

MANA **INTERNATIONAL CENTER** FOR MATERIALS NANOARCHITECTONICS

305-0044 TEL: +81-29-860-4709 FAX: +81-29-860-4706 Email: mana@nims.go.jp https://www.nims.go.jp/mana/ (July 2020)

MANA's Vision

Toward a Better Global Future: Pioneering a new paradigm in materials development on the basis of "Nanoarchitectonics"

MANA's Mission

- 1 Develop groundbreaking new materials and realize
 - " The New Paradigm of Nanotechnology "
- 2 Construct a worldwide network to accelerate
 - " Global Circulation for World Top-Level Researchers "
- 3 Provide a creative environment to foster
 - "Young Scientists who Challenge Innovative Research"

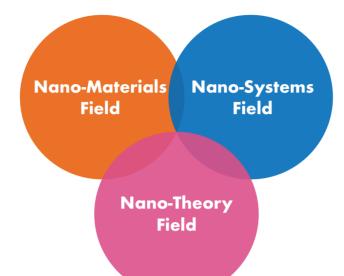
The International Center for Materials Nanoarchitectonics (WPI-MANA) is one of the first five WPI research centers that were established in 2007 in the framework of the World Premier International Research Center Initiative (WPI), which is sponsored by Japan's Ministry of Education, Culture, Sports. Since the establishment of WPI-MANA, we have done on a variety of research that made WPI-MANA a representative international research center in the fields of nanotechnology and material science. We tailor nanoscale parts that exhibit cutting-edge functions, and organize/ integrate them to create new materials and systems. Through this, we are conducting research and development that leads to scientific breakthroughs and technological innovations, and we describe the research concept with the word "nanoarchitectonics."

As a result, we have created many MANA original achievements, including nanosheets, atomic switches, and nanoporous materials, and recently, new developments such as high-performance thermoelectric materials, neuro-morphic devices, and topological photonic materials. Regarding the function of the international hub, which is an-other important role of WPI centers, we position world top-class laboratories as MANA satellites and promote world top-class research collaboration. Through collaborative research, we have built an extensive network with many overseas universities and research institutions, and have established a framework to provide a place for researchers and students from all over the world to gather and conduct innovative research. As a result, the ratio of foreign researchers in the center has reached nearly half, which is one of the highest international research environments in Japan. More than 400 researchers, who have studied in MANA, are active as MANA alumni worldwide.

WPI-MANA works to further deepen and pursue our "nanoarchitectonics." Based on this, we aim to open up new directions such as quantum material research. We look forward to your continued support for the further development of WPI-MANA.

Cover NanoArt

[Fullerene Nanoflower] SEM Image of Self-Assembled Crystalline C60-Fullerene-Ag(I) Organometallic Complex. by Lok Kumar Shrestha (MANA), Jonathan P. Hill (MANA)


A Message from the Director **Takayoshi Sasaki**

lakayashi Sasaki

Mission 1

What is Nanoarchitectonics? The New Paradigm of Nanotechnology

N anotechnology plays an extremely important role in the development of new materials. Yet, nanotechnology tends to be misunderstood as a simple extension of the conventional microtechnology that has demonstrated great effectiveness in microfabrication of semiconductor devices-in other words, as a refinement of microtechnology. In fact, however, nanotechnology and microtechnology are qualitatively different. At WPI-MANA, we call the new paradigm of nanotechnology, which correctly recognizes this qualitative difference, "Nanoarchitectonics."

Four key points of Nanoarchitectonics

1 "Unreliability-tolerant reliability"

In the world of microtechnology, structures can be constructed according to a design drawing or "blueprint." This is generally not possible in the world of nanotechnology because the world of nanotechnology is far smaller than that of microtechnology. In nanotechnology, thermal and statistical fluctuations become apparent, and at the same time, nanotechnology confronts the limits of the principles of control methods. Therefore, the viewpoint of realizing reliable functions with structures that contain ambiguity is important.

2 "From nano-functionality to nanosystem-functionality"

Nanoscale structures (nanoparts) frequently display interesting new properties, but there are limits to their functionalities, either as individual units or as simple aggregates. Thus, creating completely new functionalities by effectively utilizing interactions among nanoparts of the same type or different types is important.

