MANA Progress Report Facts and Achievements 2014

World Premier International (WPI) Research Center International Center for Materials Nanoarchitectonics (MANA)

National Institute for Materials Science (NIMS)

Preface

Masakazu Aono MANA Director-General NIMS

1

The International Center for Materials Nanoarchitectonics (MANA) was founded in 2007 as one of the original five centers under the World Premier International Research Center Initiative (WPI Program) of Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT). Our vision is to "create a better future for humanity by supporting the development of new materials through opening up a new paradigm of nanotechnology." We believe that conceptual innovation must be brought into the nanotechnology developed to date. We express the concept of this innovated nanotechnology by the term nanoarchitectonics.

MANA achieved remarkable research results in the past 7 years. MANA's excellence is apparent from several indicators. For example, A) the number of papers in the world's top 1% by the number of citations has reached 106, B) MANA has achieved a very high field-weighted citation impact (FWCI) — a new indicator devised by Elsevier to fairly compare the quality of papers published by interdisciplinary research institutions — of 2.44 (both statistics are based on papers published between 2008 and 2014), and C) the average impact factor (IF) of journals in which MANA researchers have published papers is very high 5.36. These figures far exceed those of many other world-class research institutes.

The MANA Progress Report consists of two booklets named "Research Digest 2014" and "Facts and Achievements 2014". This booklet "Facts and Achievements 2014" serves as a summary to highlight the progress of the MANA project. The other booklet "Research Digest 2014" presents MANA research activities.

MANA Progress Report Facts and Achievements 2014

1. W	PI Project Progress Report 4
2. W	PI Program and MANA
2.1	World Premier International Research Center Initiative (WPI)
2.2	MANA, the WPI Research Center at NIMS
3. Or	ganization, Members and International Research Environment
10	MANA
3.1	MANA Organization and Members
3.2	Attractive International Research Environment
4. Re	search Activities, Output and Achievements
4.1	Research Activities
4.2	Research Output
4.3	Research Achievements
5. Gl	obal Nanotechnology Network
5.1	MANA Satellite Network
5.2	International Nanotechnology Research Network
5.3	Partnership with Foreign and Domestic Universities
5.4	Global Career Advancement

6. Enhancement of National and International Recognition43

- 6.1 MANA International Symposium
- 6.2 MANA Website
- 6.3 MANA Newsletter
- 6.4 Outreach Activities
- 6.5 Media Coverage
- 6.6 Visitors to MANA
- 6.7 MANA Scientific Art Pictures
- 6.8 MANA History

7. Appendix

7.1	MANA Top Management ······49
7.2	MANA Research Staff ·······50
7.3	MANA Advisors and International Cooperation Advisors
7.4	MANA Evaluation Committee · · · · · · · · · · · · · · · · · ·
7.5	MANA Seminars ······60
7.6	MANA Research Papers 2014 ······63
7.7	MANA Journal Cover Sheets ······92
7.8	MANA Patents ······96
7.9	International Cooperation ······105
7.10	MANA History ······106

1. WPI Project Progress Report

In July 2014, MANA submitted a WPI Project Progress Report and Plan for Fiscal Years 2007-2013 to the WPI Program Committee. The full report is published on the website of Japan Society for the Promotion of Science (JSPS) (see www.jsps. go.jp/english/e-toplevel/). The first six pages of the report entitled *World Premier International Research Center Initiative* (*WPI*) *Executive Summary (For Extension application screening)* are reproduced below. This executive summary covers the first 6.5 years of the MANA project (from October 2007 to March 2014) and consists of two parts *Progress Report* (A) and *Progress Plan* (B).

Host Institution:	National Institute for Materials Science (NIMS)
Host Institution Head:	Sukekatsu Ushioda
Research Center:	International Center for Materials Nanoarchitectonics (MANA)
Center Director:	Masakazu Aono

World Premier International Research Center Initiative (WPI) Executive Summary (For Extension application screening):

A. Progress Report of the WPI Center I. Summary

MANA has grown into a world-class research hub for the fields it handles after the 6.5 years since its launch. MANA has accomplished remarkable research achievements from the basics to application.

MANA's excellence is apparent from several indicators. For example, A) the number of papers in the world's top 1% by the number of citations has reached 80, B) MANA has achieved a very high field-weighted citation impact (FWCI) — a new indicator devised by Elsevier to fairly compare the quality of papers published by interdisciplinary research institutes — of 2.5, and C) the average impact factor (IF) of journals in which MANA researchers have published papers is very high 5.24. These figures exceed those of many other world-class research institutions.

MANA has a unique characteristic as compared with many other materials science research institutions around the world. Namely, MANA is operated on the basis of our new concept of "nano- architectonics", which is a new paradigm of nanotechnology. We believe that this unique concept has been an important key in accomplishing the remarkable research achievements of MANA.

In 6.5 years, MANA has made various outstanding research. Typical examples are a) "nanosheet technology" and its application, b) "atomic switch" and related devices, c) various single-molecule level devices, d) highly-efficient photocatalysts, e) nanoarchitectonic diagnosis and treatment, f) transmission electron microscopy combined with mechanical, electrical and optical measurements, g) multiple-probe scanning probe microscopes for nanoscale electrical conductance measurement, etc.

MANA has established one of the most internationalized research centers in Japan with a foreign researcher ratio of more than 50%. MANA has succeeded in developing a near perfect research environment by providing swift administrative and technical support to all researchers regardless of nationality. We have provided our knowledge of running an international research center to the rest of NIMS and outside institutions in Japan. We have made dramatic improvements in NIMS's ability to provide support in English to foreign researchers.

The cultivation of young researchers is another key pillar of MANA in addition to the four pillars of the WPI Program. The Independent Scientist (about 20% of permanent researchers) and ICYS Researcher (about 20% of postdocs) systems, in which researchers conduct independent research without belonging to a specific group, have posted good results.

The research undertaking at MANA is recognized as one of NIMS's priority R&D fields, and MANA is positioned as the Nanoscale Materials Division, one of NIMS's three research divisions. In other words, MANA has become a permanent unit of NIMS's research organization. Thus NIMS has supported MANA extensively by providing approximately 90 tenure positions, allocating about ¥1.5 billion annually.

II. Items

1. Overall Image of Your Center

<Vision and Background>

When MANA was established 6.5 years ago, nanotechnology (and its foundation, nanoscience) was progressing rapidly and fast becoming indispensable in the field of materials science. Amid this backdrop, we designed MANA with the intention of creating a worldleading research center that could boldly promote the development of new materials through the effective use of nanotechnology. We were keenly aware that the true power of nanotechnology could not be harnessed without acknowledging that nanotechnology was essentially different from conventional microtechnology and that the usual view of nanotechnology as an extension of microtechnology was incorrect, so that we put our vision in:

"Pioneering a new paradigm of nanotechnology for new materials development".

At the same time, to express the new paradigm of nanotechnology succinctly and clearly, we proposed the concept of "nanoarchitectonics", which is discussed in Progress Report in detail. This concept has made MANA's research distinctive among the world's nanotechnology research institutions. We are happy that the concept of nanoarchitectonics is starting to gain acceptance around the globe.

<Present Status>

MANA has four research fields, Nano-Materials, Nano-Systems, Nano-Power and Nano-Life fields. At present, 22 PIs, 2 Associate PIs, 75 permanent researchers, 72 postdoctoral researchers and 36 students are working in the four research fields and they are supported by 29 administrative and technical staff. The present status of MANA can be summarized in the following five points:

MANA has realized world's top-level research activities;
With a foreign researcher ratio of 51%, MANA has become a truly international research center;

- MANA is actively engaged in research that combines nanotechnology with other fields;

- MANA has fulfilled its responsibility to promote reforms in the host institution NIMS very well;

- MANA has produced outstanding young researchers who are now active around the world.

<Future Perspective>

Based on our experience and confidence in the successful 6.5 years, MANA will further promote the development of nanoarchitectonics and its fusion with various research fields. Our final goal is of course to develop earth-shaking new materials for realizing various revolutionary technologies.

2. Research Activities

<Outstanding Research Results>

Research in MANA has been conducted in the four research fields (Nano-Materials, Nano-Systems, Nano-Power and Nano-Life fields) as mentioned already. Selected outstanding research results from the four research fields are:

A) Opening a "nanosheet"-based new horizon for novel materials creation. We are proud of having developed an original method to create various new materials with novel useful properties. The realization of metamaterials and novel superconductors with this method is our next challenge.

B) Development of the "atomic switch" and related prospective devices and systems. We are also proud of having invented the atomic switch, which is a promising beyond CMOS device (in collaboration with NEC Corp.). More importantly, the atomic switch in a certain condition is similar to the synapse of our brain in functionality. The realization of neuromorphic network circuits consisting of such atomic switches is our next challenge.

C) World's top level efficiency of photocatalysts: We have also succeeded in artificial photo- synthesis of methane, for example. Our next challenge is to increase the efficiency of artificial photosynthesis dramatically using various nanoarchitectonic systems.

D) Development of an original ultra-sensitive/ultraparallel molecular censing method (membrane- type stress sensor: MSS): The sensitivity of this method is over 100 times higher than conventional cantilever sensors. We have succeeded to distinguish between cancer patients and healthy persons by breath analysis (in collaboration with Basel University, Switzerland).

E) Development of innovative nanoscale characterization methods: We have developed a trans- mission electron microscope (TEM) in which the mechanical, electrical and optical properties of a nanoscale sample can be measured under high-resolution image observation. Also, multipleprobe (2, 3 or 4 probes) scanning tunneling microscopes (STM), atomic force microscopes (AFM) and Kelvin force microscopes have been developed; this has enabled electrical conductance measurements at the nanometer scale.

<MANA's Three Grand Challenges>

MANA has declared the following three grand challenges:

- \star Nanoarchitectonic artificial brain
- ★ Room-temperature superconductivity
- \star Practical artificial photosynthesis

We consider these as long-term research objectives, but some intriguing preliminary outcomes have already been obtained. Such results concerning the first and third grand challenges were in part touched in B) and C) of the previous section. Regarding the second grand challenge, we have attempted to transform insulators or semiconductors into superconductors by injecting electrons or holes by field effect. So far, we have succeeded to make pure diamond metallic. Apart from this, we have found theoretically that when heavy atoms, such as gold, are formed into a twodimensional buckled honeycomb lattice and an electric field is applied perpendicularly, current will flow along its edge with zero resistance even at temperatures above room temperature up to 600 K. An experiment has been launched in an attempt to prove this theory.

<Application of Research Results>

Many fundamental researches at MANA have led to applied researches in collaboration with various companies such as NEC, HONDA, Murata, Tokyo Chemical Industry, etc. In 2007-2013, MANA researchers applied for 640 patents (435 in Japan and 205 overseas) and had 416 patents registered (318 in Japan and 98 overseas).

3. Interdisciplinary Research Activities <Strategies>

To promote interdisciplinary research across MANA's four fields (Nano-Materials, Nano-Systems, Nano-Power and Nano-Life fields), MANA has established the following internal special funds:

- A) Fusion Research Fund,
- B) Theory-Experiment Fusion Research Fund,
- C) Nano-Life Fusion Research Fund,
- D) Grand Challenge Research Program.

Based on the belief that promoting joint research across different fields can lead to the creation of new research fields, we opened these funds to applications from MANA's young researchers. The selection of proposals was done by organizing a special committee.

<Typical Examples>

Selected examples of the interdisciplinary research activities are as follows:

- A wide range of research on nanosheet technology; from the basics to applications

(Fusion of soft chemistry, materials physics and electronic device technology)

- A wide range of research on the atomic switch; from the basics to applications

(Fusion of electrochemistry, electronic device technology and neuroscience)

- Development and application of ultra-sensitive/ultraparallel molecular sensors

(Fusion of animal olfactory organs, nanoarchitectonics and medical diagnosis)

- Development of efficient *artificial photosynthetic systems* (Fusion of photocatalytic chemistry, plant photosynthesis and nanoarchitectonics)

- Cancer and Alzheimer's disease treatments using nanoarchitectonics

(Fusion of medical care and nanoarchitectonics)

- Exploration of decoherence-free quantum bits, room-temperature "superconducting" devices

(Fusion of theory and experiment)

4. International Research Environment <International Circulation of Best Brains>

MANA has established satellites in the research institutes to which its external Principal Investigators are

affiliated. At present, there are satellites at four overseas institutions: UCLA, Georgia Tech, CNRS-CEMES, Univ. Montreal. These satellites play important roles in each of MANA's research fields and serve as training grounds for MANA's young researchers. In addition, the number of famous scientists, young faculty members, students and other researchers who visit MANA from around the world increases every year.

ICYS Researchers, established as tenure-track positions for permanent researchers at NIMS, are hired twice a year by way of international open recruiting. Over the past 6.5 years, 40 researchers have been hired at MANA from a total of 942 applicants.

Eight postdocs from MANA have been appointed as NIMS permanent researchers, and 171 have leveled up to universities and research institutions in Japan and around the world.

One of MANA's missions is to become a hub and build a network connecting the world's nanotechnology centers. At present, MANA has memoranda of understanding (MOU) with 34 research institutes in 15 countries and promotes research and personnel exchange with these partners.

<System for Supporting the Research Activities of Overseas Researchers>

All of the staff in MANA's Administrative Office are fluent in English, and they provide all researchers, regardless of age or nationality, with the same highly attentive, Japanese-style services: bilingual documentation and communication, livelihood support, technical support, Japanese language and culture courses, etc.

<Others>

The Independent Scientist and ICYS Researcher systems, in which researchers conduct independent research without belonging to a specific group, have posted good results in terms of the recruitment and training of young researchers.

To cultivate internationally-minded, interdisciplinary Japanese researchers, we encourage young Japanese permanent researchers to go overseas and conduct research at major foreign research institutions for long periods of time. We also established the YAMATO-MANA Program to attract outstanding young Japanese researchers to MANA and cultivate Japan's future research leaders.

5. Organizational Reforms

<Decision-Making System in the Center>

The Director-General has successfully recruited outstanding researchers from around the globe and created an atmosphere in which they can freely engage in research and hone their skills through friendly rivalry. He has exhibited the strong leadership in all aspects of Center administration, including setting research policy, streamlining systems, adopting new measures and distributing research resources. In addition, he has helped to firmly establish the concept of nanoarchitectonics worldwide by holding numerous research forums, publishing special features on nanoarchitectonics in wellknown journals and distributing an online newsletter.

<Arrangement of Administrative Support Staff and Effectiveness of Support System>

MANA has succeeded in developing a near perfect research environment in which MANA can provide swift administrative and technical support to all researchers regardless of nationality.

<System Reforms Advanced by WPI Program and Their Ripple Effects>

System reforms at MANA

- (1) Promotion of interdisciplinary research by adopting new programs.
- (2) Thorough internationalization of MANA by promoting bilingual administration and providing research and livelihood support to foreign researchers.
- (3) Cultivating and recruiting young researchers by adopting new systems: ICYS and 3D system.

Ripple effect on the host institution

- Building a system in which the structural reforms undertaken at MANA can be easily transferred to NIMS: imposing the MANA's role in NIMS's fiveyear plan.
- (2) Dramatic improvements in NIMS's ability to provide support in English by implementing programs to improve the English proficiency of NIMS administrative staff and producing major documents and internal announcements in both Japanese and English.
- (3) Provision of young excellent researchers to NIMS as permanent researchers.
- (4) Provision of our knowledge of running an international research center to other centers of NIMS and outside institutions in Japan.

<Support by Host Institution>

NIMS supports MANA extensively by providing staff, research funds and research space and delegating operational authority to the Director-General. Since MANA's founding, NIMS has allocated approximately ¥1 billion annually for research project expenses and more than ¥400 million annually for project promotion expenses from its operations subsidies.

<Position of the Center within the Host Institution's Mid-Term Plan>

In NIMS's third five-year plan, launched in April 2011, MANA's development of innovative new materials based on nanoarchitectonics was recognized as one of NIMS's priority R&D fields, and MANA was positioned as the Nanoscale Materials Division, one of NIMS's three research divisions. NIMS is also increasing the number of MANA's permanent researchers and administrative staff. Sixteen new permanent staff were added between April 2011 and March 2014, bringing the total number of permanent staff at MANA to 89 (as of March 31, 2014).

B. Progress Plan 1. Mid- to Long-term Research Objectives and Strategies Based on the Center's Research Results to Date <Outline>

In preparation of MANA's extension application, we conducted a detailed analysis of our research achievements to date. The analysis clearly highlighted the importance of cross-linking theoretical and experimental research and fusing nanotechnology (nanoarchitectonics) with the life sciences. In the extension period, MANA will vigorously promote these two types of fusion.

Also, when we analyzed the progress made on the three grand challenges that MANA has declared, we found that several promising preliminary outcomes had been obtained. Therefore, we decided to continue pursuing these in the extension period. In addition, we add another grand challenge related to the fusion of nanotechnology (nanoarchitectonics) with life science mentioned above.

<Theory-Experiment "Cross-linkage" (Fusion)>

In the extension period, MANA will organize a fifth field, Nano-Theory field, in addition to the existing four research fields (Nano-Materials, Nano-Systems, Nano-Power and Nano-Life fields). The new Nano-Theory field will be a large group of about 50 theoreticians. This means that about one- fourth of MANA researchers will be theoreticians.

Despite the fact that many interesting nanoscale phenomena are accompanied by excited states, dynamic processes and many-body effects, contemporary first principles calculations are not conducive to handling these. To overcome this obstacle, we will introduce bold yet appropriate approximation methods to spur a new trend in theoretical research. This will encourage the fusion of theoretical research with experimentation. Not only will the Nano-Theory field fuse theory and experimentation, it will act to promote interdisciplinary research among MANA's four other experimentation-oriented research fields.

< MANA's Unique Nano-Life Research >

MANA established the Nano-Life field with the aim of creating a new field that fuses MANA's world-leading nanotechnology with the life sciences. One important feature of MANA is this environment in which high caliber nanotechnology (nanoarchitectonics) and life science researchers work side-by-side and gain a thorough understanding of each other's disciplines. This has recently started producing remarkable results. In the extension period, we will take advantage of this environment to renew the Nano-Life field. We aim to create new, neverbefore-seen things and systems by studying the functions of cells (which are the building blocks of life), sensory organs and the brain, the most complex biological structure, and incorporating the knowledge gained into our best nanoarchitectonics technologies. Conversely, we will also promote the active utilization of nano- architectonics technologies in Nano-Life research.

<MANA's Grand Challenges>

molecular sensors.

MANA has declared three grand challenges and will continues pursuing the three grand challenges in the extension period. In addition, we add another grand challenge related to the fusion of nanotechnology (nanoarchitectonics) with life science:

★ Nanoarchitectonic supreme bio-sensing. To tackle this challenge, we will make full use of MANA's original nanoarchitectonic techniques and nanoscale measurement methods such as multiple-probe scanning probe microscopes and ultra- sensitive/ultra-parallel

2. Management System of the Research Organization

<Research Organizational Management System>

In April 2016, one year before the end of the 10year project period, NIMS will launch its next Seven-Year Plan and MANA will implement the following key structural reforms: appointing a new Deputy Director, shuffle of PI lineup, constructive dissolution of MANA satellites, establishing Nano-Theory field, strengthening Nano-Life field, investment in MANA Grand Challenges, encouraging innovative and challenging research.

<Initiatives and Plans that will Impel System Reforms> Reforming NIMS: The administrative experience cultivated at MANA and thorough clerical and technical support systems will be transplanted into NIMS.

Internationalizing NIMS and Other Japanese Research Institutions and Universities: We will strive to export MANA's research environment to other research institutions and universities aside from NIMS.

Promoting Global Research Exchange: MANA has grown into a world-class research center that attracts researchers from around the globe, and our name recognition has increased. We will expand our network beyond the leading countries of the West to include every country and region in the world.

3. Center's Position within the Host Institution, and Measures Taken by Host Institution to Provide Resources to the Center <Position of the Center within the Organization of the

Host Institution>

NIMS's next seven-year plan will begin in April 2016, one year before the conclusion of the originally scheduled WPI Project period (10 years). As such, this plan will make the necessary revisions to MANA's organization and research fields before then in preparation for the extended operation of the Center beginning in April 2017. In subsequent seven-year plans, MANA will continue to handle one of NIMS's Priority R&D Fields and will remain a core part of the Institution's research.

<Host Institution's Implementation Plan for Sustaining and Advancing the Center>

Regardless of whether the WPI program grant is extended or not, NIMS promises to provide MANA with the following research resources so that it can continue its basic activities.

- Provision of approximately 90 tenure positions to MANA, including Principle Investigators, other scientists and administrative staff.
- ii) Annual allocation of research project expenses and center activity expenses from NIMS's operations subsidies totaling about ¥1 billion/year to MANA.

After the WPI program concludes, in addition to i) and

- ii) above, we intend to take the following measures.
 - iii) We will replace the post-docs and other fixed- term employees hired using the WPI grant with those hired using external funding.
 - iv) MANA's original programs such as young researcher development programs, symposia and outreach activities will be transferred to NIMS.
 - v) In order to continue the administrative and technical research support that is especially advanced at MANA, we will create a replacement framework and boost research support functions by reforming NIMS's systems.

2. WPI Program and MANA

The content of Section 2.1 is mostly based on information published on the website of Japan Society for the Promotion of Science (JSPS) in March 2015 (see www.jsps.go.jp/english/e-toplevel/).

2.1 World Premier International Research Center Initiative (WPI)

The World Premier International Research Center Initiative (WPI) was launched in 2007 by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in a drive to build within Japan *globally visible* research centers that boast a very high research standard and outstanding research environment, sufficiently attractive to prompt frontline researchers from around the world to want to work in them. These centers are given a high degree of autonomy, allowing

them to virtually revolutionize conventional modes of research operation and administration in Japan.

Japan Society for the Promotion of Science JSPS is commissioned by MEXT to conduct the program's grant selection and project assessment processes and to perform other administrative functions. The wpi logo is shown in Fig. 2-1.

