PROPOSAL OF GRAIN BOUNDARY OXIDES FOR HIGH *K*_u C080Pt₂₀ GRANULAR MEDIA WITH SMALL GRAIN SIZE

Ryosuke KUSHIBIKI^{1,2}, Kim Kong THAM¹, Shintaro HINATA², and Shin SAITO²

¹Tanaka Kikinzoku Kogyo K.K., 22, Wadai, Tsukuba, Ibaraki 300-4247, Japan ²Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6-05, Aoba, Aramaki, Aoba, Sendai 980-8579, Japan

I. INTRODUCTION

CoPt-oxide granular media with columnar grain growth have been widely used for perpendicular magnetic recording. To further increase the recording density of the media, enhancement of magnetocrystaline anisotropy (K_u) and reduction of magnetic grain diameter (GD) are required. In the previous study, it was found that a granular medium with high K_u can be obtained when oxide with low melting point (T_m), especially B₂O₃, was utilized due to the promotion of columnar grain growth¹). However, the effect of T_m of the oxide on the GD is still unclear. Therefore, in this report, after examining the influence of various grain boundary oxides on GD, we will discuss about the guiding principle of choosing grain boundary oxide materials.

II. RESULTS AND DISCUSSION

Figure 1 show dependence of (a) magnetocrystalline anisotropy (K_u) and (b) grain diameter (GD) for $Co_{80}Pt_{20}$ -30vol% single oxide granular media with d_{mag} of 16 nm on melting point (T_m) of the grain boundary oxides materials. The inset shows the definition of GD, which is evaluated from CoPt (11.0) diffraction from the XRD in-plane profiles by Scherrer's equation^{2,3}. Here, from the result of out-of-plane XRD profiles for the granular media with grain boundary oxide materials with various T_m (the result are not shown here), these granular structure magnetic grains are considered to have *c*-plane sheet texture orientation. When T_m of oxide increases from 450 to 2410°C, K_u and GD decrease from 7.7 to 4.1×10^6 erg/cm³ and from 5.6 to 3.0 nm, respectively. From this result, it suggests that a granular medium with both high K_u and low GDcannot be realized by only employing single oxides.

We consider that a granular medium with reasonably high K_u and small GD may be achievable by utilizing double grain boundary oxides with moderate T_m which consist of high and low T_m oxides. To verify the effect of double oxides, second oxides with T_m ranging from 450 to 2330°C and first oxide of low T_m (B₂O₃) were added to Co₈₀Pt₂₀ alloy (Co₈₀Pt₂₀-15vol% B₂O₃-15vol% second oxides). Figure 2 shows dependence of K_u and GD on T_m of various second oxides. When T_m of the second oxide is lower than 1857°C (TiO₂), K_u is almost comparable with that of B₂O₃. For T_m higher than 1857°C, K_u decreases. In the case of GD, it is almost constant for T_m of the second oxide lower than 1723°C (SiO₂). When T_m is higher than 1723°C, GD decreases. From this result, the addition of TiO₂ for the second oxide is effective to realize a granular medium with high K_u and small GD.

Figure 3 shows in-plane-view TEM of $Co_{80}Pt_{20}$ -15vol% B₂O₃-15vol% typical second oxide (second oxide: (i) B₂O₃ (T_m : 450°C), (ii) SiO₂ (T_m : 1723°C), (iii) TiO₂ (T_m : 1857°C) and (iv) Cr₂O₃ (T_m : 2330°C)). Observing the detailed in-plane-view TEM of high T_m second oxides such as TiO₂ and Cr₂O₃, grain boundaries with different thicknesses are confirmed. The thick grain boundaries are similar to that of the second oxide of B₂O₃. Inside some magnetic grains thin grain boundaries can also be observed. It is considered that the existence of the thin grain boundaries induces the *GD* reduction. Generally, the variation of the grain boundary thickness will lead to a wide grain size distribution. The application of underlayer with smaller grains size than current one may be effective to obtain a granular medium with homogeneous grain size.

Ryosuke KUSHIBIKI fax: +81-29-864-8176 tel: +81-29-864-8175 r-kushibiki@ml.tanaka.co.jp

BP-08

REFERENCES

- 1) K. K. Tham, R. Kushibiki, S. Hinata, and S. Saito, Jpn. J. Appl. Phys., 55, 07MC06 (2016).
- 2) P. Scherrer, Göttinger Nachrichten Gesell., 2, 98 (1918).
- 3) D. M. Smilgies, J. Appl. Cryst. 42, 1030 (2009).

Fig. 1. Dependence of (a) magnetocrystalline anisotropy (K_u) and (b) grain diameter (GD) for $Co_{80}Pt_{20}$ -30vol% single oxide granular media with d_{mag} of 16 nm on melting point (T_m) of the grain boundary oxides materials. The inset shows the definition of GD, which is evaluated from CoPt (11.0) diffraction from the XRD in-plane profiles by Scherrer's equation^{2,3}).

Fig. 2. Dependence of (a) K_u and (b) GD of various oxides in Co₈₀Pt₂₀-15vol% B₂O₃-15vol% second oxide granular media with d_{mag} of 16 nm on T_m of the grain boundary oxides materials. In-plane-view TEM of these samples (second oxide: (i) B₂O₃ (T_m : 450°C), (ii) SiO₂ (T_m : 1723°C), (iii) TiO₂ (T_m : 1857°C) and (iv) Cr₂O₃ (T_m : 2330°C)) are shown in Figure 3.

Fig.3 In-plane-view TEM of granular media shown in Figure 2.