EFFICIENCY OF SPIN TRANSFER TORQUE SWITCHING IN A PERPENDICULARLY MAGNETIZED FREE LAYER WITH THE FIRST- AND SECOND-ORDER UNIAXIAL MAGNETIC ANISOTROPIES

R. MATSUMOTO¹, H. ARAI², S. YUASA³ and H. IMAMURA⁴

AIST, Spintronics Research Center, Tsukuba, Japan, rie-matsumoto@aist.go.jp
 AIST, Spintronics Research Center, Tsukuba, Japan and PRESTO, JST, Kawaguchi, Japan, arai-h@aist.go.jp

3) AIST, Spintronics Research Center, Tsukuba, Japan, yuasa-s@aist.go.jp 4) AIST, Spintronics Research Center, Tsukuba, Japan, h-imamura@aist.go.jp

I. INTRODUCTION

Second-order perpendicular magnetic anisotropy (K_{u2}) has been attracting a great deal of attention because faster spin-transfer-torque (STT) switching with higher STT-switching efficiency (κ) is theoretically expected [2] in the case of a conically magnetized free layer (c-FL) [3] compared with the case of a conventional perpendicularly magnetized free layer (p-FL) without K_{u2} . Here, κ is defined as $\kappa \equiv \Delta_0/I_{sw}$ where Δ_0 is the thermal stability factor and I_{sw} is switching current. In c-FL, the angle (θ) of a magnetization (\mathbf{m}) is tilted from z-direction (see Fig. 1(a)) due to the energetic competition between the first- and second-order magnetic anisotropies ($K_{u1,eff}$ and K_{u2}). κ of c-FL ($\kappa^{(c)}$) can be about 1.3 times larger than that of the conventional p-FL ($\kappa^{(p0)}$). In this study [4], we theoretically expect the further enhancement of κ in p-FL with finite K_{u2} .

II. MODEL

The system we consider is illustrated in Fig. 1(a). The magnetic energy density (g_L) and the effective potential (Φ) of the free layer is given by

$$g_L = K_{u1,eff} \sin^2 \theta + K_{u2} \sin^4 \theta$$

$$\Phi = g_L + M_s \quad (a_J/\alpha) \quad \cos \quad \theta.$$
(2)

Here, $K_{u1,eff}$ and K_{u2} are the first- and second-order magnetic anisotropy constants. In $K_{u1,eff}$, demagnetization energy is subtracted. M_s and α are the saturation magnetization and the Gilbert damping constant of the free layer. (a_J/α) represents the effective field by STT and a_J is defined as $a_J = hIP/(4\pi e M_s V)$. h is the Planck constant, P is the spin polarization, I is the applied current, e (> 0) is the elementary charge, and V is the volume of the free layer.

The equilibrium direction of m is determined by minimizing $g_L(\theta)$. The phase diagram of the equilibrium direction is shown in Fig. 1(b). We assume $K_{ul,eff} \ge 0$ and the perpendicular state is stable or metastable.

Fig. 1 (a) Schematic illustration of the system we considered. Positive *I* is defined as electrons (e-) flowing from the free layer to the reference layer. (b) Phase diagram of equilibrium direction of *m*. The conventional perpendicular state with $K_{u2} = 0$ is

Rie MATSUMOTO E-mail: rie-matsumoto@aist.go.jp tel: +81-29-861-2751

(1)

DP-21

indicated by the thick solid line. Metastable regions are hatched.

III. RESULTS AND DISCUSSIONS

 κ of the free layer can be calculated by analyzing Δ_0 from Eq. (1) and I_{sw} from Eq. (2). By normalizing Δ_0 with I_{sw} , the dependence of κ on $K_{u1,eff}$ and K_{u2} is obtained as

$$\kappa/\kappa^{(p0)} = (3 \cdot 6^{1/2}/2) r_K^{1/2} (1 + r_K)/(1 + 2 r_K)^{3/2} \qquad \text{for } r_K > 1/4, \tag{3}$$

 $\kappa/\kappa^{(p0)} = 1 + r_K$ for $-1/2 \le r_K \le 1/4$, (4)

$$\kappa/\kappa^{(p0)} = -1/(4r_K)$$
 for $r_K < -1/2$. (5)

Here, κ is normalized by $\kappa^{(p0)}$, and r_K represents the ratio of K_{u2} to $K_{u1,eff}$, that is $r_K = K_{u2}/K_{u1,eff}$. In Fig. 2, the normalized switching efficiency ($\kappa/\kappa^{(p0)}$) of the p-FL given in Eqs. (3) - (5) is plotted as a function of r_K . It should be noted that $\kappa/\kappa^{(p0)}$ is larger than unity for a positive r_K and takes a maximum value of $2^{1/2}$ at $r_K = 1$.

IV. CONCLUSIONS

The analytical expression of the STT-switching efficiency is derived for the perpendicularly magnetized free layer with the second-order uniaxial magnetic anisotropy. The switching efficiency is maximized at $K_{u1,eff} = K_{u2}$. $\kappa/\kappa^{(p0)}$ in the p-FL with the positive K_{u2} can be larger than those in the p-FL without K_{u2} and in the c-FL.

IV. ACKNOWLEDGMENTS

This work was partially supported by JSPS KAKENHI Grant Number JP16K17509.

REFERENCES

1) R. Matsumoto et al., "Spin-transfer-torque switching in a spin-valve nanopillar with a conically magnetized free layer", *Appl. Phys. Express.*, 8 063007, (2015).

2) D. Apalkov and W. H. Butler, U.S. Patent No. 8,780,665 (15 July 2014).

3) R. Matsumoto et al., "Theoretical analysis of thermally activated spin-transfer-torque switching in a conically magnetized nanomagnet", *Phys. Rev. B*, 92 140409 (2015).

4) R. Matsumoto et al., "Efficiency of Spin-Transfer-Torque Switching and Thermal-Stability Factor in a Spin-Valve Nanopillar with First- and Second-Order Uniaxial Magnetic Anisotropies", *Phys. Rev. Applied*, 7 044005, (2017).

Fig. 2 r_K dependence of the normalized switching efficiency $(\kappa/\kappa^{(p0)})$.