• Outline of WPI Program

Competition for securing the world's finest brains has intensified over recent years. So that Japan may take a world lead by virtue of its strength in science and technology amidst this demanding environment, it needs to place itself within the global flow of outstanding human resources while creating open research platforms that attract such people from around the globe.

Given this perception, the World Premier International Research Center Initiative (WPI) provides concentrated support for projects implemented by Japanese universities and research institutes aimed at building top world-level research centers staffed by the highest caliber of core researchers. By achieving a very high research standard and providing an excellent research environment, these centers should possess a level of *global visibility* that attracts top researchers from around the world. They are given a high degree of autonomy, allowing them to virtually revolutionize conventional modes of research operation and administration in Japan.

The program is underscored by four main concepts:

- advancing leading edge research
- establishing international research environments,
- reforming research organizations, and
- creating interdisciplinary domains.

To realize them, the WPI centers advance research activities and create new disciplines under the strong leadership of their center director. The content of WPI program is summarized in Table 2-1.

Targeted fields:	Fields of basic research
Funding period:	10-15 years
Project Funding:	Around ¥1.4 billion per year per center (¥ 700 million)
WPI center staffing:	 10-20 world-class principal investigators (~10 PI) About 200 researchers and staffs (~100 persons) At least 30% of the researchers from overseas
International-standard working and living environments:	 Strong leadership by center director Merit-based salary system Strong support functions for researchers English as the primary working language Housing and support for child education and daily living
Follow-up Procedure:	• WPI Program Committee conducts follow-up activities on progress being made by the WPI centers with an eye to developing them into <i>highly visible research centers</i>

 Table 2-1: Content of WPI program.

Note: (): Centers selected in 2012

Host Institution	titution Center Name (Starting Date) Center Director		Outline of the Center		
Tohoku University	Advanced Institute for Materials Research (AIMR) (Oct 2007)	Motoko KOTANI	Establish a World-Leading Research Organization in Materials Science		
The University of TokyoKavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) (Oct 2007)		Hitoshi MURAYAMA	Cross-Disciplinary Research Center for Addressing the Origin and Evolution of the Universe		
Kyoto University	oto University Institute for Integrated Cell-Material Sciences (iCeMS) (Oct 2007)		Creating a new field of integrated cell-material science in the mesoscopic domain		
Osaka University	Immunology Frontier Research Center (IFReC) (Oct 2007)	Shizuo AKIRA	Observation of immune reaction - Unveiling dynamic networks of immunity -		
National Institute for Materials Science	International Center for Materials Nanoarchitectonics (MANA) (Oct 2007)	Masakazu AONO	Materials Nanoarchitectonics - New paradigm of materials development -		
Kyushu University	International Institute for Carbon- Neutral Energy Research (l ² CNER) (Dec 2010)	Petros SOFRONIS	The Grand Highway for a Carbon-Neutral Energy Fueled World		
University of Tsukuba	International Institute for Integrative Sleep Medicine (IIIS) (Dec 2012)	Masashi YANAGISAWA	World-class institute for sleep medicine, aiming to solve the mechanism of sleep/ wakefulness by conducting basic to clinical research		
Tokyo Institute of Technology	Earth-Life Science Institute (ELSI) (Dec 2012)	Kei HIROSE	Globally-Advanced Interdisciplinary Research Hub for Exploring the Origins of Earth and Life		
Nagoya University	Institute of Transformative Bio- Molecules (ITbM) (Dec 2012)	Kenichiro ITAMI	Changing the world with molecules: Synthetic Chemistry and Plant/Animal Biology		

Table 2-2: The 9 WPI research centers (as of January 2015).

Fig. 2-2: Location of the 9 WPI research centers.

Selected WPI Programs

The National Institute for Materials Science (NIMS) was one of the original five institutes selected for a WPI grant in FY2007 and later in October of that year, established the International Center for Materials Nanoarchitectonics (MANA). A sixth WPI center was added in FY2010 and 3 more WPI centers were selected in FY2012. The 9 WPI research centers with MANA being the only one not integrated into a university are summarized in Table 2-2 and shown in Fig. 2-2.

In FY2011, the five initial WPI centers that were launched in October 2007 each underwent an interim evaluation by the WPI program committee and entered the second 5 year term of operation in April 2012. In FY2014, the five initial WPI centers each applied for a possible 5-year extension after their initial 10-year supporting period ends in March 2017. The WPI Committee determined that all 5 WPI centers have achieved "World Premier Status" fully meeting the goals of the WPI program. On top of that, the committee concluded that Kavli IPMU from The University of Tokyo is the only WPI center that will receive WPI subsidy for five more years.

2.2 MANA, the WPI Research Center at NIMS

• What is MANA?

The International Center for Materials Nanoarchitectonics (MANA) was founded in October 2007 as one of the original five centers under the World Premier International research Center Initiative (WPI) of Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT). Wining critical acclaim for the research achievements of its first five year term, MANA advanced into its second five year term in April 2012. MANA's Vision and Mission are displayed in Fig. 2-3.

• What is Nanoarchitectonics?

Nanotechnology plays a key role in the development of new materials. Nanotechnology tends to be perceived mistakenly as an extension of the microtechnology that has proven so effective in the microfabrication of semiconductor devices, in other words, as an extension that further refines conventional miniaturization techniques. However, nanotechnology is qualitatively different from microtechnology. The new paradigm of nanotechnology, which correctly understands this qualitative difference, is what we call *nanoarchitectonics*.

New materials and systems Nano-Materials Nanotubes Nanosheets Super molecules Nanoelectronics materials Nanoelectronics devices Neuromorphic nano-systems Revolutionary nano-measurement Theory and modeling

MANA's Vision

Toward a better global future: Pioneering a new paradigm in materials development using nanoarchitectonics concept

MANA's Mission

Develop ground-breaking new materials on the basis of the nanoarchitectonics concept

Create a "melting pot" where top-level researchers gather from around the world

Secure young scientists and foster their confidence to battle toward challenging targets

Construct a world wide network of nanotechnology centers

Fig. 2-3: MANA's Vision and Mission.

Innovation Nano-Power Solar cells Catalysts Lithium ion batteries Fuel cells Nano-Life Bionanoparticles Smart biomaterials Biointerfaces Biosensing

Fig. 2-4: The four research fields of MANA (as of January 2015).

Nanoarchitectonics has the following four essential characteristics:

- (1) In the world of microtechnology, structures can be fabricated according to a *blueprint*, but this is generally difficult in the nanotechnology world. This is due to thermal or statistical fluctuations and the theoretical limits of control techniques. For this reason, the important question is *how to create materials or systems with useful, reliable functions from nanostructures that contain ambiguity "nanoparts.*"
- (2) Nanoscale structures frequently exhibit extremely interesting new properties. However, *nanoparts* made up of those structures do not necessarily display useful functions, either independently or in simple aggregates. Here, the key is effectively inducing organic interactions between the same or different *nanoparts*, and thereby creating completely new material functions; in other words, a paradigm shift *from construction of structures to organization of interactions*.
- (3) In complex systems consisting of an enormous number of nanoscale *nanoparts*, new and unexpected functions often emerge in the system as whole. In *nanoarchitectonics*, researchers must not overlook the phenomenon that *quantity changes quality*.
- (4) It is necessary to pioneer a new theoretical field that can convincingly explain the above three points. This should not be limited only first principles calculations of atoms, molecules, electrons, photons, spins, and the like, but perhaps must also introduce appropriate bold new approximations. This should be called *nanotheory*.

Based on this paradigm of nanoarchitectonics, MANA is engaged in a full range of research, from basic to applied, in four research fields: Nano-Materials, Nano-System, Nano-Power and Nano-Life (Fig. 2-4).

• Research Objectives of MANA

Research objectives for each of the four research fields of MANA are as follows.

Nano-Materials

Synthesis of New Nanoscale Materials and their Artificial Organization for Design of Advanced Functionalities

MANA researchers are engaged in research with the aim of creating new nanomaterials such as nanotubes, nanorods, nanosheets, etc. by utilizing original synthesis techniques, beginning with soft chemistry, supramolecular chemistry, and combinatorial techniques. In this work, we are strongly aware not only of size and shape at the nanometer order, but also precise control of the composition and structure of materials. From this perspective, we aim to discover new physical properties and phenomena and greatly enhance functions under the guiding principle of discovery and exploration of new nanomaterials. In elucidating physical properties, we actively use cutting-edge nanocharacterization techniques such as an advanced TEM system combined with STM and AFM, etc. We are also developing chemical nanotechnology, which enables artificial construction of high-order nanostructured materials by arrangement and integration of nanomaterials obtained in this manner at the nano level by chemical processes and hybridization with other materials, with the goal of creating new functions and new technologies that are greatly superior to the existing ones.

Nano-System

The Quest for Novel Nanosyststems to Go Beyond Common Sense of Today and Lead the Information Processing Revolution of Tomorrow

The aims of the MANA Nano-System Field are to discover new functions which appear as a result of the mutual interaction of nanostructures that individually have interesting properties, and to systematically investigate their use in nanosystems. Concretely, we are engaged in basic research on phenomena such as atomic transport, molecular reaction processes, charge transport, spin transport, plasmon excitation, superconductivity, etc. in nanoscale materials, and in the development of a wide range of devices utilizing those phenomena, including atomic switches, artificial synapses, molecular devices, qubits (quantum bits) in which quantum interference can't be destroyed, neural network-like network circuits, next-generation CMOS devices, ultra-high sensitivity, super parallel-type molecular sensors, etc. Because we give high priority to the development of new nanoscale characterization methods, we developed a multi-probe scanning probe microscope and other characterization instruments. We are also actively engaged in interdisciplinary and fusion research with other research fields in MANA.

Nano-Power

High Efficiency Material and Energy Conversion Systems for a Sustainable Society

The key to efficient use of solar energy is the arrangement of the molecules responsible for various functions such as electron transport and reactions. Efficient ion transport and electron transport play key roles in the storage, transportation, and extraction of energy, for example, in secondary cells (rechargeable batteries) and fuel cells. For this reason, control of interfacial atoms and molecules is indispensable. The arrangement of atoms and molecules at the catalyst surface is also a crucial key for achieving high selectivity and high efficiency in catalysts that are essential for resource-saving and energy-saving chemical processes. In short, the scientific basis for realizing a sustainable society is designing the interfacial atomic/molecular arrangement corresponding to the purpose and realizing the actual arrangement as designed, in other words, *interfacial nanoarchitectonics*. Based on this concept of interfacial nanoarchitectonics, researchers in the Nano-Power Field are engaged in research and development of systems for high efficiency matter-energy conversion by free manipulation of atoms and molecules and control of nanostructures.

Nano-Life

Nano-Biological Functional Materials Realizes Material Therapy

Our aim is to create novel biomaterials that realize *materials therapy* for safe and secure advanced medical treatment. Materials therapy is an approach in which diagnosis and treatment of diseases are performed using materials, and the materials themselves demonstrate effects precisely like those of drugs. Although cells are the smallest unit in the human body, cells can be organized by cell groups and the adhesive proteins, etc. that support them, which then form organs that can perform complex functions. In this process, the homeostasis of the body is maintained by communications between biomolecules. In the MANA Nano-Life Field, we are developing new biomaterials that control biofunctions at the nano level by using nanoarchitectonics. In particular, we are carrying out research linked to clinical treatment by combining the two focuses of *Diagnosis/prevention* and *Treatment* of disease. These technologies can be expected to greatly reduce the time and cost of conventional treatment methods, and to lead to new therapeutic technologies that can also be applied to high urgency diseases.

• WPI Evaluation of MANA

One Program Director (PD) and nine Program Officers (PO), one for each WPI center, have been assigned by JSPS to conduct the follow-up activities. With the assigned PO as its chair, a working group for each WPI center has been established under the Program Committee. Each group comprises about 5-6 specialists in the subject field. As a rule, about half of them are overseas members. Program Director (PD), Program Officer (PO) and Working Group members for MANA in Fiscal Year 2014 are listed in Table 2-3.

The Evaluation of MANA by the WPI Program Committee consists of an annual Site-Visit at MANA and an annual Follow-Up Meeting. Primary Evaluation criteria are the Achievements of Science as well as the Implementation as a WPI Research Center. In FY2011, at the interim evaluation by the WPI Program Committee, MANA received a high score "A" and has entered the second 5 years of operation in April 2012. In FY2014, the 7th MANA Site Visit by the WPI Program Committee and MEXT and JSPS Officials was held in the auditorium of the new WPI-MANA Building on September 25-26, 2014 (Fig. 2-5). This site visit was part of MANA's application for a possible 5-year extension after the initial 10-year supporting period until March 2017.

Program Director (PD): WPI Program	Toshio Kuroki	Senior Advisor, Research Center for Science Systems, JSPS
Deputy Program Director: WPI Program	Akira Ukawa	Deputy Director, RIKEN Advanced Institute for Computational Science
Program Officer (PO): MANA at NIMS	Gunzi Saito	Professor, Faculty of Agriculture, Meijo University
Working Group Member: MANA at NIMS	Yoshinobu Aoyagi	Senior Researcher, Ritsumeikan University
Working Group Member: MANA at NIMS	Takehiko Ishiguro	Professor Emeritus, Kyoto University
Working Group Member: MANA at NIMS	Tadashi Matsunaga	President, Tokyo University of Agriculture and Technology
Working Group Member: MANA at NIMS	Hiroshi Yoshida	Professor, Graduate School of Engineering Science, Osaka University
Working Group Member: MANA at NIMS	David L. Allara	Distinguished Professor Emeritus of Chemistry and Professor of Materials Science & Engineering Departments of Materials Science & Engineering, Pennsylvania State University, USA
Working Group Member: MANA at NIMS	Klaus von Klitzing	Director, Max Planck Institute for Solid State Research, Germany, Nobel Prize laureate

 Table 2-3: Program Director (PD), Program Officer (PO) and Working Group members for MANA in Fiscal Year 2014.

Fig. 2-5: The seventh MANA Site Visit in September 2014. WPI Program Director, Prof. Toshio Kuroki (left) and MANA Center Director, Prof. Masakazu Aono (right).

3. Organization, Members and International Research Environment of MANA

3.1 MANA Organization and Members

• Organization of MANA

In order to realize the MANA concept, it is extremely important to establish efficient organizational operation. Fig. 3-1 shows an overview of the MANA organization. The role of MANA members are explained in Table 3-1.

The Director-General of MANA has authority over the center's operation in general. He possesses the authority to allocate Center resources such as budget funds and space. This includes employment and renewal of contracts for researchers and administrative staff members of the MANA center, except for those who are enrolled in the main body of NIMS.

In October 2008, a Chief Operating Officer was assigned to work under the Director-General in order to reduce the burden on the Director-General and to allow for more efficient and speedier Center management. The Administrative Director oversees

administrative duties, while the Chief Operating Officer supervises research. In light of the Center's administrative issues, the MANA Executive Meeting was put in place to allow the Director-General, Chief Operating Officer and Administrative Director to confer at any time to make snap decisions on Center management.

The MANA Administrative Office has been established with three teams in October 2008 (*Planning Team, General Affairs Team, Technical Support Team*) and added an *Outreach Team* in April 2010. All staff of the MANA Administration is fluent in English.

Fig. 3-1: Organization of MANA (as of January 2015).

Director-General Center oversight	MANA Independent Scientist A fixed-term younger researcher who conducts his/her own		
Chief Operating Officer	research independently in the 3D system		
Assists the Director-General and supervises research	ICYS-MANA Researcher		
Administrative Director Takes orders from the Director-General and supervises clerical and administrative duties	A postdoctoral fellow selected from all over the world by open recruitment. He/she performs his/her research inde- pendently while receiving advice from mentors and Princi- nal Investigators		
Principal Investigator (PI)	MANA Descoreb Associate		
An internationally known world top-class scientist who plays leading roles in achieving MANA research targets and in fostering younger researchers through mentoring.	A postdoctoral fellow working in a group of a Principal Investigator or MANA Independent Scientist		
Principal Investigators are selected from NIMS and other domestic and overseas institutes	Graduate Student A doctor-course student at an institution affiliated with NIMS. He/she participates in research at MANA under the tutelage of a Principal Investigator, MANA Scientist and/ or a MANA Independent Scientist		
Associate Principal Investigator (API) A young promising scientist, who is expected to perform his/her own research at a level comparable to Principal			
Investigators	Research Support Staff		
Group Leader	Technicians that support research work		
A researcher who is leading a research group of a unit headed by one of the Principal Investigators	Administrative Staff Staff that supports administrative duties		
MANA Scientist A researcher from NIMS who conducts research together with a Principal Investigator			

Table 3-1: MANA members and duties

• Workforce of MANA

Table 3-2 shows the workforce of MANA as of January 1, 2015, consisting of 209 researchers and 28 technical and administrative staff. The proportion of foreign researchers is 51.7% from 25 different countries (Table 3-3), showing MANA is now really international. The proportion of female researchers is 18.7%, and MANA would like to further increase this number. Appendix 7.1: MANA Top Management

Appendix 7.2: MANA Research Staff

Position	Number	Non-Japanese	Female			
Principal Investigators	22	8	2			
Associate Principal Investigators	2	1	0			
Group Leaders	11	0	1			
MANA Scientists	51	7	9			
Independent Scientists	15	3	2			
ICYS-MANA Researchers *	10	8	0			
MANA Research Associates *	60	47	14			
JSPS Fellows *	5	4	1			
Junior Researchers #	33	30	10			
Technical Staff	11	0	3			
Administrative Staff	17	1	14			
Total	237	109	56			

Table 3-2: MANA workforce (as of January 1, 2015).

*: Postdocs #: Graduate Students

Proportion of Foreign Researchers: 51.7% (108/209) Proportion of Female Researchers: 18.7% (39/209)

Region	Country	MANA PI, API	MANA Scientist	Indep. Scientist	ICYS-MANA Researcher	Research Associate	JSPS Fellow	Graduate Student	Staff	Total
	China	2	3	1	3	19	1	23		52
	India				1	15				16
	Korea		1			1		4		6
	Nepal		1				1			2
	Indonesia					1				1
Asia	Myanmar					1				1
	Pakistan							1		1
	Singapore					1				1
	Taiwan					1				1
	Thailand		1							1
	Vietnam					1				1
Oceania	Fiji							1		1
	France	1			1	3				5
	UK	2	1		1					4
	Russia	1		1						2
	Belgium				1					1
Europe	Czech					1				1
	Finland						1			1
	Germany					1				1
	Greece					1				1
	Switzerland								1	1
Near East	Iran					1	1			2
Africa	Algeria				1					1
Ашса	Egypt							1		1
America	USA	2		1						3
America	Canada	1								1
Total		9	7	3	8	47	4	30	1	109

Table 3-3: MANA workforce with foreign nationality (as of January 1, 2015).

MANA Advisors

As of January 2015, there are three external intellectuals serving as MANA Advisors (Appendix 7.3). They provide advice on overall Center management and invaluable suggestions on individual research projects. They also cooperate in MANA's outreach activities by serving as lecturers in science seminars geared toward elementary and junior high school students. The late Dr. Rohrer, a MANA advisor, used to attend the MANA International Symposium every year and offer invaluable advice on each of the lectures. In April 2013, MANA appointed two prominent researchers as International Cooperation Advisors (Appendix 7.3). They provide MANA with advice on joint research with overseas research institutes and the formulation of a global nanotech network.

Appendix 7.3: MANA Advisors and International Cooperation Advisors

• MANA Evaluation Committee

As of January 2015, the MANA Evaluation Committee is composed of eight external eminent scientists (Appendix 7.4) and is chaired by Prof. Cheetham from the University of Cambridge. To date, the committee has met four times, once each in 2008, 2010, 2012 and 2015 (Fig. 3-2), to evaluate the Center's administration and research activities. The committee provides advice from a different perspective than the WPI Program Committee, and MANA responds to its recommendations by formulating action plans.

Appendix 7.4: MANA Evaluation Committee

Fig. 3-2: The 4th MANA Evaluation Committee meeting was held in Tsukuba on March 13, 2015.

3.2 Attractive International Research Environment

MANA is one of the most internationalized research centers in Japan. MANA is firmly advancing the development of an outstanding international research environment in an effort to create a *highly visible research center*.

• Training of Young Scientists

Unique Triple Double (3D) System

MANA has created a unique system for training young scientists that we call the *Triple Double (3D)* system. Each young researcher at MANA is encouraged to have two mentors, one who is a scientist at NIMS, and the other from outside NIMS (particularly a mentor from another country). Young MANA researchers have 2 mentors (Double Mentor), do research spanning 2 fields of specialization (Double Discipline), and are affiliated with 2 institutions (Double Affiliation). The *Triple Double* system takes its name from these *3 Ds*.

By having young researchers work at research institutes in other countries, carry our research with the world's top scientists, and do interdisciplinary and fusion type research, MANA is training a new generation of

scientists with an international vision and interdisciplinary capabilities.

MANA Independent Scientists

MANA hires young researchers who have produced outstanding research achievements as MANA Independent Scientists. MANA uses the *Triple Double 3D* system to train these future leaders (Fig. 3-3).

Independent Authority over Research

Just as the name implies, researchers are given independent discretion over their research. In Japan, there are almost no other research institutes that give this much authority and discretion to researchers in their 30s or early 40s. Thanks to this authority, Independent Scientists can decide their own intention and take action related to their own research themes.

Fig. 3-3: Training of MANA Independent Scientists.

• Independent Research Budget

Independent Scientists receive some funding from MANA, but not much. They must approach corporations and federal institutions on their own and take the initiative to acquire their own funding. In this way, they secure funding to enable them to conduct research freely and of their own accord.

Independent Action

Meeting directly with the scientists who set the world standard getting to know them personally and listening to what they have to say might just be the most stimulating thing there is for researchers with future potential. Since the activities of Independent Scientists are very free, it is possible for them to conduct research abroad when and for as long as they require.