3 "More is different"

In complex systems that consist of an enormous number of nanoparts, unexpected new functions often emerge in the system as a whole. Therefore, utilizing and not overlooking, the phenomenon that "quantity changes quality" is another key point.

4 "Truth can be described with plain words"

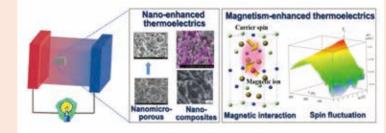
Finally, it is also necessary to pioneer a new theoretical field, which is capable of handling the three above-mentioned points. In this, it is necessary to construct a theoretical system that not only treats atoms, molecules electrons, photons, spin, etc. on a first-principles basis, but also consciously introduces "appropriate bold approximation."

THIS IS MANAY

Environment

MANA is located in the center of Tsukuba Science City together with many other national institutes. Across the street, there is JAXA known for space development. Most employees commute to NIMS by bike, bus or car.

Thermal Energy Materials


Group Field Coordinator MANA PI, Group Leader Takao MORI

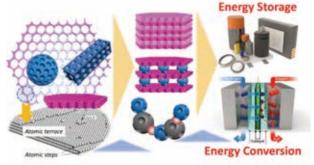
Research Goal

Novel thermoelectric materials and enhanced control over thermal energy

Keywords

Thermoelectric, Thermal Transport, IoT Energy Harvesting, Phonon Engineering, Magnetism-Enhanced Thermoelectrics

Novel enhancement principles developed for thermoelectric materials



Research Goal

Inorganic total synthetic chemistry / science opened up by conductive porous materials

Keywords

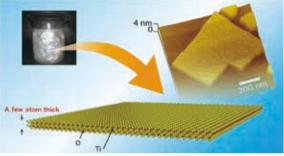
Inorganic Synthetic Chemistry, Inorganic Material Chemistry, Self-Organization, Hybrid Materials

Science opened up by conductive porous materials

"The New Paradigm of Nanotechn

Nano-Materials

Soft Chemistry Group


MANA PI, Group Leader Takayoshi SASAKI

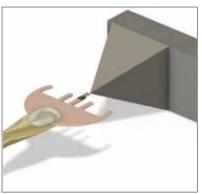
Research Goal

Design of new functional materials by organizing 2D nanosheets

Keywords

2D Nanosheets, Layer-by-Layer Assembly, Superlattice Heterostructure

Colloidal suspension of oxide nanosheets, AFM image & structure model



Research Goal

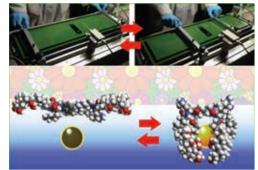
Unveiling mechanical, electrical, thermoelectric and optoelectronic properties of nanomaterials using state-of-the-art methods of analytical and *in situ* high-resolution transmission electron microscopy

Keywords

Nanotubes, Nanowires, Nanoparticles, Nanosheets, Graphene, Nanodevices

In situ TEM mechanical testing of individual nanosheet

Supermolecules Group


Katsuhiko ARIGA

Research Goal

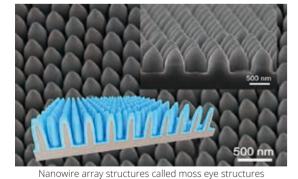
World greatest research by supramolecular chemistry and surface science

Keywords

Supramolecular Chemistry, Surface Science, Self-Organization, Molecular Machine, Nanocarbon

A method to control a molecular machine by hand motion

Nanostructured Semiconducting Materials Group


Naoki FUKATA

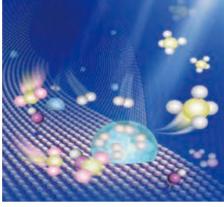
Research Goal

New functionalized nanostructures by constructing composite nanostructures

Keywords

Nanowires, Semiconductors, Electronic and Energyrelated Devices

THIS IS MANA


Photocatalytic Materials Group

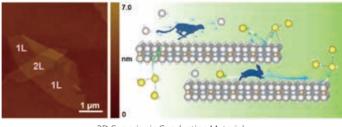
Research Goal

Realization of artificial photosynthesis

Keywords

Photocatalysis, Solar Energy Conversion, Nano Metal/ Semiconductor, Environment Remediation. Solar Fuel Production

