TUNING MAGNETIC ANISOTROPY AND CURIE TEMPERATURE OF L_1^0-FePt GRANULAR FILMS

Takehito SHIMATSU1,2, Takuya ONO3, Tomohiro MORIYA3, Hitoshi NAKATA3, Kazuya KOMIYAMA3, Shinji UCHIDA3, Hirohisa Oyama3, Hirote KIKUCHI3, Hiroyasu KATAOKA3, Kiminori SATO3, Masatoshi HATAYAMA1, Kaoru TSUMURA1, Nobuaki KIKUCHI4 and Osamu KITAKAMI4

1) FRIS, Tohoku University, Sendai, Japan, shimatsu@riec.tohoku.ac.jp
2) RIEC, Tohoku University, Sendai, Japan
3) Fuji Electric Co. Ltd., Tokyo, Japan
4) IMRAM, Tohoku University, Sendai, Japan

I. INTRODUCTION

L_1^0-FePt granular films with perpendicular magnetization are attractive candidates for use as recording media for heat-assisted magnetic recording (HAMR) [1]. In HAMR, a medium is heated locally using laser irradiation to the Curie temperature (T_c) of FePt. The heating affects a lubricant and carbon overcoat. Some additives to FePt have been examined to reduce T_c while maintaining large K_u [1, 2–4], but T_c reduction degrades K_u considerably. Moreover, carbon and oxide materials are generally used as segregant materials to fabricate a granular structure of FePt. Optimum segregant materials to fabricate a well-segregated granular structure while maintaining large K_u are also important. As described herein, we examined the T_c reduction while maintaining large K_u by substituting some Fe or Pt of FePt with a third material. Moreover, we discuss the magnetic anisotropy of FePt granular media in relation to segregant materials.

II. ADDITION OF THIRD METALS

After fabricating FePt-X (X: third metals) single crystal films, we examined the relation between T_c and K_u. The 10-nm-thick FePt-X films were sputter-deposited on MgO(001) single-crystalline substrates with a 20-nm-thick Pt underlayer at a substrate temperature T_s of 350°C. The film deposition was done using co-sputtering with X targets and Fe-Pt targets with various composition ratios of Fe/Pt. The atomic ratios of Fe, Pt, and X thin films were confirmed using Rutherford backscattering spectrometry (RBS) analysis. Figure 1 presents the relation between values of T_c and K_u of the FePt-X films with X=Cu [5], Mn, and Ru [6]. The relation of T_c and K_u shows a roughly linear trend in all series of films. T_c of the FePtRu films decreased more steadily than that of the other series of films. These results demonstrate that Ru addition can achieve low T_c while maintaining K_u as higher than Mn and Cu addition. Figure 2 depicts relations of anisotropy field $H_k (=2K_u/M_s$, where M_s denotes saturation magnetization) and M_s of these films. Results show that Ru addition decreased H_k moderately, but M_s decreased rapidly. By contrast, Cu and Mn addition drastically decreased H_k. The rapid decrease of T_c by Ru addition occurs because of a sharp decrease of M_s: T_c is related to the magnitude of moments. Ru is a noble metal and is therefore not very reactive to oxygen, which is suitable for fabrication of granular films by adding oxide segregants.

III. SEGREGANT MATERIALS

Stacked films consisting of a FePt-oxide upper layer and a FePt-C template layer are effective to promote columnar growth and L_1^0-ordering of FePt grains maintaining high K_u [7,8]. Figure 3 shows magnetization loops of FePt-25vol.% oxide (3 nm)/FePt-40vol.%C(2 nm) stacked films comprising various oxide materials. These films were fabricated using co-sputtering on MgO underlayers at a substrate temperature of 450°C in identical deposition conditions. All films are perpendicular films, but marked differences in magnetization curves were observed. These differences are related to segregation structures and K_u. Figure 4 presents values of K_u as a function of the electronegativity of oxide materials for these
stacked films. The K_u of FePt-GeO$_2$/FePt-C stacked films is 2.1×10^7 erg/cm3, which corresponds to 3.0×10^7 erg/cm3 of FePt grains [9]. However, K_u decreased as electronegativity decreased, implying that the electronegativity of oxide segregants influences the degree of FePt ordering.

Fig. 1. Relation between values of T_c and K_u for FePtX (X=Mn, Cu, and Ru) films.

Fig. 2. Relation between values of H_k and M_s for FePtX (X=Mn, Cu, and Ru) films.

Fig. 3. Magnetization loops for FePt-25 vol.% oxide (3 nm)/FePt-40 vol.% C (2 nm) stacked films with various oxide materials.

Fig. 4. Values of K_u as a function of electronegativity.

REFERENCES