ICYS-MANA

With the aim of building an international research environment for young researchers and creating a unique system to guide them, the International Center for Young Scientists (ICYS) was set up by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) in 2003 through the Special Coordination Funds for promoting Science and Technology and the Program for Encouraging the Development of Strategic Research Centers. The mission of ICYS was to gather excellent young researchers from different countries and specializations to a place where they can conduct research autonomously in a melting pot environment where they can stimulate one another and elicit as much of their youthful creativity as possible. This ICYS program received high marks and even after the conclusion of the program in 2007, the principle and system of ICYS continued as the NIMS International Center for Young Scientists.

ICYS-MANA has been organized in MANA to continue and develop the concept of ICYS. Talented young multinational researchers will gather to conduct independent research in a melting pot environment mixing different research fields and cultures. At NIMS, ICYS researchers are hired twice a year by way of international open recruiting. Over the 7.5 years between October 2007 and March 2015, 97 scientists have worked as ICYS researchers at NIMS and of these, 47 were ICYS-MANA researchers.

• Cutting-edge Research Facilities

Researchers at MANA have the opportunity to use some of the world's most advanced, highest performance research equipment at MANA's host institution, the National Institute for Materials Science (NIMS), such as high field magnets, a dedicated beamline at Japan's Spring-8 synchrotron facility, high-voltage und ultrahigh vacuum electron microscopes, a belt-type high-pressure apparatus, high energy X-ray photoemission spectroscopy and high precision X-ray diffractometers.

In April 2009, MANA has set up an independent *MANA Foundry* equipped with over 30 facilities for nano-fabrication and characterization to support research of nanoarchitectonics (Fig. 3-4). The purpose of *MANA Foundry* is to provide delicate support by its skilled engineers and facilities where various types of materials can be handled for researchers with diverse backgrounds from all over the world. The clean room facility consists of eight areas in its 235 m² floor space: Drawing and Photo Lithography, Wet Process, Etching, Film Deposition, Nano Measurement, Nano Analysis, Heat Treatment and Dicing & Wiring. *MANA Foundry* is able to provide consistent processes from test piece preparation to structural observation and functional verification including nano-gap electrode patterning by electron beam lithography on complicated structures such as nano dots, nano wires and nano sheets made of various materials like organic, inorganic, metal, insulator, magnetic, superconductor and composite.

In addition, MANA researchers have access to more than 50 "user facilities" (Fig. 3-4) and can use these with the support of experienced English speaking staff from MANA Technical Support Team (TST).

Fig. 3-4: Left and middle: Clean room facility in MANA Foundry. Right: High temperature Differential Thermal Analysis (DTA) at MANA user facility.

• Full Support for Researchers

Fusion of different fields and cultures creates the possibility of innovation. MANA is pursuing a *melting pot environment* (Fig. 3-5) where world-class human resources from diverse fields or specialization and different nationalities and cultures can come together and work *under one roof.* To foster such a melting pot environment more and more, MANA has increased the number of foreigners to over 50% of the MANA researchers. As part of the melting pot activity, researchers from MANA are requested to present their research field at the MANA seminars. When renowned researchers visit MANA, they held seminars to introduce their research projects to stimulate MANA researchers and promote interdisciplinary synergies. In 2014, MANA seminars were conducted with 18 speakers from NIMS and 63 invited renowned researchers from around Japan and the world (total 81 speakers).

Fig. 3-5: Melting pot environment has characteristics of In⁴: International, Interdisciplinary, Independent, Innovative.

Appendix 7.5: MANA Seminars

MANA has created an environment where researchers can devote their full attention to their research, regardless of nationality, by adopting English as a common language and assigning experienced staff to act as secretaries providing administrative and technical support to researchers. To eliminate the barriers of language and nationality, MANA has the following system:

- Use of English for information on Web and intranet in MANA
- Use of English in documents related to administrative procedures, etc.
- · Information in English about external funds
- English-language orientation for non-Japanese researchers
- · English-language support by administrative staff and research support staff
- Japanese culture classes
- Research/daily life guidebook in English

The system provides information necessary for daily life, for example, about public agencies, searching for a house or apartment and emergency support. Japanese language and culture classes are held for overseas researchers at MANA in order to help deepen their understanding of Japan. Japanese language classes are divided into introductory and beginner levels, and are held in three terms throughout the year. Students hold a speech contest during the final lesson of each term. In 2014, 84 participants attended the Japanese language classes. The Japanese culture class is held monthly. Specialist instructors are invited to give lectures on traditional Japanese culture as shown in Fig. 3-6 and listed in Table 3-4. In 2014, 133 participants joined the Japanese culture classes.

Fig. 3-6: Japanese culture class events at NIMS in 2014. Top from left to right: Origami, Japanese Drum (Wadaiko), Sushi, and Kimono. Bottom from left to right: Indigo-dyeing & Japanese-weaving, Seal Carving (Tenkoku), Japanese Cuisine (Kaiseki), and Calligraphy.

1	2014 Jan 31 Kimono (14 participants)	5	2014 May 24 Sightseeing in Japan (10 participants)	9	2014 Sep 26 Japanese Flower Arrangement (8 participants)
2	2014 Feb 25 Seal Carving (Tenkoku) (11 participants)	6	2014 Jun 27 Origami (6 participants)	10	2014 Oct 31 Seal Carving (Tenkoku) (17 participants)
3	2014 Mar 30 Japanese Cuisine (Kaiseki) (8 participants)	7	2014 Jul 25 & Aug 1 Japanese Drum (Wadaiko) (12 participants)	11	2014 Dec 5 Kimono (14 participants)
4	2014 Apr 25 Calligraphy (8 participants)	8	2014 Aug 30 Indigo-dyeing & Japanese-weaving (9 participants)	12	2014 Dec 17 Sushi (16 participants)

Table 3-4: Schedule of Japanese culture classes in 2014.

• New Research Building

Next to the MANA Building (13,000 m², 5-story) at NIMS Namiki site, construction work of a new multidisciplinary research complex was completed in March 2012 (Fig. 3-7). The complex consists of two units - the NanoGREEN Building and the WPI-MANA Building (6,000 m², 5-story) – with the area between the two buildings serving as a free space where researchers can meet and discuss their work. The complex is a facility for world-class research on environmental and energy materials and nanotechnologies that brings together NIMS and outside researchers and private-sector engineers from Japan and abroad. The building received the rank of S, the highest possible rating, from CASBEE, a tool for assessing and rating the environmental performance of buildings.

Fig. 3-7: The new WPI-MANA Building at NIMS Namiki site.

The WPI-MANA Building employs cutting-edge technologies,

including a photocatalyst-coated glass watering system, solar panels, and sunlight-controlling louvers made of recycled wood. These technologies automatically control temperature, humidity, light and other environmental aspects to achieve both energy-savings and comfort. It is MANA's forward-looking attempt at developing a zero-energy building (ZEB).

Zero-Energy Buildings (ZEB)

ZEBs are buildings that use energy-saving technology and renewable energy to bring their net energy consumption as close as possible to zero.

4. Research Activities, Output and Achievements

4.1 Research Activities

• Research Digest 2014

For an overview of MANA research activities, please refer to yearly published booklet Research Digest (Fig. 4-1), which is part of the MANA Progress Report. Examples of recent research accomplishments of MANA are given in Section 4.3 of this chapter.

• MANA Research Highlights

Since September 2011, MANA has been disseminating MANA's outstanding research outcomes around the world in an online newsletter *MANA Research Highlights*. This newsletter is distributed to 2,000~3,000 media outlets and

Fig. 4-1: Recent issues of the booklet Research Digest.

Volume 14 (April 23, 2014):

Nanomechanical sensors detect cancer from breath

An array of functionalized membrane-type surface stress sensors (MSS) distinguishes cancer patients from healthy people through a signature response to breath samples.

Principal Component Analysis case scores for breath samples of 4 healthy persons and 4 cancer patients.

Publication:

F. Loizeau, H.P. Lang, T. Akiyama, S. Gautsch, P. Vettiger, A. Tonin, G. Yoshikawa, C. Gerber, N de Rooij, *Piezoresistive membrane-type surface stress sensor arranged in arrays for cancer diagnosis through breath analysis*,

Micro Electro Mechanical Systems (MEMS) 621 (2013). doi: 10.1109/MEMSYS.2013.6474318

Volume 16 (July 10, 2014):

A cool approach to flexible electronics

A nanoparticle ink that can be used for printing electronics without high-temperature annealing presents a possible profitable approach for manufacturing flexible electronics.

Fully printed organic thin film transistors (OTFTs) on a paper substrate.

Publication:

T. Minari, Y. Kanehara, C. Liu, K. Sakamoto, T. Yasuda, A. Yaguchi, S. Tsukada, K. Kashizaki, M. Kanehara, *Room-Temperature Printing of Organic Thin-Film Transistors with pi-Junction Gold Nanoparticles*, Advanced Functional Materials **24**(31), 4886 (2014). doi: 10.1002/adfm.201400169

Volume 15 (June 27, 2014):

Revealing the "Scotch-tape" technique mechanism

First In-Tandem Experimental and Theoretical Modeling of a Famous "Scotch-Tape" Technique for Making Two-Dimensional Graphene-like Nanosheets.

Nanomechanical cleavage of molybdenum disulphide atomic layers.

Publication:

D.M. Tang, D.G. Kvashnin, S. Najmaei, Y. Bando, K. Kimoto, P. Koskinen, P.M. Ajayan, B.I. Yakobson, P. B. Sorokin, J. Lou, D. Golberg, *Nanomechanical cleavage of molybdenum disulphide atomic layers*, **Nature Communications 5**, 4631 (2014). doi: 10.1038/ncomms4631

Volume 17 (August 1, 2014):

Atomic Switch Networks for Cognitive Technology

A self-organized network of inorganic synapses provides a unique approach toward the development of brain-like computers.

A look inside the ASN device reveals its highly interconnected architecture which comprises synaptic circuit elements at each point of contact between nanowires.

Publication:

A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, H.H. Shieh, M. Aono, A.Z. Stieg, J.K. Gimzewski, *Neuromorphic Atomic Switch Networks*, **Plos One 7**(8), e42772 (2012). doi: 10.1371/journal.pone.0042772

Fig. 4-2: Volumes 14-17 of the newsletter MANA Research Highlights published in FY2014.

Volume 18 (August 29, 2014):

Intracellular imaging gets interactive

A so-called bioparallel chemistry approach is successfully used to image and activate an essential metabolism compound inside a cell.

The researchers incubated ubiquinone-rhodol with HeLa cells. When the metabolic process that generates NADH was triggered in the cells the fluorescence was found to decrease.

Publication:

H. Komatsu, Y. Shindo, K. Oka, J.P. Hill, K. Ariga, Ubiquinone- Rhodol (UQ-Rh) for Fluorescence Imaging of NAD(P) H through Intracellular Activation, Angewandte Chemie - International Edition **53**(15), 3993 (2014). doi: 10.1002/anie.201311192

Volume 19 (February 27, 2015):

Visualizing superconductive coupling over atomic steps

Scanning tunnelling microscopy imaging under differing magnetic fields gives fundamental insights into the behavior of supercurrents and vortices on the surface of indium-doped silicon films.

Scientists at the International Center for Materials Nanoarchitectonics have uncovered how supercurrents flow over atomic steps and terraces on indium-covered silicon surface.

Publication:

S. Yoshizawa, H. Kim, T. Kawakami, Y. Nagai, T. Nakayama, X. Hu, Y. Hasegawa, T. Uchihashi, *Vortices on the Surface Superconductor Si(111)-(root 7 x root 3)-In using a Scanning Tunneling Microscope*, **Physical Review Letters 113**(24), 247004 (2014). doi: 10.1103/PhysRevLett.113.247004

Volume 20 (March 10, 2015):

Hydrocarbon photocatalysts get in shape and go for gold

A combination of semiconductor catalysts, optimum catalyst shape, gold-copper co-catalyst alloy nanoparticles and hydrous hydrazine reducing agent enables an increase of hydrocarbon generation from CO₂ by a factor of ten.

A combination approach increases the generation of hyrdrocarbons from CO_2 by a factor of ten.

Publication:

Q. Kang, T. Wang, P. Li, L.Q. Liu, K. Chang, M. Li, J.H. Ye,

Photocatalytic Reduction of Carbon Dioxide by Hydrous Hydrazine over Au-Cu Alloy Nanoparticles Supported on SrTiO₂/TiO₂ Coaxial Nanotube Arrays,

Angewandte Chemie - International Edition **54**(3), 841 (2015). doi: 10.1002/anie.201409183

Volume 21 (March 27, 2015):

Supercomputing in materials science: Firstprinciples simulations of large molecules Large-scale calculation capable of handling material

systems containing 100 to 1,000 times more atoms than conventional methods.

Snapshot structure from first-principles simulation of DNA in water medium using the calculation method developed by the research.

Publication:

M. Arita, D.R. Bowler, T. Miyazaki, Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10000+Atoms, Journal of Chemical Theory and Computation **10**(12), 5419 (2014). doi: 10.1021/ct500847y

Fig. 4-3: Volumes 18-21 of the newsletter MANA Research Highlights published in FY2014.

science journalists and to about 2,000 MANA mailing list members. Particularly outstanding research results are sent to approximately 4,000 researchers around the globe via *Science* e-mail alerts. These efforts have been an effective means of sharing MANA's outcomes with the global science community, and some of the highlighted papers have been the most downloaded articles. 21 volumes of *MANA Research Highlights* have been published between FY2011 and FY2014 (Table 4-1). The information is available on the MANA website at www.nims.

Table 4-1: Volumes of MANA Research Highlights
published between FY2011 and FY2014.

Volumes	Fiscal Year
1-2	FY2011
3-6	FY2012
7-13	FY2013
14-21	FY2014

go.jp/mana/research/index.html . The volumes published in FY2014 are illustrated in Figs. 4-2 and 4-3.

• Advancing Fusion of Various Research Fields

To encourage precursory, interdisciplinary research across MANA's four fields (Nano-Materials, Nano-System, Nano-Power and Nano-Life), MANA has established the following internal special funds:

- Fusion Research Program (6 projects, FY2009 FY2010) Encouragement of interdisciplinary research
- Grand Challenge Program (7 projects, FY2011 FY2012) To promote challenging but risky research projects
- Nano-Bio (Nano-Life) Fusion Research Program (2 projects, FY2012 FY2014) Interdisciplinary research in Nano-Bio / Nano-Life field
- Theory-Experiment Fusion Research Program (10 projects, FY2012 FY2014 and FY2013 FY2015) True fusion of experimental and computational science

• Grand Challenge Meetings

In 2011, MANA has started to hold retreat-style *Grand Challenge meetings*. The initial aim of the meeting was to encourage researchers working in different fields at MANA to brainstorm and discuss the kinds of research they aspire to, but the event led some young researchers to propose a Grand Challenge Meeting geared only to young researchers. Some twenty MANA researchers are selected from among those interested in joining this meeting and they engage in free discussions about future grand challenges at MANA at a remote country site for two days. Grand challenge meetings have been held in January 2011 (Miura peninsula), April 2012 (hot spring resort in Nasu) and November 2012 (young researcher's meeting at Miura peninsula). We have observed that these meetings are remarkably useful in triggering fusion research among MANA's scientists in different research specialties. The fourth MANA Grand Challenge Meeting was held in Nasu, Japan, over a

Fig. 4-4: Participants of the fourth Grand Challenge Meeting in Nasu on February 25-26, 2015.

2-day period from February 25 to 26, 2015 (Fig. 4-4). Lively presentations and discussions by the participating researchers were held with no research field boundaries. The meeting was a truly significant event that reflected the slogan posted in various places in the MANA Building, "The fruits of your research are proportional to the number of your conversations with others."

• Invitation of Foreign Researchers

To ensure that MANA is a research center that attracts all levels of researchers from around the world, MANA uses 2 researcher invitation programs.

NIMS Open Research Institute Program:

This program is run by NIMS and brings together all levels of researchers from young researchers to highly regarded scientists. By March 2015, 170 researchers were invited to MANA by this program.

MANA Short-Term Research Program:

This is an original MANA program that invites faculty members from foreign research institutes who can conduct joint research with MANA researchers. Invitees stay at MANA for 1 to 3 months. By March 2015, 68 researchers have visited MANA within this program.

4.2 Research Output

• Research Papers of MANA

MANA's excellent research achievements are apparent from several indicators showing research activities of individual institutions in the world. Various indicators analyzed by Thomson Reuters and Elsevier show that the paper publication activity of MANA is at the world's highest level.

As shown in Fig. 4-5, MANA published 2,850 MANA affiliated research papers in English between October 2007 and December 2014, and the average impact factor (IF) of the journals in which the 2,850 papers were published is larger than 5.0 in recent years. The number of MANA papers published per year increased until 2011 and then remained at a high value of slightly above 470 papers per year. The average journal impact factor of the MANA papers increased from 4.0 in 2008 to 5.11 in 2011, and remained at an extremely high value above 5. The year 2014 (January – December) turned out to be an excellent year for MANA with the *largest number of MANA papers* (488) so far and the *highest average journal impact factor* (5.36) so far. The 488

Fig. 4-5: MANA affiliated research papers in English published between October 2007 and December 2014 and average journal impact factor (Source: Web of Science database, as of June 2015).

MANA papers published in 2014 are listed in Appendix 7-6 including the *digital object identifier* (doi), the *Accession number* (WOS), and *electric identifier* (eid).

- The *digital object identifier* (doi) is a unique alphanumeric string assigned by a registration agency (the International doi Foundation) to identify content and provide persistent link to its location on the internet.
- The Accession number (WOS) is a unique article identifier on Web of Science database.
- The electric identifier (eid) is a unique article identifier on SCOPUS database.

Appendix 7.6: MANA Research Papers 2014

Name of journal	Journal impact factor 2014 *	Number of MANA papers 2014
Chemical Reviews	46.568	1
Chemical Society Reviews	33.383	2
Energy & Environmental Science	20.523	2
Advanced Materials	17.493	5
Advanced Energy Materials	16.146	1
Nano Today	15.000	2
Nano Letters	13.592	3
ACS Nano	12.881	17
Journal of the American Chemical Society	12.113	10
Advanced Functional Materials	11.805	6
Nature Communications	11.470	2
Angewandte Chemie - International Edition	11.261	2
Nano Energy	10.325	5
Chemical Science	9.211	1
Biomaterials	8.557	1
Small	8.368	3
Chemistry of Materials	8.354	5
Journal of Controlled Release	7.705	1
ChemSusChem	7.657	1
Physical Review Letters	7.512	1

Table 4-2: Number of MANA affiliated papers published 2014 in top journals with an impact factor 2014 above 7.5.

*: Source: Web of Science database, as of June 2015.

The high quality of MANA's research is witnessed by a large number of papers that our researchers have published in high impact journals. Of the 488 papers that MANA researchers published in 2014, 71 papers (or 14.6%) appeared in top journals with an impact factor 2014 above 7.5 (Table 4-2).

Essential Science Indicators of Thomson Reuters Web of Science compiles citation-based data sets for gauging performance of publications. *Highly Cited Papers* are ranked in the top 1% by citations for their field and year of publication. Of the total of 2,850 MANA papers, 106 papers (3.7%) have achieved very high acclaim, entering the top 1% in the world by number of citations (source: Web of Science database, as of April 2015). The breakdown of the 106 MANA top 1% papers into Research Fields and Year published is illustrated in Fig. 4-6. MANA top 1% papers appeared in 42 different journals. The journals publishing a large number of MANA top 1% papers are listed in Table 4-3.

Breakdown into Research Fields:*		Breakdown into Year published:		
Percentage	Year Published	Number of papers		
45.3%	2014	11		
34.9%	2013	20		
12.3%	2012	24		
3.7%	2011	17		
1.9%	2010	18		
1.9%	2009	10		
100.0%	2008	6		
	ds:* Percentage 45.3% 34.9% 12.3% 3.7% 1.9% 1.9% 100.0%	Matrix Breakdown into Yes Percentage Year Published 45.3% 2014 34.9% 2013 12.3% 2012 3.7% 2011 1.9% 2009 100.0% 2008		

Fig. 4-6: Breakdown of the 106 highly cited (top 1%) MANA papers into Research Fields (left) and Year Published (right).

Table 4-3: Journals	publishing a la	arge number	of highly cited	(top 1%)	MANA papers
---------------------	-----------------	-------------	-----------------	----------	-------------

Name of journal	Journal impact factor 2014 *	Number of MANA top 1% papers
Advanced Materials	17.493	15
Journal of the American Chemical Society	12.113	12
Advanced Functional Materials	11.805	8
Journal of Materials Chemistry A **	7.443	8
Chemical Society Reviews	33.383	5
Chemical Communications	6.834	5
Energy & Environmental Science	20.543	4

*: Source: Web of Science database, as of June 2015

**: including Journal of Materials Chemistry

MANA researchers proactively conduct joint research with researchers from around Japan and throughout the world. As shown in Fig. 4-7, from the total of 2,850 MANA papers, 1,259 papers (44.2%) have been international joint work. Since 2013, the number of internationally co-authored MANA papers account for about half of all papers published. This high number is comparable to Germany, one of the world leaders in internationally co-authored papers.

Elsevier recently called devised a new indicator called *Field-Weighted Citation Impact* (FWCI) to fairly compare the quality of papers published from interdisciplinary research institutions. Fig. 4-8 compares the values of FWCI for MANA and various other institutes and universities in the world. The calculated FWCI value of 2.44 for MANA means that MANA output is 144% more cited than expected for the world average (FWCI =1). It is found that FWCI for MANA is at the world top level.

Fig. 4-7: Internationally co-authored papers of MANA published between October 2007 and December 2014. Information based on SCOPUS database. Source of national average: SciVal database, Elsevier B.V., downloaded in April 2015.

Fig. 4-8: Field Weighted Citation Impact (FWCI) of MANA and other institutions in the world. Source: SciVal database, Elsevier B.V., downloaded in February 2015. FWCIs were calculated for papers published during six years from 2008 to 2013.