Photocatalytic reaction on nanosheet surface



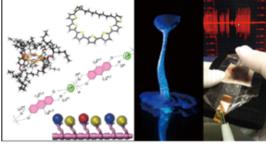
Research Goal

Synthesis and Functionality Exploration of Novel Nanomaterials

Keywords

Nanotubes, Nanosheets, Energy Storage and Conversion, Nanoelectronics

2D Superionic Conducting Material


Frontier Molecules Group

Research Goal

Development of stimuli-responsive, novel molecular systems and their sensor applications

Keywords

Novel Molecular Design, Functional Molecular Liquids, Sensors, Molecular Sequences, π -Conjugated Giant Molecules

Images of stimuli-responsive molecules, functional molecular liquid and vibration sensor

Nanoparticle Group

Vaoto SHIRAHATA

Research Goal

Building Smart Materials for Energy Conversion Devices from Nontoxic and Earth-Abundant Nanopaticles

Keywords

Thermal Phononics, Optoelectronics, Photothermal Effects, Nanoparticles, Qunatum Dots

Colloidal quantum dots with emission spectral wavelengths tailored from UV to NIR and their applications including light emitting diodes and biomarkers

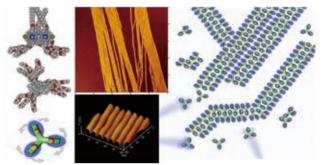
"Nano-Materials" creates new materials and eliciting novel functions by sophisticated control of compositions and structures at the nano level

Research Facilities

In order to carry out top level research, MANA provides access to large-scale facilities and advanced equipment. Researchers are supported by engineers.

Nano-Materials

Functional Chromophores Group


Jonathan HILL

Research Goal

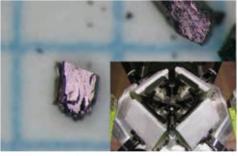
New functional chromophores for sensing, catalysis and molecular electronics

Keywords

Sensing, Catalysis, Nanomolecules, Chirality, Chromophore, Self-Assembly

Nanowire self-assembly of trigeminal porphyrin nanomolecules

Quantum Solid State Materials Group


Kazunari YAMAURA

Research Goal

Search for new oxide-based materials with high functionality

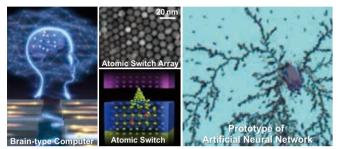
Keywords

Quantum Materials, Transition Metal Oxides, Mixed Anions, High-Pressure-Crystal Growth

Crystals of a new oxide grown under a high-pressure condition in the high-pressure equipment

ISSION 1 "The New Paradigm of Nanotechnology"

Nanoionic Devices Group


ield Coordinator MANA PI, Group Leader Kazuy<u>a TERABE</u>

Research Goal

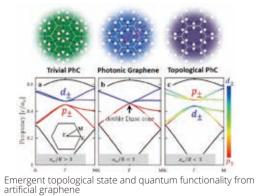
Creation of nanoionic devices for brain-type computer

Keywords

Artificial Synapse, Atomic Switch, Decision-Making Device, Neuromorphic System, Artificial Intelligence Hardware

Artificial neural network prototype using ion transport in atomic switch array

Nano-System Theoretical Physics Group


MANA PI, Group Leader Xiao HU

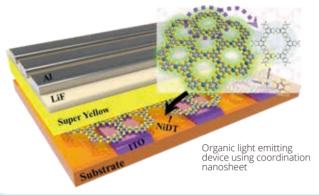
Research Goal

Exploiting material topology for innovative electronics and photonics quantum functionality

Keywords

Band Topology, Artificial Graphene, Topological Photonic Crystal, Majorana Quasiparticle

Thin Film Electronics Group


Kazuhito TSUKAGOSHI

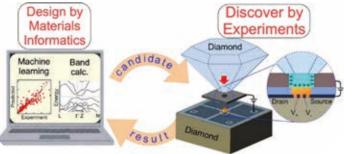
Research Goal

Research on Atomically-thin and/or Molecular scale thin film electronics

Keywords

Atomically-Thin Film, Molecular Scale Thin Film, Transport Properties, Electronics

