

Investigation of magnetotransport properties of Heusler-alloy-based magnetic tunnel junctions with a $Cu(In_{0.8}Ga_{0.2})Se_2$ semiconductor barrier with a low resistance-area product

^OKoki Mukaiyama¹, S. Kasai^{1, 2}, Y. K. Takahashi¹, P-H.Cheng^{1, 3}, Ikhtiar¹, K. Masuda¹, Y. Miura^{1,4}, S. Mitani^{1, 3}, and K. Hono^{1, 3}

¹NIMS, ²RIKEN, ³Univ. of Tsukuba, Kyoto Institute of Technology

Introduction

Requirements for a read head of HDDs over 2 Tbit/in²

Results & Discussion

Structural analysis by TEM

B2 ordering

Chalcopyrite

In order to realize a read sensor head of HDDs over 2 Tbit/in², a large MR ratio with a low RA ~ 0.1 $\Omega \cdot \mu m^2$ is desired. However, this requirement is still a great challenge for both the MgO based MTJs and the Heusler-alloy based CPP-GMR devices. So, we have focused on semiconductor barriers because their lower band gaps may result in an adequate RA value without degrading an MR ratio.

- $Cu(In_xGa_{1-x})Se_2$ semiconductor barrier
 - Chalcopyrite structure

In or Ga

- Low band gap; E_q = 1.0 ~ 1.6 eV (*cf.* MgO : 7 eV)
- Good lattice matching with Co-based Heusler alloys
- Δ_1 state propagates dominantly.

 \checkmark CIGS was epitaxially grown on CFGG with (001)[110]_{CFGG}//(001)[110]_{CIGS}.

Magnetoresistance effect

S. Kasai et al., APL 109, 032409 (2016)

-0.20

0.19

0.18 A

0.17 (ິ່ນ ຍ

0.16 <u></u>,

-0.15

-10.14

1.0

MR curve ($T_{ann} = 300 \ ^{\circ}C$)

@ RT

-0.5

40

30

20

-1.0

ratio (%)

MR

H (kOe) ✓ MR = 43 %, $RA = 0.14 \, \Omega \cdot \mu m^2$, $(\Delta RA = 0.157 \ \Omega \cdot \mu m^2)$

0.5

0.0

- ✓ MR ratio reached 64% at maximum.

 T_{an} (°C)

K. Masuda et al., JJAP 56, 020306 (2017)

CIS

 $Cu(In_{0.8}Ga_{0.2})Se_2$ is expected to be grown epitaxially on Heusler alloys and can result in a large MR ratio due to the Δ_1 coherent tunneling.

Objective

Fabrication of the MTJs with a $Cu(In_{0.8}Ga_{0.2})Se_2$ semiconducting barrier and demonstration of a large MR ratio at a low RA ~ 0.1 Ω ·µm².

Experimental method

- Deposition : DC/RF magnetron sputtering
 - *Ex-situ* annealed at T_{an}

Ag/Cr buffer

MgO (001) sub.

- Microfabrication : E.B. lithography & Ar ion milling
- Evaluation
 - Structural analysis : TEM
 - Transport properties : DC-4-probe method

H (kOe)

 \checkmark RA increased at low temperature.

 \checkmark Log *RA* \propto CIGS thickness.

 $RA \times 10$

Dominant transport mechanism is "Tunneling".

 $(0.5 \text{ m}^2 \text{ m}^2)^2$

Z

10¹

Summary

22

0.20

- Cu(In_{0.8}Ga_{0.2})Se₂ semiconducting barrier was successfully fabricated on a \bullet $Co_2Fe(Ga_{0.5}Ge_{0.5})$ Heusler-alloy electrode.
- Large MR ratio of 47 % and high output voltage of 25 mV were achieved at K. Mukaiyama et al., Applied Physics Express 10, 013008 (2017) low RA of 0.14 Ω ·µm².

Acknowledgement

This work was supported by the ImPACT program.