• MANA Journal Cover Sheets

Since the launch of the MANA project in October 2007, MANA scientists have produced many Journal cover sheets of issues that contain their research paper. Different kinds of Journal cover sheets (Journal Front Cover, Journal Inside Front Cover, Journal Back Cover, Journal Inside Back Cover, Journal Frontispiece) related to papers with MANA Affiliation between October 2007 and December 2014 are listed in Appendix 7.7. Some examples from 2014 are shown in Fig. 4-9.

Appendix 7.7: MANA Journal Cover Sheets

Fig. 4-9: Examples of recent journal front covers related to MANA affiliated papers.

• MANA Patents

In addition to writing research papers, many MANA scientists actively apply for patents. The number of MANA patent applications and MANA patent registrations between the launch of MANA in October 2007 and December 2014 is illustrated in Fig. 4-10 and summarized in Table 4-4. MANA reached a total number of 1218 MANA patents, consisting of 713

Fig. 4-10: Number of MANA patent applications and registrations between October 2007 and December 2014.

	Total Number (2007 Oct – 2014 Dec)	Average Number (per year)
Japanese Patent Applications	494	68.1
Japanese Patent Registrations	384	53.0
International Patent Applications	219	30.2
International Patent Registrations	121	16.7

 Table 4-4: Number of MANA patent applications and registrations.

applications and 505 registrations. A complete list of patent applications and registrations can be found in Appendix 7.8 of this report (for Jan 2012 to Dec 2014) and in Appendix 8.9 of the report *Facts and Achievements 2012* (for Oct 2007 to Dec 2012). All listed patent applications and patent registrations are or were partly or fully owned by NIMS.

Appendix 7.8: MANA Patents

• Commendations

In 2014, MANA's renowned researchers again won several prestigious prizes and awards.

Project Prize at nano tech 2014

An exhibition of research results obtained by MANA Scientist Mitsuhiro Ebara, entitled *Development of Anti-Cancer Nanofiber Mesh*, was awarded the Project Prize at the 13th nano tech International Nanotechnology Exhibition & Conference (nano tech 2014) on January 29-31, 2014.

PSJ Young Scientist Award 2014

MANA Independent Scientist Takako Konoike was awarded the 8th (2014) Young Scientist Award of the Physical Society of Japan (Area 7). This award was established in 2007 to encourage research by outstanding young scientists who will be responsible for physics in the future. The award to Dr. Konoike recognized her contributions to research on *the thermal properties of Dirac electron systems*. The award ceremony and memorial lecture were held at the 69th Annual Meeting of the Japan Physical Society on March 27, 2014.

Distinguished Lectureship Award of the CSJ Asian International Symposium 2014

MANA Scientist Lok Kumar Shrestha was awarded the Distinguished Lectureship Award of the Chemical Society of Japan (CSJ) Asian International Symposium. The award to Dr. Shrestha recognized his contributions to work on *self-assembled nanostructures*. The award ceremony was held during the International Chemists' Evening of the symposium on March 29, 2014 (Fig. 4-11).

JSM Seto Award 2014

MANA Principal Investigator Dmitri Golberg was awarded the 59th JSM Seto Prize of the Japanese Society of Microscopy. This prize was established in 1956 for individuals who contribute to the Society through outstanding achievements which expand microscopy in basic and applied research. The award to Dr. Golberg recognized his contributions to the Society through his outstanding long-term research entitled *Fabrication of boron nitride nanotubes and their property studies in a high-resolution transmission electron microscope*. The award ceremony and a memorial lecture by Dr. Golberg were held at the 70th Annual Meeting of the Japanese Society of Microscopy on May 12, 2014.

Fig. 4-11: Award Ceremonies with researchers from MANA. Left: CSJ President Kohei Tamao hands an award certificate to MANA Scientist Lok Kumar Shrestha on March 29. Middle: MANA PI Yoshio Bando and MANA PI Dmitri Golberg received an award certificate for ISI Highly cited researchers 2014 in Materials Science from Thomson Reuters on November 4. Right: The Japan Society for Applied Physics (JSAP)'s Paper Award 2014 for MANA PI Kazuhito Tsukagoshi.

Surface Science Society of Japan Prize 2014

MANA Principal Investigator Kohei Uosaki was awarded the 18th Surface Science Society of Japan Prize. This prize was established for individual members of the Society who made an outstanding contribution to surface science. The award to Prof. Uosaki recognized his research entitled *Construction of functional material phases based on the understanding and control of structures at solid/liquid interfaces*. The award ceremony was held at the Annual Meeting of the Surface Science Society of Japan on May 26, 2014.

ISI Highly cited researchers 2014 (Thomson Reuters)

ISI Highly cited researchers 2014 are authors of papers published between 2002 and 2012 whose number of citations is in the top 1% of a certain research field in the Thomson Reuters Essential Science Indicators database. On June 18, 2014, Thomson Reuters announced the members of this elite group that contains 5 Principal Investigators from MANA (Figs. 4-11, 4-12) as follows: Field of *Materials Science*: Kastuhiko Ariga, Yoshio Bando, Zhong Lin Wang and Omar Yaghi. Field of *Chemistry*: Zhong Lin Wang and Omar Yaghi.

JSAP Paper Award 2014

MANA Principal Investigator Kazuhito Tsukagoshi and MANA Postdoctoral Researcher Katsuyoshi Komatsu were awarded the 36th Japan Society of Applied Physics (JSAP) Paper Award. The JSAP Paper Award is given for excellent original papers contributing to the progress and improvement of applied physics. The award ceremony was held at the JSAP Autumn Meeting 2014 in Sapporo on September 17, 2014 (Fig. 4-11).

Fig. 4-12: 5 MANA Principal Investigators were selected as *ISI Highly cited researchers 2014* in the fields of Materials Science and Chemistry.

4.3 Research Achievements

In June 2015, MANA submitted a WPI Project Progress Report for Fiscal Year 2014 to the WPI Program Committee. Parts A) and B) of this section have been reproduced from the above mentioned report.

A) Conducting research of the highest world level

All the research at MANA has been performed on the basis of MANA's unique concept of "nanoarchitectonics." This concept has already penetrated into researchers working at MANA. In 2014, MANA performed various researches at the highest world level. In the following, two examples of them are selected and described a bit in detail.

• Visualizing superconductive coupling over atomic steps in surface superconductivity - Scanning tunneling microscopy imaging under differing magnetic fields gives fundamental insights into the behavior of supercurrents and vortices on the indium-mediated silicon surface -

Superconductors have effectively zero resistance and act as perpetual carriers of electric current with no need for a connected power source. As such they have many applications in electronics. One of the thinnest two-dimensional materials ever created, called Si(111)-($\sqrt{7} \times \sqrt{3}$)-In, recently surprised scientists with its superconducting abilities. The race is now on to find out how and why this silicon surface is capable of superconductivity, as well as what uses it may have. Takashi Uchihashi and coworkers at MANA, together with scientists across Japan, have now uncovered the underlying structures and the behavior of currents on the surface of Si(111)-($\sqrt{7} \times \sqrt{3}$)-In which provide clues to its superconductivity. The silicon surface comprises

Fig. 4-13: (Right) Structure of the Si(111)-($\sqrt{7} \times \sqrt{3}$)-In surface having atomic steps each of which acts as a Josephson junction. (Left) Josephson junction quantum vortexes observed by the scanning tunneling microscope (STM).

individual terraces separated by steps measuring the height of a single atom ('atomic steps'). These steps could potentially interrupt, or decouple, neighboring terraces and break the current flowing over large surfaces. Uchihashi and his team used a scanning tunnelling microscope in order to verify how superconductivity occurs in the presence of atomic steps and terraces. The team applied different magnetic fields, which influenced the strength of the current and the presence of associated vortices. By taking a series of images of the silicon surface, the team uncovered a pattern of supercurrent vortices present on the silicon surface. Two vortex types were present. Pearl vortices were present on the terrace surfaces, and appeared as bright round features in the images. However, at the atomic steps the vortices appeared to become trapped and altered in character. These elongated 'Josephson vortices' give evidence that the atomic steps work as so-called Josephson junctions, allowing coupling to occur across stepped terraces and enabling supercurrents to flow. The idea was firmly established with the help of microscopic theoretical calculations by Xiao Hu's group at MANA. In this way, MANA has uncovered how supercurrents flow over atomic steps and terraces on indium-covered silicon surface (Fig. 4-13). Vortices trapped at the atomic steps change their characters from Pearl to Josephson vortices (from A to C in the left panel of Fig. 4-13). These reflect change in strength of Josephson coupling between the neighboring terraces.

Reference: S. Yoshizawa, H. Kim, T. Kawakami, Y. Nagai, T. Nakayama, X. Hu, Y. Hasegawa, T. Uchihashi, *Imaging Josephson Vortices on the Surface Superconductor Si(111)-(root 7 x root 3)-In using a Scanning Tunneling Microscope*, Physical Review Letters **113**(24), 247004 (2014). (Editor's Suggestion.) doi: 10.1103/PhysRevLett.113.247004

• Supercomputing in materials science: First-principles simulations of large molecules - Large-scale calculation capable of handling material systems containing 100 to 1,000 times more atoms than conventional methods -

Matter is composed of atoms, and its physical properties are determined by the complex interactions between atoms and electrons. Theoreticians use quantum mechanics to calculate the forces between atoms, and the behavior of electrons in materials. Specifically, first-principles simulations are based on quantum mechanics, and are a powerful technique widely used to elucidate diverse properties of matter and materials at the atomic scale. However, the size of the systems modelled with conventional first-principles methods is limited to only a few hundred atoms (in most cases) because the complexity and time required for simulations increases as the cube of the number of atoms being modelled. Now, a research team at MANA including David Bowler and Tsuyoshi Miyazaki has successfully developed a highly efficient, large-scale firstprinciples simulation method for simulating the dynamics of very large systems, containing 100-1,000 times more atoms

Fig. 4-14: (Left) Calculation time of O(N) first-principles calculation program run by the "K computer" (1 CPU = 8 cores). The calculations were performed on silicon systems. The horizontal axis shows the number of atoms, indicating that first-principles calculation of million atom systems is possible. The O(N) method combined with ideal parallel performance of the program (twice the number of CPUs achieving twice the amount of calculation) can calculate systems containing twice the number of atoms in the same time by doubling the number of CPUs. (Right) Snapshot structure from first-principles simulation of DNA in water medium using the calculation method developed by the research. The forces between atoms are calculated by first-principles calculation (joint research with RIKEN).

than conventional methods (up to millions of atoms) as shown in Fig. 4-14. This method provides the means of performing atomic and electronic structure simulations of biological molecules and complex matter, including nanostructured materials, for which conventional methods cannot be used. The research team has been pursuing the development of a calculation method capable of performing highly efficient large-scale simulations of dynamics. Here, by introducing a new technique where the time required increases linearly with the number of atoms and utilizing supercomputers, namely the "K computer" and FX10 installed at RIKEN and the University of Tokyo, respectively, the team successfully performed first-principles dynamical simulations of systems comprising more than 30,000 atoms, which is 100 times larger than is usual with conventional methods. Their success will pave the way for simulation of very large systems including up to millions of atoms.

Reference: M. Arita, D.R. Bowler, T. Miyazaki, *Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for* 10000+Atoms, Journal of Chemical Theory and Computation **10**(12), 5419 (2014). doi: 10.1021/ct500847y

B) Advancing fusion of various research fields

MANA has promoted interdisciplinary research fusion strongly by operating *Fusion Research Fund*, *Grand Challenge Research Fund*, *Theory-Experiment Fusion Research Fund* and *Nano-life Fusion Research Fund*. As a result, various fusion researches have been actively performed at MANA. In the following, two examples performed in 2014 are described by picking up *life-science-inspired nanoarchitectonics* and *nanoarchitectonics-inspired life science*.

• Nanomechanical sensors for detecting cancer from breath - An array of functionalized membrane-type surface stress sensors (MSS) distinguishes cancer patients from healthy people through a signature response to breath samples -

Cancer is the cause of 1 in 8 deaths worldwide, and early diagnosis can significantly improve survival rates. A collaboration of the research team led by Genki Yoshikawa at MANA and Swiss scientists has developed portable cancer detection units for non-invasive diagnosis. "We created an artificial nose that is sensitive enough to diagnose head and neck cancer through analysis of the breath," the researchers concluded in a recent report on their work. The sensor design originates from conventional piezoresistive cantilever devices. Chemical layers coated on cantilevers absorb specific compounds and cause deflection of the cantilevers. These deflections can be measured through the change in electrical resistance at piezoresistors. However, these piezoresistive cantilever-type sensors have suffered from limited sensitivity. Recently, comprehensive structural optimization has led to a

Fig. 4-15: Principal Component Analysis case scores for breath samples of 4 healthy persons and 4 cancer patients. Each sample has been measured 6 times (colored dots). A breath sample bag containing saturated water vapor has been measured as a control (blue dots). Healthy persons can be clearly distinguished from cancer patients (the ellipses are a guide to the eye).

membrane-type surface stress sensor (MSS), achieving a significant improvement in sensitivity and stability. The MSS is composed of a thin silicon membrane (typically 2.5 μ m thick and 500 μ m in diameter) suspended by four piezoresistive beams attached to the circumference. The research group fabricated an array of MSS and coated them with different polymers to absorb various chemical compounds in breath samples. Reporting at the 26th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2013), the research group presented that MSS could distinguish, in a double blind trial, the breath of four cancer patients from four healthy people (Fig. 4-15).

Reference: F. Loizeau, H.P. Lang, T. Akiyama, S. Gautsch, P. Vettiger, A. Tonin, G. Yoshikawa, C. Gerber, N de Rooij, *Piezoresistive membrane-type surface stress sensor arranged in arrays for cancer diagnosis through breath analysis*, Micro Electro Mechanical Systems (MEMS) 621 (2013). doi: 10.1109/MEMSYS.2013.6474318

• A simple way to treat kidney failure - A new technique for purifying blood using a nanofiber mesh could prove useful as a cheap, wearable alternative to kidney dialysis -

Kidney failure results in a build up of toxins and excess waste in the body. Dialysis is the most common treatment, performed daily either at home or in hospital. However, dialysis machines require electricity and careful maintenance, and are therefore more readily available in developed countries than poorer nations. Around one million people die each year worldwide from potentially preventable end-stage renal disease. In addition to this, in the aftermath of disasters such as the Japan Earthquake and Tsunami of 2011, dialysis patients are frequently left without treatment until normal hospital services are resumed. With this in mind, Mitsuhiro Ebara and co-workers at MANA, have developed a way of removing toxins

and waste from blood using a cheap, easy-to-produce nanofiber mesh. The mesh could be incorporated into a blood purification product small enough to be worn on a patient's arm, reducing the need for expensive, time-consuming dialysis. The team made their nanofiber mesh using two components: a bloodcompatible primary matrix polymer made from polyethyleneco-vinyl alchohol, or EVOH, and several different forms of zeolites - naturally occurring aluminosilicates. Zeolites have microporous structures capable of adsorbing toxins such as creatinine from blood. The team made their nanofiber mesh using two components: a blood-compatible primary matrix

Fig. 4-16: The newly-fabricated nanofiber mesh for the removal of toxins from the blood, made by WPI-MANA researchers, may be incorporated into wearable blood purification systems for kidney failure patients.

polymer made from polyethylene-co-vinyl alchohol, or EVOH, and several different forms of zeolites - naturally occurring aluminosilicates. Zeolites have microporous structures capable of adsorbing toxins such as creatinine from blood. Although the new design is still in its early stages and not yet ready for production, Ebara and his team are confident that a product based on their nanofiber mesh will soon be a feasible, compact and cheap alternative to dialysis for kidney failure patients across the world (Fig. 4-16).

Reference: K. Namekawa, M.T. Schreiber, T. Aoyagi, M. Ebara, *Fabrication of zeolite–polymer composite nanofibers for removal of uremic toxins from kidney failure patients*, Biomaterials Science **2**(5), 674 (2014). doi: 10.1039/C3BM60263J

C) Selected 20 Research Results of MANA (FY2007 - FY2013)

In September 2014, MANA published the booklet *Research at MANA* (Fig. 4-17) about 20 selected research results of MANA between October 2007 and March 2014. The pdf file of the booklet *Research at MANA* can be downloaded from the MANA website at

www.nims.go.jp/mana/pror/periodical/index.html

Here we give a brief explanation of the 20 selected MANA research achievements, which can be grouped into three major categories

- Creation of New Fields of Research
- Fusion of Interdisciplinary Research Fields
- Other Remarkable Research Results

The category *Creation of New Fields of Research* refers to original research conducted at MANA that possesses generality and is gradually spreading worldwide. This includes various new materials fabricated with nanosheet technology, atomic switches and the wide array of devices derived therefrom and nanoarchitectonic chemistry research, which aims to realize monomolecular devices.

Fig. 4-17: Booklet *Research at MANA* published in September 2014.

The category *Fusion of Interdisciplinary Research Fields* refers to nano-life research that borrow from MANA's advanced nanoarchitectonics, and conversely, nanoarchitectonics research that borrows from nano-life research, as well as research aimed at fusing theory and experimentation.

The category *Other Remarkable Research Results* includes a wide variety of outstanding research that does not fit in the other two categories.

Creation of New Fields of Research

★ Nanosheet-based Breakthroughs for Creating Novel Materials

[1] Production of high-quality functional nanosheets via massive swelling/exfoliation of layered crystals

Representative researcher: T. Sasaki We have developed a variety of oxide and hydroxide nanosheets via inducing enormous swelling of layered crystals in aqueous amine solutions. The extraordinarily expanded "aquacrystals" can be gently disintegrated into unilamellar nanosheets of high yield, which is difficult to attain by other delamination procedures. This process has been applied to various layered crystals synthesized in a tuned composition and structure to produce tailor-made nanosheets exhibiting unique and useful properties. The high-quality nanosheets thus obtained have been utilized as building blocks for "2D Nanosheet Nanoarchitectonics" to design functional nanostructured materials and nanodevices.

[2] High-k oxide nanosheets: New 2D materials and devices beyond graphene

Representative researchers: M. Osada, T. Sasaki We have developed high-k oxide nanosheets, an important material platform for ultra-scale electronic devices and post-graphene technology. The new nanosheets (Ti₂NbO₇, (Ca,Sr)₂Nb₃O₁₀) realized the highest permittivity ($\varepsilon_r = 210-320$) of all known dielectrics in the ultrathin region (< 10 nm). Layer-by-layer engineering of these nanosheets enabled us to design 2D dielectric devices that cannot be achieved in graphene and other materials. Graphene is only the tip of the iceberg, and we are now starting to discover new possibilities afforded by 2D oxide nanosheets.

★ Atomic Switch and Related Prospective Devices and Systems

[3] Atomic switch: Novel on/off switching characteristics and unique synapse-like behaviors

Representative researchers: T. Hasegawa, K. Terabe, M. Aono We have developed a novel switching device having better characteristics than conventional semiconductor transistors in that it is a non-volatile switch having smaller dimensions and lower energy consumption. The unique operating mechanisms of the atomic switch--movement of metal atoms/ions associated with their redox processes due to an applied potential--have enabled the development of various novel functions, such as non-volatile three-terminal operations and synaptic operations.

[4] Atomic Switch Networks: A new approach to neuromorphic computation

Representative researchers: J. Gimzewski, A. Stieg, M. Aono Atomic Switch Networks (ASN) are a unique class of biologically inspired computing architectures designed to produce a complex, dynamical system through the collective interactions of functional nanoscale materials. These selforganized devices retain the properties of their atomic switch elements, generate a class of emergent behaviors known to underlie biological cognition, and have demonstrated a capacity to perform computational tasks without a need for pre-programming.

★ Molecular-scale Site-designated Chemical Nanoarchitectonics

[5] Electrical wiring of single molecules via conductive molecular chains

Representative researchers: Y. Okawa, M. Aono Though single-molecule electronics has been widely investigated for a long time, the fabrication of practical singlemolecule circuits remains challenging because of the lack of viable methods for wiring each molecule. To solve this problem, we have developed a novel method for single molecular wiring. Using a nanoscale-controlled chain polymerization on a molecular layer, we have succeeded in connecting single conductive polymer chains to single functional molecules via covalent bonds. We are investigating the electrical transport properties of the fabricated single molecule devices. These studies will be an important step in advancing the development of single-molecule electronic circuitry.

[6] Controlling bound and unbound states of molecules (C₆₀) reversibly at designated sites

Representative researchers: T. Nakayama, M. Aono Ultrahigh-density data storage has been considered to be one of the important outcomes by utilizing single-molecule manipulation with a scanning tunneling microscope (STM). However, there has been a crucial problem for many years; how to achieve reversible and repeatable control of a molecular bit to represent 0 and 1. We solved this long-standing problem by reversibly controlling bound and unbound states of C_{60} molecules at room temperature, and demonstrated actual bit operations at a bit density of 190 Tbits/in².

Fusion of Interdisciplinary Research Fields

★ Nanoarchitectonics-inspired Nano-life Science

[7] Nanoarchitectonic smart nanofibers for cancer therapy

Representative researchers: M. Ebara, T. Aoyagi We have developed a smart anticancer nanofiber capable of simultaneously performing thermotherapy and chemotherapy for treating malignant tumors. By tailoring the nano-architectures of the polymer networks in the fiber, we demonstrated simultaneous heat generation and drug release in response to alternating magnetic field (AMF). Only 5–10 min application of AMF can successfully induce apoptosis in cancer cells in both in vitro and in vivo studies.

[8] Novel Nanoarchitectonic therapeutics – Complete recovery of Alzheimer's disease

Representative researcher: Y. Nagasaki Surprisingly, reactive oxygen species (ROS) have been known to affect more than 90% of diseases. Conventional drugs are problematic because of limited efficiencies along with severe adverse side effects. Guided by a nanoarchitectonic strategy, we have developed novel anti-oxidative polymer therapeutics which achieved complete recovery of cognition in Alzheimer model mice.

