TUNING MAGNETIC ANISOTROPY AND CURIE TEMPERATURE OF L10-FePt GRANULAR FILMS

Takehito SHIMATSU^{1,2}, Takuya ONO³, Tomohiro MORIYA³, Hitoshi NAKATA³, Kazuya KOMIYAMA³, Shinji UCHIDA³, Hirohisa Oyama³, Hiroto KIKUCHI³, Hiroyasu KATAOKA³, Kiminori SATO³, Akira FURUTA³, Tsuyoshi YOSHIZAWA³, Masatoshi HATAYAMA¹, Kaoru TSUMURA¹, Nobuaki KIKUCHI⁴ and Osamu KITAKAMI⁴ 1) FRIS, Tohoku University, Sendai, Japan, shimatsu@riec.tohoku.ac.jp

2) RIEC, Tohoku University, Sendai, Japan

3) Fuji Electric Co. Ltd., Tokyo, Japan

4) IMRAM, Tohoku University, Sendai, Japan

I. INTRODUCTION

 L_{10} -FePt granular films with perpendicular magnetization are attractive candidates for use as recording media for heat-assisted magnetic recording (HAMR) [1]. In HAMR, a medium is heated locally using laser irradiation to the Curie temperature (T_c) of FePt. The heating affects a lubricant and carbon overcoat. Some additives to FePt have been examined to reduce T_c while maintaining large K_u [1, 2–4], but T_c reduction degrads K_u considerably. Moreover, carbon and oxide materials are generally used as segregant materials to fabricate a granular structure of FePt. Optimum segregant materials to fabricate a well-segregated granular structure while maintaining large K_u are also important. As described herein, we examined the T_c reduction while maintaining large K_u by substituting some Fe or Pt of FePt with a third material. Moreover, we discuss the magnetic anisotropy of FePt granular media in relation to segregant materials.

II. ADDITION OF THIRD METALS

After fabricating FePt-X (X: third metals) single crystal films, we examined the relation between T_c and K_u . The 10-nm-thick FePt-X films were sputter-deposited on MgO(001) single-crystalline substrates with a 20-nm-thick Pt underlayer at a substrate temperature T_s of 350°C. The film deposition was done using co-sputtering with X targets and Fe-Pt targets with various composition ratios of Fe/Pt. The atomic ratios of Fe, Pt, and X thin films were confirmed using Rutherford backscattering spectrometry (RBS) analysis. Figure 1 presents the relation between values of T_c and K_u of the FePt-X films with X=Cu [5], Mn, and Ru [6]. The relation of T_c and K_u shows a roughly linear trend in all series of films. T_c of the FePtRu films decreased more steadily than that of the other series of films. These results demonstrate that Ru addition can achieve low T_c while maintaining K_u as higher than Mn and Cu addition. Figure 2 depicts relations of anisotropy field H_k (= $2K_u/M_s$, where M_s denotes saturation magnetization) and M_s of these films. Results show that Ru addition decreased H_k moderately, but M_s decreased rapidly. By contrast, Cu and Mn addition drastically decreased H_k . The rapid decrease of T_c by Ru addition occurs because of a sharp decrease of M_s : T_c is related to the magnitude of moments. Ru is a noble metal and is therefore not very reactive to oxygen, which is suitable for fabrication of granular films by adding oxide segregants.

III. SEGREGANT MATERIALS

Stacked films consisting of a FePt-oxide upper layer and a FePt-C template layer are effective to promote columnar growth and L_{10} -ordering of FePt grains maintaining high K_u [7,8]. Figure 3 shows magnetization loops of FePt-25vol.% oxide (3 nm)/FePt-40vol.%C(2 nm) stacked films comprising various oxide materials. These films were fabricated using co-sputtering on MgO underlayers at a substrate temperature of 450°C in identical deposition conditions. All films are perpendicular films, but marked differences in magnetization curves were observed. These differences are related to segregation structures and K_u . Figure 4 presents values of K_u as a function of the electronegativity of oxide materials for these

Takehito Shimatsu E-mail: shimatsu@riec.tohoku.ac.jp tel: +81-22-217-5494 stacked films. The K_u of FePt-GeO₂/FePt-C stacked films is 2.1×10^7 erg/cm³, which corresponds to 3.0×10^7 erg/cm³ of FePt grains [9]. However, K_u decreased as electronegativity decreased, implying that the electronegativity of oxide segregants influences the degree of FePt ordering.

Fig. 1. Relation between values of T_c and K_u for FePtX (X=Mn, Cu, and Ru) films.

Fig. 2. Relation between values of H_k and M_s for FePtX (X=Mn, Cu, and Ru) films.

Fig. 3. Magnetization loops for FePt-25 vol.% oxide (3 nm)/FePt -40 vol.% C (2 nm) stacked films with various oxide materials.

Fig. 4. Values of K_u as a function of electronegativity.

REFERENCES

- 1) B. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y. Hsia, and M. F. Erden, *Proc. IEEE*, 96(11) 1810-1835, (2008).
- 2) B. Wang and K. Barmak, J. Appl. Phys. 109 (12) 123916(1-7), (2011).
- 3) J. Ikemoto, Y. Imai, and S. Nakagawa, IEEE Trans. Magn., 44(11) 3543-3546, (2008).
- D. A. Gilbert, L.-W. Wang, T. J. Klemmer, J.-U. Thiele, C.-H. Lai, and K. Liu, *Appl. Phys. Lett.*, 102 132406(1-4), (2013).
- 5) T. Moriya, H. Nakata, K. Komiyama, S. Okamoto, N. Kikuchi, O. Kitakami, and T. Shimatsu, 58th Conference on Magn. Magn. Mater., BT-05 (2013).
- 6) T. Ono, H. Nakata, T. Moriya, N. Kikuchi, S. Okamoto, O. Kitakami, and T. Shimatsu, *Applied Physics Express*, 9, 123002(1-3), (2016).
- 7) B. S. D. C. S. Varaprasad, M. Chen, Y. K. Takahashi, and K. Hono, *IEEE Trans. Magn.*, 49(2) 718-722, (2013).
- 8) T. Ono, T. Moriya, M. Hatayama, N. Kikuchi, S. Okamoto, O. Kitakami, and T. Shimatsu, J. Appl. Phys., 115 17B709(1-3), (2014).
- 9) T. Ono, T. Moriya, M. Hatayama, K. Tsumura, N. Kikuchi, S. Okamoto, O. Kitakami, and T. Shimatsu, *Applied Physics Letters*, 110 022402(1-4), (2017).