Nano Frontier Superconducting Materials Group MANA PI, Group Leader


Yoshihiko TAKANO

Research Goal

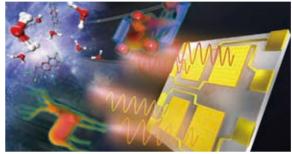
Discovery of new superconductors and functional materials using materials informatics

Keywords

Superconductivity, Magnetism, High Pressure, Materials Informatics, Machine Learning

Data driven materials design and inducement of new functions under high pressure and field effect devices

Photonics Nano-Engineering Group


MANA PI, Group Leader Tadaaki NAGAO

Research Goal

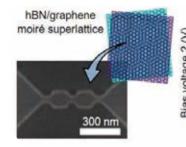
Creation of spectrally-controlled smart infrared sensors and radiative heat converter devices

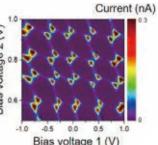
Keywords

Infrared Plasmonics, Perceptive Device, Spectrally-Controlled Infrared Heaters, Radiative Cooling, Solar Heat Harvesters

Multi-wavelength smart IR sensor with high wavelength resolution

Quantum Device Engineering Group


Froup Leader Yutaka WAKAYAMA


Research Goal

To explore and manipulate guantum functionalities in original device configurations

Keywords

Topological Properties, Valleytronics, Tunneling Device, Molecular Electronics

Single electron transport (right) via hBN/graphene double quantum dots (left)

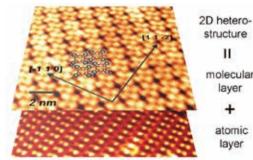
"Nano-Systems" create unique functions by interacting controlled nanostructures and fabricate various advanced devices in artificial intelligence, quantum, energy and environment fields

Events

Throughout the year MANA participates in many fun events, from Cherry Blossom Picnic Party to NIMS Open House. MANA researchers from different countries make the events very international.

Nano-Systems

Surface Quantum Phase **Materials Group**


Group Leader Takashi UCHIHASHI

Research Goal

Surface/Interface-based quantum materials and their functionalities

Keywords

Surface, Superconductivity, Quantum Transport, Scanning Tunneling Microscopy

Scanning tunneling microscopy images of an organic molecule-atomic layer heterostructure

Quantum Material-Properties Group

Group Leader Taichi TERASHIMA

Research Goal

Novel electronic properties in superconductors and topological materials

Keywords

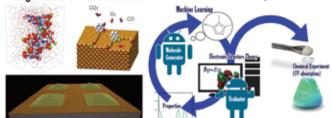
Superconductivity, Vortex, Topological, Strong Correlation, Low Temperature and High Magnetic Fields

ectronic properties studies in low-temperature high nagnetic-field environment

First-Principles Simulation

Group Tsuyoshi MIYAZAKI

Research Goal


Materials search and design by computer simulations and Al

Keywords

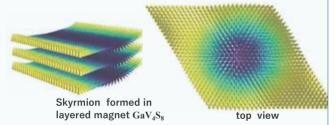
First-Principles Calculations, Density Functional Theory (DFT), Large-Scale Simulation Methods, Machine Learning Methods, Materials Search by Al

Large-scale DFT simulations

Materials Search by Al

Computational materials research by Large-scale DFT simulations and Al-assisted materials search

Emergent Materials Property Theory Group


Akihiro TANAKA

Research Goal

Theoretical investigation of novel quantum functions in materials

Keywords

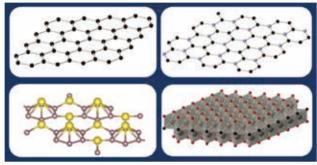
Topological Materials, Quantum Magnets, Multiferroics, Superconductors, First Principle Calculations, Statistical Mechanical Modelling, Berry Phase Effects

Hedgehog-like pattern in magnets linking together magnetism and electric properties.