★ Nano-life Science-inspired Nanoarchitectonics

[9] Ultrasensitive and ultraparallel molecular sensing for artificial nose and other various applications

Representative researchers: G. Yoshikawa, M. Aono We have developed a novel molecular sensor, which researchers worldwide have been trying to realize these last 20 years. We named the new sensor "Membrane-type Surface stress Sensor (MSS)." Significant improvements in sensitivity as well as in all the practical aspects pave the way for implementing nanoarchitectonic technologies in reallife applications.

[10] Progress in high-efficiency artificial photosynthesis

Representative researcher: J. Ye

We have been conducting a series of pioneering works for challenging a high efficiency artificial photosynthesis, which offers potential solution for global warming and energy shortage issues. A new material Ag_3PO_4 with the world's highest quantum efficiency (approaching that of natural photosynthesis) in photocatalytic water oxidation has been developed by a unique material-designing guideline. Sophisticated control of surface/interface structure has enabled efficient light harvesting, charge separation, and gas diffusion/conversion, making a big step towards realization of a high-efficiency artificial photosynthesis.

★ Theory-Experiment 'Cross-linkage' for Exploring Novel Nanoscale Materials and Systems

[11] Topological matter nanoarchitectonics for novel quantum devices

Representative researchers: X. Hu, T. Uchihashi Because the uncertainty of quantum mechanics becomes prominent, functionalities of nano devices are hard to be realized upon design similar to those in macroscopic and microscopic scales. In order to develop new design principles for advanced quantum devices, we exploit topology of electron systems, which bridges bulk to surface and nano to macro as a quantum holography principle. A brand-new approach coined topological matter nanoarchitectonics is emerging.

[12] Ultra-large-scale computation: Development and application of an advanced code

Representative researchers: D.R. Bowler, T. Miyazaki, N. Fukata CONQUEST, a world-leading linear scaling density functional theory (DFT) code, has been developed to bridge the gap between experimental and theoretical investigations of organic and inorganic nanosystems. It is capable of modeling millions of atoms with DFT both accurately and robustly. We want to drive innovative experiments by the application of CONQUEST.

Other Remarkable Research Results

★ Innovative Nanoscale Devices and Systems

[13] Mesoscopic superconductivity quantum phenomena in superconductor and normal-metal junctions

Representative researcher: H. Takayanagi We have been working on mesoscopic superconductivity. In particular, we have treated superconductor (S) / normal-conductor (N) junctions, which has revealed various new quantum phenomena. As to N, we use normal metal, semiconductor two dimensional electron gas, graphene, and quantum dot. In an S/N junction, electron Cooper pairs in S can penetrate into N (proximity effect). This effect results in many interesting quantum phenomena that can be applied in quantum information technology.

[14] Silicon-doped metal oxide thin film transistor for flat panel application

Representative researchers: K. Tsukagoshi, T. Nabatame For the next-generation amorphous metal-oxide thin film transistor (a-OxTFT), we found that the stability of the transistor properties strongly depends on the bond dissociation energy of dopant element. Because the doped silicon in amorphous In₂O₃-based thin films is found to suppress the formation of unstable oxygen vacancies, silicon doped metal oxide TFTs (SiM-OxTFTs) behave as the stable high-performance a-OxTFT.

[15] Nanogenerators and self-powered nanosystems

Representative researcher: Z.L. Wang A theoretical model for contact-mode triboelectric nanogenerators (TENGs) was constructed. Its real-time output characteristics and the relationship between the optimum resistance and TENG parameters were derived. The theory presented here is the first in-depth interpretation of the contact-mode TENG, which can serve as important guidance for rational design of the TENG structure in specific application.

★ Innovative Nanoscale Characterization Methodologies

[16] Multiple-probe scanning probe microscopes (STM, AFM, KFM): Development and Application

Representative researchers: T. Nakayama, M. Aono The novel properties of individual nanostructures and nanosystems—the outgrowth of materials nanoarchitectonics--must be characterized using innovative instruments and methodologies. For this purpose, we developed multiple-probe scanning probe microscopes (MP-SPMs) and realized a new class of nanoscale measurements which enable us to perform unique and indispensable nano measurements.

[17] Pioneering development of in situ TEM techniques for nanomaterial property analysis

Representative researchers: D. Golberg, Y. Bando Fascinating nanomaterial properties are the subject of a continuous excitement. And the exact knowledge of those, in particular on the individual structure level (that gives the clearest picture free of artifacts), is of key importance as far as the nanomaterial integrations into modern technologies are concerned. Such properties should precisely be studied in order to clarify that the substitution of conventional bulk materials, e.g. Si in electronics, is essential, realistic and profitable. However, in most cases, the nanoproperties are measured using instruments with no direct access to nanoscale range of dimensions. This has significantly limited the relevance of acquired data since any particular structural features of a nano-object prior/during/after testing have been hidden. Thus, the results could not be directly linked to a particular nanomorphology, crystallography, spatially-resolved chemistry and existing defects. This explains a common scatter of nano-property data reported by various scientific groups which has greatly confused the practical engineers.
★ Nanoarchitectonics Related to Sustainable Energy and Environment

[18] Novel porous materials for next-generation high-performance batteries

Representative researcher: Y. Yamauchi Platinum (Pt) have long been regarded as highly useful catalysts in fuel cells. However, the high cost of Pt catalysts, together with the limited reserves of Pt in nature, has been shown to be the major bottleneck for commercial applications. We have developed novel porous electrodes with highly electrocatalytic activity through chemical design.

[19] Nanoarchitectonic sensing/imaging of Cs in life environment

Representative researcher: K. Ariga Various sensing molecules for detection of toxic or useful substances in our life environments have been explored. Especially, micrometer-level naked-eye detection of caesium (Cs) ions, a major source of contamination upon nuclear plant explosion, has been demonstrated. As a result of the accident at the Fukushima No. 1 Nuclear Power Plant following the Great East Japan Earthquake of March 2011, a large amount of radioactive substances leaked and contaminated a wide area. Among those substances, caesium 137, will continue to be a source of radiation in the future. The Japanese government has planned and implemented decontamination measures for the region which was contaminated by radioactive substances. However, if the distribution of caesium can be visualized, this decontamination work can be carried out more efficiently, and a reduction in the amount of contaminated waste generated by the decontamination work can also be expected.

[20] Highly-efficient plasmonic systems for molecular sensing and energy conversion

Representative researcher: T. Nagao Plasmonics and metamaterials are the new emerging paradigms for materials science which enable us to control the light in nanospace. Through this strategy, we aim at tailoring the remarkable functionality such as extraordinary signal enhancement of molecules, enhanced photocatalytic reaction, and smart solar power harvesting. Also a new platform for photonic quantum computing in nanometer scale is expected.

5. Global Nanotechnology Network

5.1 MANA Satellite Network

Seven out of the 24 MANA Principal Investigators (PIs) and Associate Principal Investigators (APIs) are visiting researchers from external research institutes. MANA has satellite laboratories at research institutions to which PIs and APIs are affiliated. As of January 2015, there are seven MANA satellite laboratories, two in Europe, two in Japan and three in USA/ Canada (Figs. 5-1, 5-2). At the end of FY2014, in March 2015, the MANA satellite laboratory of Prof. Hideaki Takayanagi at Tokyo University of Science has been closed.

Researchers at the Satellites and MANA carry out joint research in nanoarchitectonics through frequent mutual visits and e-mail communications. In addition, the Satellites play a crucial role in training young researchers. MANA aims to serve as a global network hub for nanotechnology. The satellite laboratories promote innovative research as front-line bases of the global network and are an irreplaceable presence for MANA. To date, research at the MANA satellites has yielded 299 MANA affiliated papers (Fig. 5-3) or 10.5% of the total of 2,850 MANA papers. Many of these papers appeared in journals with a high impact, including Nature Materials, Nature Nanotechnology and Advanced Materials. From this viewpoint as well, the Satellites are making an important contribution to MANA's research results.

The 7 MANA Satellite Laboratories

Current as of January 2015

Fig. 5-1: The seven MANA satellite laboratories.

CNRS

France

UdeM Canada

University of Tsukuba Japan

Fig. 5-2: Location of the seven MANA satellite laboratories. Top row from left to right: University of California Los Angeles, UCLA, (USA), Tokyo University of Science (Japan); Georgia Institute of Technology, GIT (USA). Bottom row from left to right: University College London, UCL (UK); CNRS, Toulouse (France); University of Montreal, UdeM (Canada); University of Tsukuba (Japan).

UCL

UK

• Prof. James K. Gimzewski from UCLA is a world-renowned nanotechnology researcher and recipient of the 1997 Feynman Prize. At MANA, he is conducting research on neuromorphic circuit networks in the Nano-System Field. Until March 2015, Prof. Gimzewski visited MANA 27 times for a total of 283 days to conduct research on projects such as new neurocomputer circuits that use the learning abilities of atomic switches. Between 2008 and 2014, he has published 54 MANA papers. His research was covered by NHK in the January 2010 program entitled *Proposal for the Future* and the February 2012 special report called *Nano Revolution: How Atoms Will Change Our Lives*. Prof. Gimzewski has also work tirelessly to train young researchers, graduate students and administrative staff by hosting postdocs from MANA, holding the Japan-UK-USA Nanotechnology Summer School, and accepting MANA staff for internship at UCLA.

Fig. 5-3: MANA affiliated research papers from satellites.

Key to successful international collaboration * Dr. Adam Stieg (Vice Director, MANA satellite at UCLA)

If there exists a recipe for effective international collaboration it most certainly involves two main ingredients: substantive commitments and immersive cultural exchange. Commonly galvanized by mutual interest and formally sanctioned through bilateral agreements, successful Institutional collaborations are best achieved by parties whose operational models and shared interests both enable and motivate the commitment of tangible resources. Ambitious ventures like the WPI Initiative and California Institutes for Science and Innovation (ISI) program provide such a framework. The artful execution of any good recipe lies in the attention to detail. Since 2007, the MANA Satellite at UCLA played an active role in realizing the vision of nanoarchitectonics through collaborative research and scholarship. A blend of vigorous engagement and perseverance

has been crucial, especially when faced with inevitable yet unforeseen challenges. One must always be mindful of culture, not only through the lens of scientific discourse but also from the personal and societal perspectives. Indeed, the value of opportunities for cultural exchange extending beyond meetings and symposia cannot be over-stated. Participants at all levels of research and administration must do more than just visit - they must host and be hosted, they must live and learn together, they must not simply share ideas but generate them as partners. When paired with openness to unconventional ideas, such a recipe can only produce an exciting potential for innovation.

*: Note: This article has been published in the MANA Newsletter Convergence No. 19 (February 2015).

• **Prof. Zhong Lin Wang** from the Georgia Institute of Technology is a highly active researcher whose publications, which have been cited more than 67,000 times, boast and H-index of 126. At MANA, he works in the Nano-Materials Field where he conducts research on bio-inspired photonic structures and nanogenerators that harvest mechanical energy. Prof. Wang is also the mentor to group leader Dr. Fukuta, who has visited the Georgia Institute of Technology 14 times for a total of 27 weeks. Together they conduct joint research on nano devices and have published their results in *ACS Nano*. Prof. Wang and Dr. Fukuda also promote personnel exchange, with one of Prof. Wang's postdocs working for Dr. Fukuta.

• **Prof. Françoise M. Winnik** from the University of Montreal is a world-renowned scientist in the fields of polymer chemistry, surface chemistry, and nanoscience, and serves as Editor-in-Chief of the publication Langmuir of the American Chemical Society. At MANA, her research in the Nano-Life Field focuses primarily on applications of new biocompatible polymers in nanomedicine, but she also conducts wide-ranging, interdisciplinary research using the nanotubes and nanoparticles developed by MANA researchers in other fields. Prof. Winnik has laboratories at both MANA and the University of Montreal, and has spent a total of 631 days at MANA in the past 4 years (FY2011~FY2014) and published 20 MANA papers in the past 3 years (2012 – 2014).

• **Dr. Christian Joachim** from CNRS-CEMES is a world-renowned computational scientist who won the Feynman Prize in 1997 and 2005. At MANA, he works in the Nano-System Field where he studies the design, fabrication and atomic manipulation of nanocircuits as well as theories of surface electron interconnection. He actively engages in joint research with MANA researchers and has published 37 papers on the research conducted at MANA (including several papers published in

top-tier journals such as *Nature Nanotechnology*). In addition, he has organized two workshops at CEMES: an October 2009 event aimed at promoting cooperation between computational scientists and experimental scientists and the November 2010 Japan-France Workshop on Nanomaterials.

MANA-NIMS molecule vehicle for the nano-car race at the CNRS MANA satellite Dr. Christian Joachim (Principal Investigator, MANA satellite at CNRS)

Fig. 5-4: 3D print of the MANA- NIMS molecule vehicle for the nano-car race.

The design, synthesis, and running of a molecular nano-vehicle on a surface assisted by proper nano-communication channels for feeding and guiding the vehicle now constitute an active field of research and are no longer a nano-joke [1]. Dr. Joachim announced to organize a molecule concept nano-car race using a new low-temperature UHV 4 probe-STM/AFM machine which was recently introduced in his group at CNRS MANA. Researchers from MANA and NIMS, including MANA Scientist Waka Nakanishi, NIMS researcher Yasuhiro Shirai, MANA Scientist Yuji Okawa and MANA PI Katsuhiko Ariga, are accepting the challenge to participate in the nano-car race and have designed the molecule vehicle shown in Fig. 5-4.

 C. Joachim, G. Rapenne, Molecule Concept Nanocars: Chassis, Wheels, and Motors? ACS Nano 7(1), 11 (2013). doi: 10.1021/nn3058246

5.2 International Nanotechnology Research Network

MANA signs Memoranda of Understanding (MOUs) with universities and research institutes around the globe in order to promote the creation of an international nanotechnology research network by way of joint research projects. A MOU agreement is valid for 5 years and can be renewed if both institutes agree. Between the launch in October 2007 and March 2015, MANA has concluded 48 MOUs, renewed 3 MOUs and replaced 1 MOU with institutions from 17 countries (Appendix 7.9). As of March 31, 2015, 32 MOUs are valid, 19 have expired and 1 has been replaced. The network of the 32 valid MANA MOUs is listed in Table 5-1. In January 2015, MANA signed a MOU with Indian Institute of Science (Fig. 5-5).

Fig. 5-5: On January 13, 2015, MANA signed a MOU with Indian Institute of Science (IISc). The photo shows Prof. Masakazu Aono from MANA (left) and Prof. Karuna Kar Nanda from IISc (right).

Appendix 7.9: International Cooperation

Table 5-1: Network of the 32 valid MANA MOUs
(as of March 31, 2015).

Region	Number of valid MOUs
Europa	12
Asia	11
North America	4
Australia	2
South America	2
Middle East	1
Total	32

5.3 Partnership with Foreign and Domestic Universities

Since MANA is a part of a public research center and not a university, we strive to collaborate with foreign and domestic universities. In 2014, MANA continued to hold joint workshops and symposia with the aim of promoting research exchange and boosting MANA's name recognition in order to scout for talent.

• List of Workshops and Joint Symposia held in 2014

Jan 29-31, 2014

Trends in Nanotechnology (TNT) Japan 2014

On January 29-31, 2014, the first edition of the TNT Japan (Trends in Nanotechnology) conference was held at Tokyo Big Sight, Japan, in parallel with nano tech 2014, the largest International exhibition on Nanotechnology. This "TNT Japan

2014" was co-organized by MANA/NIMS and the Phantom Foundation, Spain, and contained a "MANA Day" on January 30. The series of high-level scientific TNT meetings aims to present a broad range of current research in Nanoscience and Nanotechnology as well as related policies or other kind of International initiatives.

Mar 11-12, 2014

Japan-Taiwan Joint Workshop on Nanospace Materials

On March 11-12, 2014, the Japan-Taiwan Joint Workshop on Nanospace Materials was held at the Fukuoka Institute of Technology, Japan. Focusing on the research field of Nanospace Materials, this workshop aimed at further development of the scientific and technological exchange between Japan and Taiwan. 35 top-level scientists from both countries were invited to present the latest research topics for two days. This work shop was co-sponsored by the Department of Innovation Research, Japan Science and Technology Agency, National Taiwan University and Fukuoka Institute of Technology.

Fig. 5-6: Participants of the 5th NIMS/MANA-Waseda University International Symposium 2014 (left) and the International Symposium on Smart Biomaterials 2014 (right).

Mar 24, 2014

The 5th NIMS/MANA-Waseda University International Symposium

On March 24, 2014, the 5th NIMS/MANA-Waseda University International Symposium was held at NIMS with 79 participants (Fig. 5-6). Featured were oral presentations by graduate program professors and 24 associate researchers.

Mar 24-25, 2014

International Symposium on Smart Biomaterials

On March 24-25, 2014, the International Symposium on Smart Biomaterials or "2nd Hoffman Family Symposium" was held at MANA, NIMS, with 135 participants (Fig. 5-6). The 2-day event featured 21 invited lectures and 48 poster presentations. Prof. Allan S. Hoffman (University of Washington, USA) gave a plenary lecture on *History of Smart Hydrogels*.

Apr 1-2, 2014

International Workshop: Topology in the New Frontiers of Materials Science

On April 1-2, 2014, the International Workshop *Topology in the New Frontiers of Materials Science* was held at MANA, NIMS, with 27 invited lectures and 174 participants (Fig. 5-7). With a full panel of top-notch scientists from the world, the purpose of this workshop was to highlight the recent progresses in the field of topological states and phenomena, and discuss possible new frontiers of materials science with topology as the central concept.

Fig. 5-7: Participants of the International Workshop: Topology in the New Frontiers of Materials Science (left) and the 2nd International Symposium on the Functionality of Organized Nanostructures, FON'14 (right).

Jun 22-26, 2014

12th International Workshop on Beam Injection Assessment of Microstructures in Semiconductors (BIAMS 12)

On June 22-26, 2014, the 12th International Workshop on Beam Injection Assessment of Microstructures of Semiconductors (BIAMS12) was held at MANA, NIMS. The workshop with 8 invited lectures, and 36 oral and 18 poster presentations focused on advances in the field of the assessment of microstructures in semiconductors by beam injection and related methods. Over 80 participants from 13 countries shared ideas and information about semiconductor characterization methods and their application to study photovoltaic materials and devices, nanostructures, optical and electronic properties of defects.

Jul 18, 2014

International Symposium on Material Architectonics for Sustainable Action (MASA 2014)

On July 18, 2014, the International Symposium on Material Architectonics for Sustainable Action (MASA 2014) has been jointly held by MANA and JST-PRESTO "Nanosystems and Emergent Functions" at MANA, NIMS, with 109 participants. The Symposium with 18 oral and 22 poster presentations from PRESTO and NIMS focused on the topics of *Materials Nanoarchitectonics* and *Emergent Functions* in a broad range of research fields, including Applied Physics, Chemistry, Biochemistry, Pharmacy and Robotics.

Nov 26-28, 2014

The 2nd International Symposium on the Functionality of Organized Nanostructures

On November 26-28, 2014, the 2nd International Symposium on the Functionality of Organized Nanostructures (FON'14) was held at the National Museum of Emerging Science and Innovation in Odaiba, Tokyo. The symposium also commemorated another important milestone in the 25th Anniversary of the start of the "Aono Atomcraft Project," which was carried as an ERATO Project of the Research Development Corporation of Japan, and was held to mourn the loss of Dr. Heinrich Rohrer, who was a recipient of the Nobel Prize in Physics in 1986 and passed away in 2013. The event featured 24 invited lectures and 78 poster presentations, as well as a special session held to remember Dr. Rohrer's passion for science. A total of 217 persons attended during the 3-day period (Fig. 5-7).

• Programs for Attracting Junior Researchers to MANA

NIMS Graduate Schools

NIMS operates the NIMS Graduate Schools having concluded agreements with selected Japanese universities, and graduate students are taught advanced research by NIMS researchers on the frontlines of their fields. In Fiscal Year 2014, 23 scientists at MANA are teaching in the NIMS Graduate Schools (Table 5-2). Students in the NIMS Graduate Schools who possess especially outstanding skills are appointed as junior researchers and are paid a salary for their contribution to NIMS research. In FY2014, there are 41 junior researchers working at MANA, of which 36 are foreigners and 13 are females. In September 2009, the graduate school at University of Tsukuba established a Master's curriculum in which students can take all of their required credits in English. The objective is to attract outstanding foreign students from the Master's program to the NIMS Graduate Schools.

School	No. of Faculties	No. of Students
University of Tsukuba	10	21
Hokkaido University	5	9
Waseda University	6	9
Kyushu University	2	2

Table 5-2: Number of MANA members at the NIMS Graduate Schools in FY2014.

International Joint Graduate Schools

The International Joint Graduate School is a program in which PhD students from renowned universities around the globe spend several months to one year researching under the supervision of NIMS researchers. By March 2015, MANA brought in 49 students within this program from 10 different universities (Fig. 5-8): Flinders University (Australia), Xian Jiatong University (China), Charles University and the University of Pardubice (Czech Republic), Anna University and Jawaharlal Nehru Centre for Advanced Scientific Research (India), Yonsei University (Korea), Warsaw University of Technology (Poland), Moscow State University (Russia), National Taiwan University (Taiwan).

Fig. 5-8: The 10 International Joint Graduate Schools with MANA participation.

Internship Program

NIMS established an internship system to proactively accept students from universities throughout Japan and the world which have not concluded agreements with NIMS and provide them with opportunities to partake in materials and nanotechnology research. By March 2015, MANA has accepted 318 interns, of which 255 have been foreigners. MANA has welcomed 27 US students from the NSF's National Nanotechnology Infrastructure Network (NNIN) Research Experience for Undergraduates (REU) Program.

