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I. INTRODUCTION

Second-order perpendicular magnetic anisotropy (Ku.2) has been attracting a great deal of attention
because faster spin-transfer-torque (STT) switching with higher STT-switching efficiency (k) is
theoretically expected [2] in the case of a conically magnetized free layer (c-FL) [3] compared with the
case of a conventional perpendicularly magnetized free layer (p-FL) without K.p. Here, « is defined as x =
Ao/lsw where Ao is the thermal stability factor and Isw is switching current. In c-FL, the angle () of a
magnetization (m) is tilted from z-direction (see Fig. 1(a)) due to the energetic competition between the
first- and second-order magnetic anisotropies (Kyiefrand Kyp). & of ¢-FL (x9) can be about 1.3 times larger
than that of the conventional p-FL (x®%). In this study [4], we theoretically expect the further
enhancement of x in p-FL with finite K.

II. MODEL

The system we consider is illustrated in Fig. 1(a). The magnetic energy density (gz) and the effective
potential (@) of the free layer is given by

gL = Kt et sin’ 0 + K sin* 0,
(1)
D = gL + M (aj/a) cos 6.
(2)

Here, Kuierr and Ky are the first- and second-order magnetic anisotropy constants. In Kyiess,
demagnetization energy is subtracted. Ms and o are the saturation magnetization and the Gilbert damping
constant of the free layer. (aj/a) represents the effective field by STT and a, is defined as a; =
hiP/(4meMV). h is the Planck constant, P is the spin polarization, / is the applied current, e (> 0) is the
elementary charge, and V' is the volume of the free layer.

The equilibrium direction of m is determined by minimizing gi(d). The phase diagram of the
equilibrium direction is shown in Fig. 1(b). We assume Kuirr > 0 and the perpendicular state is stable or
metastable.
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indicated by the thick solid line. Metastable regions are hatched.

III. RESULTS AND DISCUSSIONS

x of the free layer can be calculated by analyzing Ao from Eq. (1) and I from Eq. (2). By normalizing
Ao with Iy, the dependence of x on Ky efrand Ky is obtained as

K/ = (3-6"2/2) 12 (1+ r)/(1 + 2 rx)*? for rx > 1/4, 3
K/ = 14 pg for -1/2 <rx < 1/4, 4)
k/KkK®0) = -1/(4rk) for rx < -1/2. (5)

Here, « is normalized by x®%, and rx represents the ratio of Ky to Kuiefs, that is 7k = Kw/Kuiefr. In Fig. 2,
the normalized switching efficiency (x/x®?) of the p-FL given in Egs. (3) - (5) is plotted as a function of rx.
It should be noted that x/x® is larger than unity for a positive ¢ and takes a maximum value of 2"/ at r¢
=I.

IV. CONCLUSIONS

The analytical expression of the STT-switching efficiency is derived for the perpendicularly
magnetized free layer with the second-order uniaxial magnetic anisotropy. The switching efficiency is
maximized at Ky err = K. x/xP? in the p-FL with the positive Ky, can be larger than those in the p-FL
without Ky, and in the c-FL.
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