 & -\alpha\omega\cos\theta_0 \end{pmatrix}$$
(4)

where $v_q = v_0 - N_{\perp} + q^2 + (1/2) \sin^2 \theta_q$, $\kappa_q = \kappa - 1 + (3/2) \sin^2 \theta_q$. q is the wavevector constant. θ_q is the angle between the direction of the wavevector and the static magnetization, therefore $\sin \theta_q$ is zero for the current perpendicularly magnetized layer model.

When the stable **P**-mode with $\cos \theta_0 \sim 1$ vanishes as h_{az} increases, the fixed point moves to another **P**-mode with $\cos \theta_0 \sim 0.87$. If this **P**-mode is located in the inside of the red line satisfying det $A_q \leq 0$, the large amplitude SW is expected to be exited. The $d_{c(SW)}$ can be therefore analytically estimated from the condition, det $A_q = 0$ after substitution of h_{az} , v_0 and θ_0 satisfying that the line for the Eq. (1) is tangent to one for the Eq. (2) into Eq. (4).

II. LLG SIMULATION AND ANALYTICAL RESULT

Figure 1 shows a schematic illustration of an effective spin model of the single layer used for the LLG numerical simulation where the perpendicularly magnetized each cells with 1 nm thickness are coupled with each other by the exchange stiffness coupling, A_{ex} . H_{dc} is applied along the z-direction and H_{rf} is applied in the xy-plane. As seen in Figure 2, the analytical result for the $d_{c(SW)}$ is good agreement with the result of the LLG simulation. The estimation of the $d_{c(SW)}$ established in this study is expected to be important feature for improving the ultra-high density of the magnetic recording.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) 17K18412.

REFERENCES

1) J. G. Zhu, X.Zhu, and Y.Tang, IEEE Trans. Magn., 44, 125 (2008).

2) S. Okamoto, N. Kikuchi, M. Furuta, O. Kitakami, and T. Shimatsu, J. Phys. D: Appl. Phys., 48, 353001 (2015)

3) G. Bertotti, I. D. Mayergoyz, C. Serpico, J. Appl. Phys., 91, 8656 (2002).

Fig. 1 Effective spin model of perpendicularly magnetized single layer.

Fig. 2 Results of LLG simulation and SW instability analysis for d_c (SW).