5.4 Global Career Advancement

MANA is always aware of its role as a platform for successful career advancement for young researchers. It is MANA's policy to not only attract young researchers from around the world and cultivate them into outstanding scientists, but to enhance their understanding of Japan and help them take the next step in their careers in many countries in the world. Form 238 MANA postdoc alumni over the 7.5 years between October 2007 and March 2015, 11 postdocs from MANA have been appointed as NIMS permanent researchers, and 227 have leveled up to universities and research institutions in Japan and around the world. Looking at these former MANA postdocs, 39% have secured positions in Japan, and 61%

Fig. 5-9: Destinations of the 238 MANA postdoc alumni between October 2007 and March 2015.

have found jobs overseas, primarily in Asia but also in the United States, Europe and elsewhere in the world (Fig. 5-9). In this way, MANA has become the hub for an ever-expanding network of nanotechnology researchers.

Examples of career advancement of MANA Alumni:

- Professor, University of Queensland, Australia
- Professor, Fudan University, China
- Professor, Nanyang Technological University, Singapore
- Research Group Leader, Max Planck Institute for Intelligent Systems, Germany
- Associate Professor, Uppsala University, Sweden

Between 2008 and 2011, Dr. Xaosheng Fang and Dr. Ujjal. K. Gautam worked for 3 years as ICYS-MANA researchers. Their research at MANA was so successful that in 2014 these two ICYS-MANA alumni were selected as *ISI Highly cited researchers* in field of Materials Science. *ISI Highly cited researchers 2014* are authors of papers published in the 11 years between 2002 and 2012 whose number of citations is in the top 1% of a certain research field in the Thomson Reuters Essential Science Indicators database.

6. Enhancement of National and International Recognition

6.1 MANA International Symposium

The MANA International Symposium is held each year to present research achievements at MANA to the Japanese and international scientific communities. The 8th MANA International Symposium 2015 was held at Epochal Tsukuba in Tsukuba City, Japan over a 3-day period from March 11 (Wednesday) to March 13 (Friday), 2015 (Figs. 6-1, 6-2, 6-3, 6-4). The symposium featured a Special Lecture entitled *Background of the discovery of carbon nanotubes* by Prof. Sumio Iijima, as well as Invited Talks by 14 distinguished scientists from Japan and other countries. Research results at MANA were also announced in a total of 14 oral presentations and 133 poster presentations, and 6 young scientists who made excellent poster presentations won the MANA International Symposium 2015 Poster Award. The Symposium attracted 410 participants from 26 countries over the 3-day period, with lively question-and-answer sessions and exchanges of ideas.

Fig. 6-1: The 8th MANA International Symposium in March 2015.

Prof. Iijima

Prof. Aono

Poster Award Ceremony

Fig. 6-2: Left: Special lecture by Prof. Sumio Iijima (Meijo University, Japan) entitled *The background of the discovery of carbon nanotubes*. Middle: *Outline of MANA* by Prof. Masakazu Aono (Director-General MANA). Right: Poster Award Ceremony.

Prof. Oshiyama

Prof. Domen

Prof. Rotello

Prof. Noda

Prof. Sakai

Prof. Sun

Prof. Sugiyama

Prof. Teizer

Prof. Fujioka

Prof. Lippert

Prof. Kataoka

Prof. Nakamura

Prof. Hahn

Prof. Leong

Fig. 6-3: Invited lectures at the 8th MANA International Symposium by renowned scientists from outside MANA. Top row from left to right: Prof. Atsushi Oshiyama (University of Tokyo, Japan), Prof. Ken Sakai (Principal Investigator, I²CNER Kyushu University, Japan), Prof. Hiroshi Fujioka (University of Tokyo, Japan) and Prof. Eiichi Nakamura (University of Tokyo, Japan). Second row from left to right: Prof. Kazunari Domen (University of Tokyo, Japan), Prof. Licheng Sun (KTH Royal Institute of Technology, Sweden), Prof. Thomas Lippert (Head Materials Group, Paul Scherrer Institute, Switzerland) and Prof. Horst Hahn (Karlsruhe Institute of Technology, Germany). Third row from left to right: Prof. Vincent Rotello (University of Tokyo, Japan) and Prof. Hiroshi Sugiyama (WPI-iCeMS Kyoto University, Japan), Prof. Kazunori Kataoka (University of Tokyo, Japan) and Prof. Kam W. Leong (Colombia University, USA). Bottom Row: Prof. Susumu Noda (Kyoto University, Japan) and Prof. Winfried Teizer (AIMR, Tohoku University, Japan and Texas A&M University, USA).

6.2 MANA Website

The official English MANA website (www.nims.go.jp/mana/) was launched in February 2008 and is continuously being improved. It provides an overview of MANA, introduces researchers, research projects and output, and informs about events and recent news. In February 2011, the new Japanese MANA website (www.nims.go.jp/mana/jp/index.html) was launched. To further improve the content, both English and Japanese MANA websites have been renewed in FY2013 and again in FY2014. Since January 2015, a responsive web design of the MANA website is being used, which enables easy browsing with a wide range of devices including smartphones.

Mr. Iwabuchi

Dr. Ushioda

Prof. Kuroki

Prof. Saito

Fig. 6-4: From left to right: Opening address by Dr. Sukekatsu Ushioda (NIMS President) and subsequent greeting addresses by Mr. Hideki Iwabuchi (Director, Office for Basic Research Projects, Research Promotion Bureau, MEXT), Prof. Toshio Kuroki (Director of WPI Program) and Prof. Gunzi Saito (WPI Program Officer of MANA).

6.3 MANA Newsletter

Since MANA's inception, a bilingual newsletter named CONVERGENCE has been published three times a year and reached 18 issues until end of 2014. Each issue includes a status report of the MANA project and interviews with Nobel Prizeclass researchers (Fig. 6-5). Currently, 1,650 copies of CONVERGENCE are distributed to researchers in Japan and 1,800 copies to researchers overseas in about 70 countries.

No. 13 February 2013

Prof. Teruo OKANO

No. 16 February 2014

Prof. Yoshinori TOKURA

MANA Newsletter CONVERGENCE No. 14 June 2013

Prof. Akira SUZUKI

No. 17 June 2014

Prof. Makoto KOBAYASHI

No. 15 October 2013

Prof. J. Georg BEDNORZ

No. 18 October 2014

Prof. Teruo KISHI

Fig. 6-5: Issues of the MANA newsletter CONVERGENCE published in 2013 and 2014.

6.4 Outreach Activities

MANA has actively pursued outreach activities geared to the general public. To generate an interest in science among young people, MANA held events such as MANA Science Café, joint symposia, summer camps and summer school events for elementary and junior high school students featuring Nobel Prize winners Prof. H. Rohrer and Prof. H. Kroto. MANA also published easy to understand videos of MANA research results on the internet. In 2014, MANA has participated in domestic and international outreach events, some of which are organized by the Japan Science and Technology Agency (JST) or sponsored by Tsukuba city.

Fig. 6-6: WPI booth at the E-MRS 2014 Spring Meeting in Lille, France (left). Summer Camp 2014 at MANA: High school students in a group photo (middle) and using a scanning electron microscope (right).

• E-MRS 2014 Spring Meeting

Four WPI Research Centers, MANA, AIMR (Advanced Institute for Materials Research, Tohoku University), iCeMS (Institute for Integrated Cell-Materials Science, Kyoto University), and I²CNER (International Institute for Carbon-Neutral Energy Research, Kyushu University), exhibited jointly at the European materials Research Society (E-MRS) 2014 Spring Meeting, which was held in Lille, France May 26-30, 2014 (Fig. 6-6). With the aims of increasing the global visibility of Japan's WPI program, attracting outstanding human resources, etc., the Japanese group held a workshop entitled "Japan in Motion – Recent WPI Advances in Materials," and also presented invited talks, oral presentations, poster presentations, and a booth exhibit. Throughout the preparation and management of the event, MANA contributed as the coordinator of the exhibition on behalf of the four research centers.

• Summer Science Camp 2014

On July 29-31, 2014, MANA held the "Summer Science Camp 2014," which is a camp-type program in which high school students live and study together for 3 days. A total of 16 young people, including 8 male and 8 female students, was selected from all parts of Japan, and enjoyed "hands-on" practice in observation with the electron microscope, development and processing in the clean room and other topics under the title *Hear*, *See*, *and Create: Experiencing Nanoscience* (Fig. 6-6). The camp also featured a social gathering with young MANA researchers from other countries, giving the participating high school students a full taste of the state-of-art international research environment at MANA.

• Publication of book "Materials Revolution: Nanoarchitectonics"

In 2014, MANA Principal Investigator Katsuhiko Ariga published an introductory book in Japanese, "Materials Revolution: Nanoarchitectonics" (Iwanami Science Library, ISBN978-4-00-029627-4 C0343), which presents the new paradigm of materials development called "nanoarchitectonics" to general readers (Fig. 6-7). Dr. Ariga's book introduces cutting-edge materials science research being developed at MANA, including atomic switches that will open the way to brain-type computers, photocatalysts aimed at realizing artificial photosynthesis, biomaterials that contribute to medicine, and many more topics in a way that is easy to understand for non-scientific readers. The new book has been very warmly received, and publication of an English edition is being studied.

• Tsukuba Science Festival 2014

On November 10, 2014, MANA participated in the Tsukuba Science Festival 2014 with an exhibit titled *Smart Polymer Rangers* (Fig. 6-7). The Tsukuba Science Festival 2014 is a science exchange event which provides "hands-on" learning experiences for members of the general public, and is organized by Tsukuba City and the Tsukuba City Board of Education. This year, 59 bodies in Tsukuba City, such as schools and research institutes, participated in the event.

MANA exhibited "smart polymers" as a future material for disease diagnosis and treatment, and our researchers, some of whom appeared as children-friendly *Smart Polymer Rangers*, demonstrated science experiments. We also introduced examples of future applications of biomaterials, such as *nanofiber mesh for cancer therapy* and *a portable dialysis system for emergency treatment of chronic kidney failure*. The MANA exhibit was extremely popular with visitors, attracting a large number of parent-and-child family groups and students.

This exhibit was also part of the *Tsukuba Action Project (T-ACT): Science Communication Training*, which is based on collaboration between the University of Tsukuba and MANA. University students who participated in T-ACT training planned and managed the event in cooperation with MANA researchers, and were able to enhance their science communication skills by meeting and talking with visitors at the event.

Fig. 6-7: Cover of the new book "Materials Revolution: Nanoarchitectonics" (left). Researchers dressed as *Smart Polymer Rangers* at Tsukuba Science Festival 2014 (middle, right).

6.5 Media Coverage

MANA continues to be featured in Japanese newspaper articles and in Japanese television.

Between October 2007 and March 2015, in the first 7 1/2 years of the MANA project, 422 press releases about MANA appeared in Japanese newspapers (Fig. 6-8). This corresponds to an average number of press releases of 56.3 per year or 4.7 per month. To encourage foreign researchers to issue press releases, MANA has setup a support system.

On October 24, 2014, a talk by MANA Principal Investigator Katsuhiko Ariga where he explained about *Nanoarchitectonics* has been broadcasted in Radio Tsukuba.

6.6 Visitors to MANA

There are several kinds of short-time visitors to MANA.

- (a) Researchers visiting MANA for scientific discussion, to give a seminar or to attend a workshop or symposium
- (b) Researchers or students invited to MANA for short-time research activities
- (c) MANA visit of Satellite Principal Investigators, MANA Advisors and Evaluation Committee members
- (d) General Visitors (excluding categories (a), (b), (c))

	Total of Visitors (a), (b), (c), (d)	General Visitors (d)
FY2014	757	218
FY2013	715	146
FY2012	565	284
FY2011	248	108
FY2010	315	147

Table 6-1: Number	of short-time	visitors	to MANA.
-------------------	---------------	----------	----------

In FY2011 (April 2011 – March 2012), the number of visitors to MANA decreased in the wake of the nuclear power plant incident after the Great East Japan Earthquake in March 2011. But it seems that this so-called *Japan allergy* has disappeared almost entirely and, as shown in Table 6-1, we observe a strong increase of visitors to MANA since FY2012. The 757 visitors in FY2014 came from all over the world: Europe (147), America (49), Asia (523, including 388 from Japan), and other regions (38). In 2014, MANA visitors included higher-ranked scientists (Fig. 6-9) and students (Fig. 6-10) from foreign and Japanese universities.

Fig. 6-9: MANA visit of scientists in 2014. Left: Dr. Terence McMaster and Dr. Charl F.J. Faul from University of Bristol, UK. Middle: Prof. Masahiko Hara from Tokyo Institute of Technology, Japan on July 25. Right: Prof. Idriss Blakey, University of Queensland, Australia on November 11.

Fig. 6-10: MANA visit of students in 2014. Left: Radboud University, Nijmegen, Netherlands on April 14. Middle: Chulalongkorn University, Thailand on August 5. Right: EPFL, Lausanne, Switzerland on September 5.

6.7 MANA Scientific Art Pictures

In November 2011, MANA Director-General Masakazu Aono has started a call to submit scientific art pictures. After a second call in October 2012, MANA has received over 100 scientific art pictures, which are being used to decorate empty walls in the MANA Building and the new WPI-MANA Building (Figs. 6-11, 6-12). In addition, MANA scientific art pictures have been used in MANA promotion videos, MANA original goods, NIMS brochures and NIMS greeting cards.

Fig. 6-11: Examples of MANA scientific art pictures.

A MANA art picture entitled "Rainbow Cube" by two MANA Scientists Lok Kumar Shrestha and Jonathan Hill of the Supermolecules Group at MANA received the Award for Excellence at the 8th "Beauty in Science and Technology Panel Exhibition" held as part of Science and Technology Week (Fig. 6-12). The Award Ceremony was held in April 2014 at the Tokyo Headquarters Annex (K's Gobancho) of the Japan Science and Technology Agency (JST), and a commemorative plaque was presented to the two scientists by Dr. Akito Arima, Chairman of the Organization on Science and Technology.

Fig. 6-12: MANA scientific art pictures decorating the wall of the new WPI-MANA Building (left). In April 2014, a MANA scientific art picture received the Award for Excellence at the "Beauty in Science and Technology Panel Exhibition" (middle and right).

6.8 MANA History

The MANA history between September 2007 and March 2015 can be found in Appendix 7.10.

Appendix 7.10: MANA History

Appendix 7.1: MANA Top Management

MANA Top Management (3):

Current as of January 2015

Masakazu AONO Director-General

Yoshio BANDO Chief Operating Officer

Takahiro FUJITA Administrative Director

Appendix 7.2: MANA Research Staff

MANA Principal Investigators (22):

Current as of January 1, 2015

Nano-Materials Field (6)

Coordinator

Takayoshi SASAKI NIMS

Katsuhiko ARIGA NIMS

Yoshio BANDO NIMS

Toyohiro CHIKYOW NIMS

Dmitri GOLBERG NIMS

Zhong Lin WANG Georgia Tech (Satellite)

Nano-Power Field (4)

Coordinator

Jinhua YE NIMS

Kazunori TAKADA NIMS

Kohei UOSAKI NIMS

Omar YAGHI UC Berkeley

Nano-System Field (8)

Coordinator

Masakazu AONO NIMS

UCLA (Satellite)

James K. GIMZEWSKI Tsuyoshi HASEGAWA NIMS

Xiao HU NIMS

CNRS (Satellite)

NIMS

Christian JOACHIM Tomonobu NAKAYAMA Hideaki TAKAYANAGI Kazuhito TSUKAGOSHI Tokyo Univ. Sci. (Satellite)

NIMS

Nano-Life Field (4)

Coordinator

Takao AOYAGI NIMS

Guoping CHEN NIMS

Yukio NAGASAKI Univ. Tsukuba (Satellite)

Françoise M. WINNIK Univ. Montreal (Satellite)

Associate PIs (2), Group Leaders (11), MANA Scientists (51): Current as of January 1, 2015

Nano-Materials Field (27)

Minoru OSADA (Associate PI)

Masahiro GOTO

Naoki FUKATA (Group Leader)

Jonathan HILL

(Group Leader)

(Group Leader)

SEKIGUCHI

Jun CHEN

Yasuo EBINA

Jin **KAWAKITA**

Naoyuki KAWAMOTO

Renzhi MA

Yusuke

Masanori MITOME

Lok Kumar SHRESTHA

Qingmin

Takayuki NAKANE

Ryutaro SOUDA

Waka NAKANISHI

Yutaka WAKAYAMA

Isao OHKUBO

Shinjiro YAĞYU

Yoshiyuki YAMAŚHITA

Nobuyuki

SAKAI

Michiko YOSHITAKE

Nano-Power Field (7)

David BOWLER (Associate PI)

Yoshitaka TATEYAMA (Group Leader)

Ikutaro HAMADA

Hiori KINO

Hidenori NOGUCHI

Tsuyoshi OHNISHI

Kentaro **TASHIRO**

Nano-System Field (14)

Tadaaki NAGAO (Group Leader)

Kazuya TERABE (Group Leader)

Masanori KOHNO

Katsumi NAGAOKA

Tohru Takashi TSURUOKA UCHIHASHI

Shu NAKAHARAI

ISHII

Yuji OKAWA

Makoto

SAKURAI

Song-Ju

KĬM

Yoshitaka SHINGAYA

Hideo ARAKAWA

Nano-Life Field (16)

Nobutaka HANAGATA (Group Leader)

Masanori **KIKUCHI**

Sachiko **HIROMOTO**

Hisatoshi **KOBAYASHI** (Group Leader)

Akiyoshi TANIGUCHI (Group Leader)

Akiko YAMAMOTO (Group Leader)

Mitsuhiro EBARA

NAGANUMA

Current as of January 1, 2015

Yasushi **SUETSUGU**

Yoshihisa KAIZUKA

Chiho KATAOKA

Kohsaku KAWAKAMI

Naoki KAWAZOE

Tetsushi TAGUCHI

Tomohiko YAMAZAKI

YOSHIKAWA

JSPS Fellows (5):

MANA Independent Scientists (15):

Current as of January 1, 2015

Ryuichi ARAFUNE

BELIK

Ryoma HAYAKAWA

MANA Independent Scientists

Joel HENZIE

Liwen SANG

Takako KONOIKE

Takeo MINARI

Satoshi

Satoshi

Katsunori WAKABAYASHI

Jun NAKANISHI

Yusuke

YAMAUCHI

Takashi NAKANISHI

Naoto SHIRAHATA

TOMINAKA

Genki

YOSHIKAWA

ICYS-MANA Researchers (10):

Sudipta **DUTTA**

Daiming TANG

Hicham HAMOUDI

Xi

WANG

KOTSUCHIBASHI

Xuebin WANG

ICYS-MANA Researchers

Huynh Thien NGO

Hamish Hei-Man YEUNG

Gaulthier RYDZEK

Current as of January 1, 2015

Kota SHIBA

MANA Research Associates (60):

Current as of January 1, 2015

Partha BAIRI India

Asami

Japan

Jia

LIU

China

Jianbo LIN China

Satofumi

Batu

GHOSH

Nano-Materials Field (19)

Xiangfen JIANG China

Shangbin JIN

Rahul Raghunath SALUNKHE India

Xia

LI

China

Junzheng WANG China

China

YAYAMA Japan

Dominic

MARUYAMA Japan

Kosuke MINAMI Japan

Waqas Alam MIR India

Chinnamuthu PAULSAMY India

Nano-Power Field (14)

Nicephore BONNET France

Saurabh SRIVASTAVA India

CHANG China

Pradip Kumar SUKUL India

Lucie

SZABOVA

Czech

DUTTA

Kazuhisa WADA Japan

Maryam JAHAN Iran

WANG

China

Huabin ZHANG China

Huimin

LIU

China

Yuki MORITA Japan

Japan

Nano-System Field (18)

ARRAMEL Indonesia

Karthik KRISHNAN India

Mahito YAMAMOTO Japan

Chanchal CHAKRABORTY India

Hai LI China

CHEN

China

Xu-Ying LIU China

Cedric Romuald MANNEQUIN France

Korea

Seungjun OH

Takashi TSUCHIYA Japan

Gaku

Japan

ITO

Japan

Greece

Pradyot KOLEY India

Elisseos Saranyan VERVENIOTIS VIYAHARAGHAVAN India

Rui YU China

Gregory BEAUNE France

Sourov CHANDRA India

Lingfeng Jasmine GŬO LI China Singapore

Wei-Chih LIN Taiwan

Sharmy Saimon MÁNO India

Saw MARLAR Myanmar

Usharani NAGARAJAN India

Baiyao хÙ China

Appendix 7.3: MANA Advisors and International Cooperation Advisors

MANA Advisors (3):

Current as of January 2015

Advisors including Nobel Laureates and prominent researchers provide valuable advice to MANA scientists, drawing on their extensive experience.

Sir Harry W. Kroto (Nobel Laureate in Chemistry 1996) Professor, Florida State University USA

C.N.R. Rao Honorary President Jawaharlal Nehru Centre for Advanced Scientific Research India

Teruo Kishi Former President, National Institute for Materials Science Japan

MANA International Cooperation Advisors (2):

Current as of January 2015

International Cooperation Advisors including prominent researchers provide MANA with advice on joint research with overseas research institutes and the formation of a global nanotech network.

Sir Mark E. Welland Professor, University of Cambridge UK

Louis Schlapbach Former CEO, Swiss Federal Laboratories for Materials Testing and Research Switzerland

Appendix 7.4: MANA Evaluation Committee

MANA Evaluation Committee Members (8):

Current as of January 2015

Evaluation Committee Members provide MANA with their critical comments and expert recommendations on the operation and research strategy of MANA projects.