THIS IS MANAV

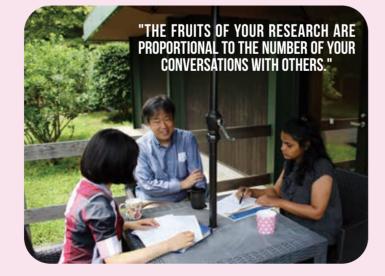
Nano-Theory

Computational Nanoscience Group


Masao ARAI

Research Goal

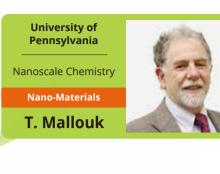
Theoretical and computational investigation of physical properties of nanomaterials


Keywords

First-Principles Calculations, Low Dimensional System, Artificial Structure

Various low dimensional system

"Nano-Theory" understands phenomena in the nanospace region, predicting new phenomena and creating novel nanostructured materials



NanoArt Contest

MANA holds a yearly NanoArt contest. The prize-winning art work is displayed in the corridors and is also used as cover pictures of posters and pamphlets.

Mission 3 "Young Scientists who Challenge Innovative Research"

NIMS Researchers Supervise Students for Their Degree

NIMS deals with the operation of international graduate programs. We strive to deliver a support structure to foster students, through collaborations with the world's top level universities in Japan and across the world. This initiative seeks to enhance the academic level and the environment of NIMS, encompassing an aspiration towards thereby contributing to further development of the materials science and industry in Japan.

NIMS Internship Program

The NIMS Internship Program gives students in universities, graduate schools and technical colleges in Japan and other countries oppotunities to perform research at NIMS for up to 90 days. Especially at WPI-MANA, a globally open research center, the possibility to profit from a wide-reaching human network is an important merit for students. NIMS also offers financial support to students who are recognized as particularly outstanding.

NIMS Joint Graduate School Program

In this unique graduate program based on agreements with Japanese universities, the selected NIMS researchers are assigned as university professors who supervise those university postgraduate students. The students are able to conduct research using the advanced facilities in an internationally acclaimed research environment, while they study towards getting a degree. When obtaining their degree and professional recognition and skills, many of the program alumni have careers in materials science.

NIMS Graduate Research Assistantship (NIMS Junior)

NIMS offers the NIMS Graduate Research Assistantship to graduate students who aspire to a career as researchers in materials science. The monthly stipend is not paid for taking the university coursework. However, if you are enrolled in the NIMS Joint Graduate School Program, the duties and responsibilities of the research assistantship are designed to be consistent with the student's research activities towards obtaining a degree. Those students appointed as NIMS Junior Researchers will be able to gain insight into their research career by hands-on experience of working on the latest research projects, without financial strain.

International Cooperative Graduate Program

The International Cooperative Graduate Program (ICGP) is a program that accepts graduate students from overseas universities with which NIMS concluded an International Cooperative Graduate Program (ICGP) agreement. NIMS can accept doctoral students for six months to a year to carry out collaborative research with the partner universities. Students can conduct part of their thesis work at NIMS with the co-supervision by the staff of NIMS. NIMS accepts about 30 students from partner universities each year.

> ICYS Research

Fellow

Ways to Perform Research at MANA

MANA Researcher

WPI-MANA looks for scientists who conduct fundamental research with high originality under the concept of "nanoarchitectonics." We update the recruitment information through WPI-MANA website: MANA Postdoctoral Fellows, Independent Scientists and various research posts.

MANA

THIS IS MANAV

Around MANA

Doho Park, located several minutes' walk from MANA, is recommended for refreshment when your brain is tired. There are nice restaurants and bakeries around the park. The famous mega parfait and latte art cappuccino are what you just can't miss! (MANA Latte Art Cappuccino by Coffee Factory)

International Center for Young Scientists (ICYS)

Talented young multinational researchers are gathering to

in close collaboration with NIMS mentor researchers.

conduct research independently. ICYS researchers are expected to pursue various aspects of interdisciplinary materials research

Become a MANA Alumnus

MANA alumni are active in various fields.

NIMS Permanent Positions Universities **Research Institutes** Companies etc.

Support System

MANA has an internationally-visible research environment including the organization of a multinational group of young researchers and in the use of English as the official language. MANA has realized an interdisciplinary research environment, which has been promoted in the International Center for Young Scientists (ICYS) established in 2003.