Chair

Anthony K. Cheetham Professor, University of Cambridge, UK

Takuzo Aida Professor, University of Tokyo, **Japan**

Morinobu Endo Professor, Shinshu University, Japan

Horst Hahn Professor, Karlsruhe Institute of Technology, Germany

Kazuhito Hashimoto Professor, University of Tokyo, Japan

Yoshio Nishi Professor, Stanford University, USA

Rodney S. Ruoff Professor, University of Texas, USA

Joachim P. Spatz Professor, Max Planck Institute for Intelligent Systems, Germany

Appendix 7.5: MANA Seminars

List of MANA Seminars (January – December 2014):

1	2014 Jan 15 Soft Electroactive Nanostructured Materials Dr. Charl F.J. Faul University of Bristol, UK 2014 Jan 15	12	2014 Mar 14 Complex molecules at liquid interfaces V insights from molecular simulation Dr. David Cheung Department of Pure and Applied Chemistry, University of Strathclyde, UK
	Recent developments in Atomic Force Microscopy applied to plant systems Dr. Terry McMaster University of Bristol, UK	13	2014 Mar 24 How to move forward to the future large project for research and development
3	2014 Jan 16 Carrier response in band gap and multiband transport in bilayer graphene under the ultra-high displacement Dr. Kosuke Nagashio University of Tokyo, Japan		Waseda University, Japan 2014 Mar 24 Preparation of organic-inorganic hybrid materials using nanostructures
4	2014 Jan 28 Matrix principle in synthesis technology for nanolayers		Prof. Yoshiyuki Sugahara Waseda University, Japan
	<i>compositions of inorganic and organic nature</i> Prof. Victor Luchinin St Petersburg Electrotechnical University, Russia	15	2014 Mar 24 Molecular dynamics simulation of gate dielectric thin films Prof. Takanobu Watanabe Wasada Ukiwasitu, Japan
5	2014 Feb 4 <i>IOP Publishing: Maximizing the impact of your work</i> Dr. Anna Demming Publishing Editor, Institute of Physics Publishing, UK	16	2014 Apr 4 High-k/hydrogenated-diamond metal-insulator- semiconductor field effect transistors fabrication
6	2014 Feb 6 Three-dimensional Ag Nanostructures for Surface-		ICYS-Namiki Researcher, NIMS, Japan
	Enhanced Raman Spectroscopy and Anti-counterfeiting Applications Prof. Xing Yi Ling Nanyang Technological University, Singapore	17	2014 Apr 4 Best suited protocol for applying magnetic field in magnetic refrigeration Dr. Ryo Tamura ICVS Sengen Researcher, NIMS, Japan
7	2014 Feb 7 Magnetically Oriented Single-Crystal-Like Polymer Networks Dr. Yasuhiro Ishida RIKEN Center for Emergent Matter Science, Japan	18	2014 Apr 11 Soft X-ray nano-spectroscopy for nano wire ReRAM, graphene FET and organic FET Prof. Masaharu Oshima
8	2014 Feb 7 Light-driven functional nanocarbon complexes for nanobiotechnological applications Dr. Eijirou Miyako Health Research Institute, National Institute of Advanced Industrial Science and Technology, Japan	19	University of Tokyo, Japan 2014 Apr 18 <i>HTS Magnet Protection: Quench Detection and Protection</i> <i>Techniques Designed for HTS Magnets</i> Dr. Yasuyuki Miyoshi ICYS-Sengen Researcher, NIMS, Japan
9	2014 Feb 7 Flexible-Rigid Hybrid π Systems that Show Environment- Dependent Multi-Luminescence for Materials Imaging Technique Dr. Shohei Saito Research Center for Materials Science, Nagova University	20	2014 Apr 18 <i>Coordination Polymers for Next Generation Energy</i> <i>Storage</i> Dr. Hamish Hei-Man Yeung ICYS-MANA Researcher, NIMS, Japan
10	2014 Feb 12 Carbon-dots to ferry drugs and controlled release Dr. Madhuri Sharon	21	2014 Apr 21 <i>Materials Engineering at the University of Toronto</i> Prof. Jun Nogami Department of Materials Science & Engineering, University of Toronto, Canada
	N.S.N .Research Centre for Nanotechnology & Bionanotechnology, India	22	2014 May 15 Highly Ordered Porous Materials for Sensing and Energy
11	2014 Feb 27 Inorganic Colloid Liquid Crystals: Crossroads of Soft and Hard Matter		Storage Application Prof. Ajayan Vinu University of Queensland, Australia
	Department of Applied Chemistry, Kyushu Institute of Technology, Japan	23	2014 May 16 3D Graphene and BN Nanosheets: Chemical-Bubbling Synthesis and the Applications Dr. Xuebin Wang ICYS-MANA Researcher, NIMS, Japan

24	2014 May 16 <i>Characterization of III-V compounds-based optoelectronic</i> <i>devices using cross-sectional scanning probe microscopy</i> Dr. Nobuyuki Ishida ICYS-Sengen Researcher, NIMS, Japan 2014 May 20 <i>Effacient Cu</i> , <i>TeSu(SSe)</i> , solar cells sprey costed from	36	2014 Jun 17 Bioinspired and Layered Oxide Materials for Renewable Energy and Therapeutics: Insight from Molecular Models and Simulations at the 1-100 Nanometer Scale Prof. Hendrik Heinz Department of Polymer Engineering, University of Akron, USA	
	a hydro-alcoholic colloid synthesized by instantaneous reaction Dr. Gilles Dennler Head of Energy and Environment Department, IMRA, France	37	2014 Jun 20 Intramolecular structure of individual organic molecules by Atomic Force Microscopy Dr. Ceser Moreno Sierra ICYS-Sengen Researcher, NIMS, Japan	
26	2014 May 22 Low cell stiffness as a malignant indicator of cancer progression Prof. Masami Suganuma Saitama University, Japan	38	2014 Jun 20 Diagnosis/Therapy Using 'Smart' Nanoparticles-Kit Consisting of Self-Assemble Copolymers and Block Copolymers Dr. Yohei Kotsuchibashi ICYS-MANA Researcher, NIMS, Japan	
27	2014 May 26 Functional Materials for Energy Conversion Prof. Suresh Valiyaveettil Department of Chemistry, National University of Singapore, Singapore	39	2014 Jun 27 Rediscovery of Nafion Membrane Using Infrared Spectroscopy Prof. Takeshi Hasegawa Institute for Chemical Research, Kyoto University, Japan	
28	2014 Jun 4 <i>Ab Initio Insights into Molecular Electronics and</i> <i>Spintronics</i> Dr. Nicolae Atodiresei Peter Grünberg Institute and Institute for Advanced Simulation, Germany	40	2014 Jun 27 Self-assembly of Metallic Nanoparticles on Ferroelectrics for Raman Enhancement Prof. Xiaoyan Liu Chongqing University of Science and Technology, China	
29	2014 Jun 6 Challenges for the Use of Non-siliceous Mesoporous Thin Films to Improve Device Performances Dr. Norihiro Suzuki ICYS-Sengen Researcher, NIMS, Japan	41	2014 Jul 4 Water-dispersible CNTs to fabricate advanced hydrogel, metal and ceramic-matrix composite materials Dr. Mehdi Estili ICYS-MANA Researcher, NIMS, Japan	
30	2014 Jun 6 Advanced Single Particle Measurement for Next- generation Battery Materials Dr. Kei Nishikawa ICYS-GREEN Researcher, NIMS, Japan	42	2014 Jul 4 Can we use molecules at the heart of the computer chips? Dr. Hicham Hamoudi ICYS-Sengen Researcher, NIMS, Japan	
31	2014 Jun 11 Growth and Processing of Graphene and Related 2D Nanomaterials for Future Electronics Prof. Hiroki Ago	. 43	2014 Jul 7 Ultrafast Spectroscopy Applied to Biophysics and Material Science Prof. Stefan Haacke IPCMS, University of Strasbourg, France	
32	2014 Jun 12 Combining Theory and Experiment to Understand Gold	44	2014 Jul 8 Schwinger's Pair Creation in Reduced Graphene Oxides Prof. Wen-Bin Jian National Chiao Tung University, Taiwan	
	Clusters on Titania Prof. Greg Metha Department of Chemistry, University of Adelaide, Australia	45	2014 Jul 10 Business opportunities in chiral separation: New chiral bonded/immobilized silica and polymer monolithic capillary columns for enantioselective nano-LC	
33	2014 Jun 13 Detection, separation and quantification of nanoparticles in aqueous matrices Dr. Patrick Bäuerlein		separations Prof. Asharaf Ghanem University of Canberra, Australia	
34	KWR Watercycle Research Institute, The Netherlands 2014 Jun 16 Precise construction of elaborate self-assembled structures and their functions	40	Theoretical Studies on Membrane and Protein Complex Systems Prof. Hidemi Nagao Kanazawa University, Japan	
	University of Tsukuba, Japan	47 d	47 2014 Jul 18 Smart Materials Design of Wide Bandgap ZnO: F	2014 Jul 18 Smart Materials Design of Wide Bandgap ZnO: Functional
35	2014 Jun 17 Electronic states at donor-acceptor/metal interfaces probed with electron spectroscopies Prof. Enrique Ortega University of the Basque Country, San Sebastian, Spain		Core Prof. Tetsuya Yamamoto Kochi University of Technology, Japan	

48	2014 Jul 18 Pulsed laser deposition of thin films: from hard coatings to transparent and conductive oxides Dr. Valentin Craciun National Institute for Laser, Plasma and Radiation Physics, Romania	61	2014 Sep 24 <i>Molecular Mechanics of Flexible Metal-Organic</i> <i>Frameworks</i> Dr. Sebastian Henke University of Cambridge, UK 2014 Sep 26
49	2014 Jul 22 Directed assembly of π -system-containing materials for organic electronics Prof. Martin Hollamby Keele University UK	. 02	Structure and dynamics by NMR spectroscopy - from proteins to silicon nanocrystals and MOFs Prof. Jan Lang Charles University, Czech Republic
50	2014 Jul 22 Water-soluble fullerene derivatives for biological application Dr. Yoko Yamakoshi ETH Zurich, Switzerland	. 63	2014 Sep 29 Orthogonally Modulated Molecular Transport Junctions for Resettable Electronic Logic Gates Prof. Xiaodong Chen Nanyang Technological University, Singapore
51	2014 Jul 30 Terahertz Modulation by Graphene Enhanced by Extraordinary Transmission through Ring Apertures Prof. D.M. Mittleman Rice University, USA	. 64	2014 Oct 7 Templated nanocarbons and carbon-coated materials for energy storage Prof. Hirotomo Nishihara Tohoku University, Japan
52	2014 Aug 22 Computational studies of catalytic reactions on oxide supported metal clusters Prof. Bjørk Hammer Aarhus University, Denmark	. 65	2014 Oct 17 Mesoporous Titania Photoanode with Sub-Micron Order Thickness: Toward an Efficient Photoanode for the Electricity Generating Window Dr. Norihiro Suzuki ICYS-Sengen Researcher, NIMS, Japan
53	2014 Aug 22 Native defects and carrier doping in Ag ₃ PO ₄ : An insight from density-functional calculations Dr. Pakpoom Reunchan Kasetsart University. Thailand	66	2014 Oct 17 Phase Transition in Carbon Nanotubes Dr. Dai-Ming Tang ICYS-MANA Researcher, NIMS, Japan
54	2014 Sep 4 Structure and Forces in Self-Supported Foam Films Prof. Gunther Andersson Flinders University, Australia	. 67	2014 Oct 27 Suspended Microchannel Resonators (SMR) for metrology of cells, nanoparticles, and fine bubbles Dr. Vincent Agache CEA/LETI, France
55	2014 Sep 8 In-situ Analysis of the Oxide Growth Thermodynamics and Kinetics during MBE and Electron Transport in the Semiconducting Oxides In ₂ O ₃ and SnO ₂ Dr. Oliver Bierwagen Paul-Drude-Institut für Festkörperelektronik, Germany	68	2014 Nov 4 Dithiol & thiol adsorption on surfaces: questions of alternative adsorption sites and complex interfaces formed on reactive surfaces Prof. Vladimir A. Esaulov Universite Paris Sud, Orsay, France
56	2014 Sep 12 Development of Low-cost Passive Sampling Diffusion Tubes for Monitoring Air Pollutants Prof. Krishna Manandhar Tribhuvan University, Nepal	69	2014 Nov 4 Architecture and decoration at the mesoscale using Mesoporous Hybrid Thin Films Prof. Galo Juan de Avila Arturo Soler-Illia CNEA /Universidad de Buenos Aires, Argentina
57	2014 Sep 12 Iron Impregnated Nanoporous Carbons Derived from Lapsi (Choerospondias axillaries) for the Removal of Arsenic from Ground Water Prof. Raja Ram Pradhananga Tribhuyan University, Nepal	70	2014 Nov 5 <i>H-Bonding Driven Supramolecular Assembly of Donor-</i> <i>Acceptor Chromophores and Amphiphilic Macromolecules</i> Prof. Suhrit Ghosh Indian Association for the Cultivation of Science, India
58	2014 Sep 19 A new strategy to control sensitivity/selectivity of nanomechanical sensors Dr. Kota Shiba	71	2014 Nov 7 <i>Materials in silico: Structure and transport</i> Prof. Mark E. Tuckerman New York University, USA 2014 Nov 7
59	ICYS-MANA Researcher, NIMS, Japan 2014 Sep 19 Development of pi-Conjugated Actuating Polymers Dr. Atsuro Takai ICYS-Sengen Researcher, NIMS, Japan		<i>Fabrication, Properties, and Applications of van der Waals</i> <i>Heterostructures</i> Prof. James Hone Columbia University, USA
60	2014 Sep 24 Polyoxometalate-templated Metal-Organic Frameworks Dr. Sneha Bajpe University of Cambridge, UK	. 73	2014 Nov 7 Endotaxy of Silver Nanostructures in Silicon: Growth, Characterization and Applications Prof. P.V. Satyam Institute of Physics, India

74	2014 Nov 10 Atomic and molecular contacts: Spins, Forces, Photons, Noise Prof. Richard Berndt	78	2014 Nov 25 Mesoporous silica as Nanocarrier and Diagnostics Prof. Chung-Yuan Mou National Taiwan University, Taiwan	
75	2014 Nov 11 Tuning the properties and nanostructure of functional polymers and nanomaterials for applications ranging from nanofabrication to nanomedicine	79	2014 Dec 2 Aggregation-Induced Emission Prof. Ben Zhong Tang The Hong Kong University of Science and Technology, China	
76	Prof. Idriss Blakey University of Queensland, Australia 2014 Nov 21 N-/P-doped graphene for high-performance rechargeable	80	2014 Dec 15 Engineered Bionanocomposites Prof. Vladimir V. Tsukruk Georgia Institute of Technology, Atlanta, USA	
	batteries and the origin Dr. Xi Wang ICYS-MANA Researcher, NIMS, Japan	81	81 2014 Dec Basicity at	2014 Dec 18 Basicity and Oxygen Vacancy in Layered Titanates: The conversion of fatty acids into diesel fuel
77	2014 Nov 21 Development of chirality sensors beyond the current paradigm Dr. Jan Labuta ICYS-Sengen Researcher, NIMS, Japan		Dr. Tosapol Maluangnont King Mongkut's Institute of Technology Ladkrabang , Thailand	

Appendix 7.6: MANA Research Papers 2014

List of MANA affiliated research papers in English published 2014 in scientific journals (488 papers):

1	S.A. Abdellatef, A. Ohi, T. Nabatame, A. Taniguchi, Induction of hepatocyte functional protein expression by submicron/nano-patterning substrates to mimic in vivo structures, Biomaterials Science 2(3), 330 (2014). doi: 10.1039/c3bm60191a WOS:000330797800005 2-s2.0-84893340405	5	M. Akamatsu, T. Mori, K. Okamoto, H. Sakai, M. Abe, J.P. Hill, K. Ariga, <i>Multicolour Fluorescent Memory Based</i> <i>on the Interaction of Hydroxy Terphenyls with Fluoride</i> <i>Anions</i> , Chemistry - A European Journal 20 (49), 16293 (2014). doi: 10.1002/chem.201404089 WOS:000345515700035 2-s2.0-84915791540
	Effect of Physical and Chemical Cues on Hepatocellular Function and Morphology, International Journal of Molecular Sciences 15(3), 4299 (2014). doi: 10.3390/ijms15034299 WOS:000334444700057 2-s2.0-84896487510	6	M.M. Alam, H. Yamahana, B.P. Bastakoti, H.N. Luitel, W.W. Zhao, Y. Yamauchi, T. Watari, H. Noguchi, K. Nakashima, <i>Synthesis of hollow silica nanosphere with</i> <i>high accessible surface area and their hybridization with</i> <i>carbon matrix for drastic enhancement of electrochemical</i> <i>property</i> , Applied Surface Science 314 , 552 (2014).
3	C. Abe, Y. Uto, A. Kawasaki, C. Noguchi, R. Tanaka, T. Yoshitomi, Y. Nagasaki, Y. Endo, H. Hori, <i>Evaluation of</i> the in vivo antioxidative activity of redox nanoparticles by		doi: 10.1016/j.apsusc.2014.07.030 WOS:000341464100076 2-s2.0-84906706591
	using a developing chicken egg as an alternative animal model, Journal of Controlled Release 182 , 67 (2014). doi: 10.1016/j.jconrel.2014.03.015 WOS:000335554000007 2-s2.0-84897382722	7	S. Alam, C. Anand, K.S. Lakhi, J.H. Choy, W.S. Cha, A. Elzhatry, S.S. Al-Deyab, Y. Ohya, A. Vinu, <i>Highly</i> <i>Magnetic Nanoporous Carbon/Iron-Oxide Hybrid</i> <i>Materials</i> , ChemPhysChem 15(16), 3440 (2014). doi: 10.1002/cphc.201402448
4	M. Akamatsu, H. Komatsu, T. Mori, E. Adams, R. Shin, H. Sakai, M. Abe, J.P. Hill, K. Ariga, <i>Intracellular Imaging of</i>		WOS:000344370900003 2-s2.0-84919338351
	Cesium Distribution in Arabidopsis Using Cesium Green, ACS Applied Materials & Interfaces 6(11), 8208 (2014). doi: 10.1021/am5009453 WOS:000337336900030 2-s2.0-84902440436	8	J.X. An, A. Dedinaite, F.M. Winnik, X.P. Qiu, P.M. Claesson, <i>Temperature-Dependent Adsorption and</i> <i>Adsorption Hysteresis of a Thermoresponsive Diblock</i> <i>Copolymer</i> , Langmuir 30 (15), 4333 (2014). doi: 10.1021/1a500377w WOS:000334991400017 2-s2.0-84899408073

9	C. Anand, G. Lawrence, A.A. Elzatahry, S.S. Al-Deyab, V.V. Balasubramanian, W.S. Cha, J.S.M. Zaidi, A. Vinu, <i>Highly Dispersed and Active Iron Oxide Nanoparticles</i> <i>in SBA-15 with Different Pore Sizes for the Synthesis of</i> <i>Diphenylmethane</i> , Science of Advanced Materials 6(7), 1618 (2014). doi: 10.1166/sam.2014.1844 WOS:000338125200050 2-s2.0-84902988957	18	F.M. Auxilia, S. Ishihara, S. Mandal, T. Tanabe, G. Saravanan, G.V. Ramesh, N. Umezawa, T. Hara, Y. Xu, S. Hishita, Y. Yamauchi, A. Dakshanamoorthy, J.P. Hill, A. Ariga, H. Abe, <i>Low-Temperature Remediation of NO</i> <i>Catalyzed by Interleaved CuO Nanoplates</i> , Advanced Materials 26 (26), 4481 (2014). doi: 10.1002/adma.201306055 WOS:000339565100010 2-s2.0-84904097519
10	C.A. Antonyraj, D.N. Srivastava, G.P. Mane, S. Sankaranarayanan, A. Vinu, K. Srinivasan, Co_3O_4 microcubes with exceptionally high conductivity using a CoAl layered double hydroxide precursor via soft chemically synthesized cobalt carbonate, Journal of Materials Chemistry A 2(18), 6301 (2014). doi: 10.1039/c4ta00561a WOS:000334123100004 2-s2.0-84897996059	19	F.M. Auxilia, T. Tanaba, S. Ishihara, G. Saravanan, G.V. Ramesh, F. Matsumoto, X. Ya, K. Ariga, A. Dakshanamoorthy, H. Abe, <i>Interleaved Mesoporous Copper</i> <i>for the Anode Catalysis in Direct Ammonium Borane Fuel</i> <i>Cells</i> , Journal of Nanoscience and Nanotechnology 14(6), 4443 (2014). doi: 10.1166/jnn.2014.8278 WOS:000332339500067 2-s2.0-84899722123
11	M. Aono, S.J. Kim, M. Hara, T. Munakata, <i>Amoeba-</i> <i>inspired Tug-of-War algorithms for exploration-exploitation</i> <i>dilemma in extended Bandit Problem</i> , Biosystems 117 , 1 (2014). doi: 10.1016/j.biosystems.2013.12.007 WOS:000333873000001 2-s2.0-84892849955	20	C. Avci, A. Aydin, Z. Tuna, Z. Yavuz, Y. Yamauchi, N. Suzuki, O. Dag, <i>Molten Salt Assisted Self Assembly</i> (<i>MASA</i>): Synthesis of Mesoporous Metal Titanate (<i>CoTiO</i> ₃ , <i>MnTiO</i> ₃ , and $Li_4Ti_5O_{12}$) Thin Films and Monoliths, Chemistry of Materials 26 (20), 6050 (2014). doi: 10.1021/cm503020y WOS:000343950300029
12	K. Ariga, K. Kawakami, M. Ebara, Y. Kotsuchibashi, Q. Ji, J.P. Hill, <i>Bioinspired nanoarchitectonics as emerging drug</i> <i>delivery systems</i> , New Journal of Chemistry 38 (11), 5149 (2014). doi: 10.1039/c4nj00864b WOS:000343922800006 2-s2.0-84908149812	21	M. Ayad, N. Salahuddin, A. Fayed, B.P. Bastakoti, N. Suzuki, Y. Yamauchi, <i>Chemical design of a smart chitosan-</i> <i>polypyrrole-magnetite nanocomposite toward efficient</i> <i>water treatment</i> , <i>Physical Chemistry Chemical Physics</i> 16 (39), 21812 (2014). doi: 10.1039/c4cp03062a WOS-000343072900088
13	K. Ariga, T. Mori, M. Akamatsu, J.P. Hill, <i>Two-dimensional</i> nanofabrication and supramolecular functionality controlled by mechanical stimuli, Thin Solid Films 554 , 32 (2014). doi: 10.1016/j.tsf.2013.05.060 WOS:000331078800007 2-s2.0-84893898791	22	2-s2.0-84907822047 Z. Baji, Z. Labadi, G. Molnar, B. Pecz, K. Vad, Z.E. Horvath, P.J. Szabo, T. Nagata, J. Volk, <i>Highly conductive</i> <i>epitaxial ZnO layers deposited by atomic layer deposition</i> , Thin Solid Films 562 , 485 (2014). doi: 10.1016/j.tsf.2014.04.047
14	K. Ariga, T. Mori, S. Ishihara, K. Kawakami, J.P. Hill, Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions, Chemistry of Materials 26 (1), 519 (2014). doi: 10.1021/cm401999f WOS:000330416900043 2-s2.0-84892583464	23	2-s2.0-84901785130 B.P. Bastakoti, S. Ishihara, S.Y. Leo, K. Ariga, K.C.W. Wu, Y. Yamauchi, <i>Polymeric Micelle Assembly for Preparation</i> of Large-Sized Mesoporous Metal Oxides with Various Compositions, Langmuir 30 (2), 651 (2014). doi: 10.1021/la403901x WOS:000330203900026
15	K. Ariga, Y. Yamauchi, Q.M. Ji, Y. Yonamine, J.P. Hill, <i>Research Update: Mesoporous sensor nanoarchitectonics</i> , APL Materials 2 (3), 030701 (2014). doi: 10.1063/1.4868177 WOS:000334220300001 2-s2.0-84900028634	24	B.P. Bastakoti, Y.Q. Li, N. Miyamoto, N.M. Sanchez- Ballester, H. Abe, J.H. Ye, P. Srinivasu, Y. Yamauchi, <i>Polymeric micelle assembly for the direct synthesis of</i> <i>functionalized mesoporous silica with fully accessible Pt</i> <i>nanoparticles toward an improved CO oxidation reaction</i> ,
16	K. Ariga, Y. Yamauchi, G. Rydzek, Q.M. Ji, Y. Yonamine, K.C.W. Wu, J.P. Hill, <i>Layer-by-layer Nanoarchitectonics:</i> <i>Invention, Innovation, and Evolution</i> , Chemistry Letters 43 (1), 36 (2014).		Chemical Communications 50 (65), 9101 (2014). doi: 10.1039/c4cc02556c WOS:000339930400017 2-s2.0-84904566961
	doi: 10.1246/cl.130987 WOS:000329475000006 2-s2.0-84891808513	25	B.P. Bastakoti, R.R. Salunkhe, J.H. Ye, Y. Yamauchi, <i>Direct</i> synthesis of a mesoporous TiO ₂ -RuO ₂ composite through evaporation-induced polymeric micelle assembly, Physical
17	M. Arita, D.R. Bowler, T. Miyazaki, <i>Stable and Efficient</i> <i>Linear Scaling First-Principles Molecular Dynamics</i> <i>for 10000+Atoms</i> , Journal of Chemical Theory and Computation 10(12), 5419 (2014). doi: 10.1021/ct500847y WOS:000346324000022 2-s2.0-84916917816		Cnemistry Chemical Physics 16(22), 10425 (2014). doi: 10.1039/c4cp01118j WOS:000336781500017 2-s2.0-84900798330