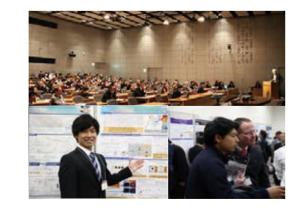
Namiki Foundry

Facilities at the Namiki Foundry Station cover forefront core-techniques of materials science. They are available to researchers from all over the world and for research on diverse materials. Namiki Foundry Station also provides attentive support by experienced technical staff.

Orientations & Classes

For new reseachers there are orientations, laboratory tours and Japanese classes. The orientation provides information that is needed to conduct research at MANA. Laboratory tours are offered to introduce NIMS research facilities to the researchers.

THIS IS MANAV


Full Support in English

MANA achieves internationalization at all levels by using English as the common language. Administrative staff, fluent in English, assist foreign researchers. Sometimes the preparation of documents that require correspondence in Japanese are necessary in the course of research. They are handled by administrative staff.

Seminars & Symposia

Young scientists benefit from international collaboration, such as seminars and international symposia. Seminars are frequently given by MANA researchers and visiting outstanding scientists. At the yearly MANA International Symposium, young scientists can present their research.

Culture Classes

At Ninomiya House, where many MANA foreign researchers are staying, various Japanese culture classes are held. The classes are also open to non-residents of Ninomiya House. This is a great way to experience Japanese culture and make new friends.

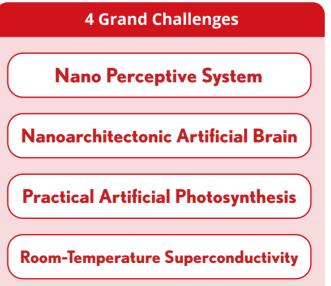
Adm	Administrative Office		
General Affairs Team	Planning and Outr		
General Analis Team	Planning and Outr		

J-M. Lehn

Professor.

University of

Strasbourg, Nobel


(1987)

M. Aono Former MANA Director, MANA Executive Advisor Laureate in Chemistry

* Advisors, including Nobel Laureates and prominent researchers, draw on their extensive experience to provide valuable advice to WPI-MANA scientists.

Organization

Nano-Materials Field

Nano-Systems Field

Nano-Theory Field

Fellows

Electro Active Materials Team

Managing Researcher

Independent Scientists

ICYS-WPI-MANA Research Fellow

Advisors

each Team

C. N. R. Rao Honorary President, lawaharlal Nehru Center for Advanced Scientific Research

T. Kishi Former NIMS President

H. Fukuyama Director General, Research Institute for Science and Technology, Tokyo University of Science

Personnel Composition	Number	Non-Japanese	Female
Pls	23	9	2
Group Leaders	10	2	0
Faculty Scientists	63	10	4
Postdoctoral Researchers	68	48	13
Junior Researchers	46	41	11
Administrative and Technical Staff	54	3	45
Total	264	113	75

(as of April 2020)

MANA Member List

MANA Principal Investigators (PIs)

D. Golberg

N. Fukata J. Takeya

K. Ariga

Research Groups

Nano-Systems Nanoionic Devices Group

Z. L. Wang J. Gimzewski

M. Sakurai

Principal Researcher

Materials Grou

I. Ye

Nano-Systems

C. Joachim F. Winnik

Cross Appointment

Thin Film Electronics Group

T. Miyazaki Y. Tateyama D. Bowler

NIMS Fellow

T. Taniguchi

Group Leader

T. Tsuchiya

T. Nabatame Chief Researcher

Z

S. Kato Senior Researcher

Group Leader

Nano-Materials

Independent Scientists

T. Konoike

A. Okamoto M. Matsumoto

T. Tsuruoka Chief Researcher K. Terabe Group Leader

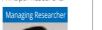
H. Takeya K. Terashima Y. Takano Senior Researche

T. Terashima Group Leader

R. Arafune Senior Researche T. Uchihashi Group Leader T. Yamaguchi

K. Nagaoka Senior Researcher

M.Kohno M. Tachiki H. Yamase S. Ooi Chief Researcher Principal Researcher Principal Researcher Senior Researcher


. Nakayama Managing Researche

S. Ishii Principal Researcher aging Resear

L. Sang

ICYS-WPI-MANA Research Fellow