26	B.P. Bastakoti, N.L. Torad, Y. Yamauchi, <i>Polymeric Micelle</i> <i>Assembly for the Direct Synthesis of Platinum-Decorated</i> <i>Mesoporous TiO₂ toward Highly Selective Sensing of</i> <i>Acetaldehyde</i> , ACS Applied Materials & Interfaces 6(2), 854 (2014). doi: 10.1021/am4039954 WOS:000330201900018 2-s2.0-84892903583	35	N. Bonnet, M. Otani, O. Sugino, <i>Self-Poisoning Dynamical</i> <i>Effects in the Oxygen Reduction Reaction on Pt(111)</i> <i>from a Top-Down Kinetic Analysis</i> , Journal of Physical Chemistry C 118(25), 13638 (2014). doi: 10.1021/jp502807z WOS:000338184300035 2-s2.0-84914697950
27	W. Beenken, M. Presselt, T.H. Ngo, W. Dehaen, W. Maes, M. Kruk, <i>Molecular Structures and Absorption Spectra</i> <i>Assignment of Corrole NH Tautomers</i> , Journal of Physical Chemistry A 118 (5), 862 (2014). doi: 10.1021/jp411033h WOS:000331153400009 2-s2.0-84893875805	36	X.K. Cai, R.Z. Ma, T.C. Ozawa, N. Sakai, A. Funatsu, T. Sasaki, <i>Superlattice assembly of graphene oxide (GO)</i> <i>and titania nanosheets: fabrication, in situ photocatalytic</i> <i>reduction of GO and highly improved carrier transport,</i> Nanoscale 6 (23), 14419 (2014). doi: 10.1039/c4nr04830j WOS:000344997600043 2-s2.0-84908892382
28	P.J. Beldon, S. Tominaka, P. Singh, T.S. Dasgupta, E.G. Bithell, A.K. Cheetham, <i>Layered structures and nanosheets</i> <i>of pyrimidinethiolate coordination polymers</i> , Chemical Communications 50 (30), 3955 (2014). doi: 10.1039/c4cc00771a WOS:000333122300015 2-s2.0-84896525299	37	J.Y. Cao, L.Q. Liu, A. Hashimoto, J.H. Ye, <i>Hematite</i> photo-electrodes with multiple ultrathin SiOx interlayers towards enhanced photoelectrochemical properties, Electrochemistry Communications 48 , 17 (2014). doi: 10.1016/j.elecom.2014.07.030 WOS:000345208000005 2-s2.0-84906549849
29	A.A. Belik, Negative Exchange Bias in Polycrystalline Hexagonal ScMnO ₃ , InMnO ₃ , YMnO ₃ , 4H-SrMnO ₃ , and 6H-SrMnO ₃ and Perovskite YMnO ₃ : Effects of Impurities, Journal of the Physical Society of Japan 83 (7), 074703 (2014). doi: 10.7566/JPSJ.83.07470 WOS:000339047900028 2-s2.0-84924944182	38	W. Chaikittisilp, K. Muraoka, Q.M. Ji, K. Ariga, Y. Yamauchi, <i>Mesoporous architectures with highly</i> <i>crystallized frameworks</i> , Journal of Materials Chemistry A 2(31), 12096 (2014). doi: 10.1039/c3ta15389d WOS:000339625500001 2-s2.0-84904431202
30	A.A. Belik, T. Yamauchi, H. Ueda, Y. Ueda, H. Yusa, N. Hirao, M. Azuma, <i>Absence of Metallic Conductivity in</i> <i>Tetragonal and Cubic PbVO₃ at High Pressure</i> , Journal of the Physical Society of Japan 83(7), 074711 (2014). doi: 10.7566/JPSJ.83.074711 WOS:000339047900036 2-s2.0-84925003546	39	W. Chalkfulshp, N.L. 10rad, C.L. El, M. Imura, N. Suzuki, S. Ishihara, K. Ariga, Y. Yamauchi, <i>Synthesis</i> of Nanoporous Carbon- Cobalt- Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal- Organic Frameworks, Chemistry - A European Journal 20 (15), 4217 (2014). doi: 10.1002/chem.201304404 WOS:000333632800003
31	A.A. Belik, W. Yi, <i>High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site</i> , Journal of Physics: Condensed Matter 26 (16), 163201 (2014). doi: 10.1088/0953-8984/26/16/163201 WOS:000333798500001 2-s2.0-84901741995	40	2-s2.0-8489/998206 R. Chakravarti, M.L. Kantam, H. Iwai, S.S. Al-Deyab, K. Ariga, D.H. Park, J.H. Choy, K.S. Lakhi, A. Vinu, <i>Mesoporous Carbons Functionalized with Aromatic,</i> <i>Aliphatic, and Cyclic Amines, and their Superior Catalytic</i> <i>Activity</i> , ChemCatChem 6(10), 2872 (2014). doi: 10.1002/cctc.201402403
32	S. Beyhan, <i>Electrocatalytic Properties of Au(h k l)</i> <i>Electrodes Towards Oxidation of Ethanol in Alkaline</i> <i>Media</i> , International Journal of Electrochemical Science 9 (6), 3259 (2014). doi:- WOS:000334493300045 2-s2.0-84897842706	41	wOS:000342795000019 2-s2.0-84907849405 C.M. Chan, L.T. Weng, Y.T.R. Lau, Polymer surface structures determined using ToF-SIMS, Reviews in Analytical Chemistry 33(1), 11 (2014). doi: 10.1515/revac-2013-0015 WOS:000332226100002 2-s2.0.84806760375
33	I. Bhattacharyya, P. Kumar, D. Goswami, <i>Effect of</i> <i>isotope substitution in binary liquids with Thermal-Lens</i> <i>spectroscopy</i> , Chemical Physics Letters 598 , 35 (2014). doi: 10.1016/j.cplett.2014.02.056 WOS:000334294900007 2-s2.0-84897892278	42	 Z-S2.0-84896700575 K. Chang, Z.W. Mei, T. Wang, Q. Kang, S.X. Ouyang, J.H. Ye, MoS₂/Graphene Cocatalyst for Efficient Photocatalytic H-2 Evolution under Visible Light Irradiation, ACS Nano 8(7), 7078 (2014). doi: 10.1021/nn5019945 WOS:000339463100063
34	 P.E.K. Blanchard, E. Reynolds, B.J. Kennedy, J.A. Kimpton, M. Avdeev, A.A. Belik, Anomalous thermal expansion in orthorhombic perovskite SrIrO₃: Interplay between spin-orbit coupling and the crystal lattice, Physical Review B 89(21), 214106 (2014). doi: 10.1103/PhysRevB.89.214106 WOS:000337729400001 2-s2.0-84902477887 	43	2-s2.0-84904762924 G. Chen, F.S. Chen, X.H. Liu, W. Ma, H.M. Luo, J.H. Li, R.Z. Ma, G.Z. Qiu, Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion, Nano Research 7(8), 1093 (2014). doi: 10.1007/s12274-014-0472-5 WOS:000341172400001 2-s2.0-84901864196

44	H.W. Chen, Y.D. Chiang, C.W. Kung, N. Sakai, M. Ikegami, Y. Yamauchi, K.C.W. Wu, T. Miyasaja, K.C. Ho, <i>Highly efficient plastic-based quasi-solid-state dye-</i> <i>sensitized solar cells with light-harvesting mesoporous</i> <i>silica nanoparticles gel-electrolyte</i> , Journal of Power Sources 245, 411 (2014). doi: 10.1016/j.jpowsour.2013.06.142 WOS:000325234500052	52	F. Delbecq, K. Kawakami, Preparation of polyoligo(ethyleneglycol) methacrylate decorated with pendant cholesterol moieties: Hydrogel and mesoglobule preparation and their use for entrapping lipophilic nanomaterials, Colloids and Surfaces A 444, 173 (2014). doi: 10.1016/j.colsurfa.2013.12.057 WOS:000333000800024 2-s2.0-84892655985
45	S.W. Chen, Q. Zhang, T. Nakamoto, N. Kawazoe, G.P. Chen, <i>Highly active porous scaffolds of collagen and</i> <i>hyaluronic acid prepared by suppression of polyion</i> <i>complex formation</i> , Journal of Materials Chemistry B 2(34), 5612 (2014). doi: 10.1039/c4tb00780h WOS:000340586500013 2-s2.0-84905728412	53	F. Delbecq, K. Kawakami, <i>Self-assembly study and</i> <i>formation of hydrophobized PVA dense and stable</i> <i>nanoparticles loaded with cholesterol or a steroid-type</i> <i>drug</i> , Journal of Colloid and Interface Science 428, 57 (2014). doi: 10.1016/j.jcis.2014.04.037 WOS:000337860800009 2-s2.0-84899932833
46	T. Chen, T. Wang, Y.W. Li, Y.S. Yang, Z.B. Jiao, J.H. Ye, Y.P. Bi, Controllable Synthesis of Silver-Nanoparticle-Modified TiO ₂ Nanotube Arrays for Enhancing Photoelectrochemical Performance, Nanoscience and Nanotechnology Letters 6 (8), 672 (2014). doi: 10.1166/nnl.2014.1815 WOS:000342714500005 2-s2.0-84918519469	54	K. Delfanazari, H. Asai, M. Isujimoto, T. Kashiwagi, T. Kitamura, K. Ishida, C. Watanabe, S. Sekimoto, T. Yamamoto, H. Minami, M. Tachiki, R.A. Klemm, T. Hattori, K. Kadowaki, <i>Terahertz Oscillating Devices</i> <i>Based Upon the Intrinsic Josephson Junctions in a</i> <i>High Temperature Superconductor</i> , Journal of Infrared, Millimeter, and Terahertz Waves 35 (1), 131 (2014). doi: 10.1007/s10762-013-0027-y WOS:000330956000014
47	G. Cheng, Z.H. Lin, Z.L. Du, Z.L. Wang, <i>Increase Output</i> <i>Energy and Operation Frequency of a Triboelectric</i> <i>Nanogenerator by Two Grounded Electrodes Approach</i> , Advanced Functional Materials 24 (19), 2892 (2014). doi: 10.1002/adfm.201303659 WOS:000336248400018 2-s2.0-84900845156	55	H.Y. Deng, K. Wakabayashi, <i>Decomposition into propagating and evanescent modes of graphene ribbons</i> , Physical Review B 90 (4), 045402 (2014). doi: 10.1103/PhysRevB.90.045402 WOS:000338496400004 2-s2.0-84903823332
48	M. Choi, E. Hong, J. So, S. Song, B.S. Kim, A. Yamamoto, Y.S. Kim, J. Cho, H. Choe, <i>Tribological properties of</i> <i>biocompatible Ti-10W and Ti-7.5TiC-7.5W</i> , Journal of the Mechanical Behavior of Biomedical Materials 30 , 214 (2014). doi: 10.1016/j.jmbbm.2013.11.014 WOS:000331493000022	56	H.Y. Deng, K. Wakabayashi, <i>Edge effect on a vacancy</i> state in semi-infinite graphene, Physical Review B 90 (11), 115413 (2014). doi: 10.1103/PhysRevB.90.115413 WOS:000342107100004 eid:-
49	 ciofani, S. Del Turco, A. Rocca, G. de Vito, V. Cappello, Yamaguchi, X. Li, B. Mazzolai, G. Basta, M. Gemmi, Piazza, D. Golberg, V. Mattoli, <i>Cytocompatibility</i> aluation of gum Arabic-coated ultra-pure boron nitride 	57	H. Y. Deng, K. Wakabayashi, C.H. Lam, <i>Formation</i> mechanism of bound states in graphene point contacts, Physical Review B 89 (4), 045423 (2014). doi: 10.1103/PhysRevB.89.045423 WOS:000332226700004 2-s2.0-84893149080
	nanotubes on human cells, Nanomedicine 9(6), 7/3 (2014). doi: 10.2217/NNM.14.25 WOS:000338781500009 2-s2.0-84903761973	58	J.F. Di Tusa, S.B. Zhang, K. Yamaura, Y. Xiong, J.C. Prestigiacomo, B.W. Fulfer, P.W. Adams, M.I. Brickson, D.A. Browne, C. Capan, Z. Fisk, J.Y. Chan, <i>Magnetic</i> , <i>thermodynamic</i> , and electrical transport properties of the noncentrosymmetric B20 germanides MnGe and CoGe, Physical Review B 90 (14), 144404 (2014). doi: 10.1103/PhysRevB.90.144404 WOS:000344012900001 2-s2.0-84908045043
50	<i>X.</i> Daimon, H. Izawa, K. Kawakami, P. Zywicki, H. Sakai, M. Abe, J.P. Hill, K. Ariga, <i>Media-dependent morphology</i> of supramolecular aggregates of beta-cyclodextrin-grafted hitosan and insulin through multivalent interactions, ournal of Materials Chemistry B 2 (13), 1802 (2014).		
	doi: 10.1039/c3tb21528h WOS:000332481700006 2-s2.0-84896763404	59	Y.B. Ding, X. Li, J.P. Hill, K. Ariga, H. Agren, J. Andreasson, W.H. Zhu, H. Tian, Y.S. Xie, <i>Acid/Base</i> <i>Switching of the Tautomerism and Conformation of</i> <i>a Dioxoporphyrin for Integrated Binary Subtraction</i> , Chemistry - A European Journal 20(40), 12910 (2014). doi: 10.1002/chem.201403830 WOS:000342627300031 2-s2.0-84920793234
51	 D.G. de Oteyza, J.M. Garcia-Lastra, E. Goiri, A. El-Sayed, Y. Wakayama, J.E. Ortega, Asymmetric Response toward Molecular Fluorination in Binary Copper-Phthalocyanine/ Pentacene Assemblies, Journal of Physical Chemistry C 118(32), 18626 (2014). doi: 10.1021/jp506151j WOS:000340444500041 2-s2.0-84906256528 		
		60	I. Dulinska-Molak, H.L. Mao, N. Kawazoe, G.P. Chen, Variation of Mechanical Property of Single-Walled Carbon Nanotubes-Treated Cells Explored by Atomic Force Microscopy, Journal of Biomedical Nanotechnology 10 (4), 651 (2014). doi: 10.1166/jbn.2014.1745 WOS:000327499700011 2-s2.0-84896768801

61	I. Dulinska-Molak, H.L. Mao, N. Kawazoe, G.P. Chen, <i>Effect of Single-Wall Carbon Nanotubes on Mechanical</i> <i>Property of Chondrocytes</i> , Journal of Nanoscience and Nanotechnology 14(3), 2459 (2014). doi: 10.1166/jnn.2014.8529 WOS:000331624700044 2-s2.0-84894128450 S. Dutta, K. Wakabayashi, <i>Spin and charge excitations</i> <i>in zizzaa honeycomb nanoribhons: Effect of many hody</i>	71	N.A. Fadil, G. Saravanan, G.V. Ramesh, F. Matsumoto, H. Yoshikawa, S. Ueda, T. Tanabe, T. Hara, S. Ishihara, H. Murakami, K. Ariga, H. Abe, <i>Synthesis and electrocatalytic</i> <i>performance of atomically ordered nickel carbide</i> (<i>Ni₃C</i>) <i>nanoparticles</i> , Chemical Communications 50 (49), 6451 (2014). doi: 10.1039/C4CC01336K WOS:000336815400005 2-s2.0-84901332108
	<i>correlation</i> , Japanese Journal of Applied Physics 53 (6), 06JD01 (2014). doi: 10.7567/JJAP.53.06JD01 WOS:000338439500013 2-s2.0-84903272979	72	K. Fujioka, S. Hanada, Y. Inoue, K. Sato, K. Hirakuri, K. Shiraishi, F. Kanaya, K. Ikeda, R. Usui, K. Yamamoto, S.U. Kim, Y. Manome, <i>Effects of Silica and Titanium Oxide</i> <i>Particles on a Human Neural Stem Cell Line: Morphology,</i> <i>Mitochondrial Activity, and Gene Expression of</i> <i>Differentiation Markers</i> , International Journal of Molecular Sciences 15(7), 11742 (2014). doi: 10.3390/ijms150711742 WOS:000340038500035 2-s2.0-84903738940
63	M. Ebara, <i>Technique for purifying blood relies on a</i> <i>nanofibre mesh</i> , Membrane Technology 2014 (7), 10, (2014). doi: 10.1016/S0958-2118(14)70148-X WOS:- 2-s2 0-84904917350		
64	 A. Ebara, M. Akimoto, K. Uto, K. Shiba, G. Yoshikawa, C. Aoyagi, Focus on the interlude between topographic ransition and cell response on shape-memory surfaces, Polymer 55(23), 5961 (2014). Ioi: 10.1016/j.polymer.2014.09.009 		in Si and Ge nanowires, Physica Status Solidi (C) 11 (2), 320 (2014). doi: 10.1002/pssc.20130010 WOS:- 2-s2.0-84894440414
65	WOS:000345310100014 2-s2.0-84908434413 M. Ebara, T. Aoyagi, <i>Photo-induced Control of Smart</i> <i>Polymer Systems via pH Jump Reaction</i> , Journal of the Photopolymer Science and Technology 27 (4), 467 (2014). doi:10.2494/photopolymer.27.467	74	G. Furlan, T. Minowa, N. Hanagata, C. Kataoka-Hamai, Y. Kaizuka, <i>Phosphatase CD45 Both Positively and</i> <i>Negatively Regulates T Cell Receptor Phosphorylation</i> <i>in Reconstituted Membrane Protein Clusters</i> , Journal of Biological Chemistry 289(41), 28514 (2014). doi: 10.1074/jbc.M114.574319 WOS:000343765400042
66	 WOS:000340229800011 2-s2.0-84907537379 M. Ebara, K. Uto, N. Idota, J.M. Hoffman, T. Aoyagi, <i>The taming of the cell: Shape-memory nanopatterns direct cell orientation</i>, International Journal of Nanomedicine 9(Suppl. 1), 117 (2014). doi: 10.2147/IJN.S50677 WOS:000349961100010 2-s2.0-84900442161 	75	2-s2.0-84907829271 Z. Futera, K. Sodeyama, J.V. Burda, Y. Einaga, Y. Tateyama, A double-QM/MM method for investigating donor-acceptor electron-transfer reactions in solution, Physical Chemistry Chemical Physics 16 (36), 19530 (2014). doi: 10.1039/c4cp02307b WOS:000341299500054 2-s2.0-84906539398
67	J. Echeverria, S. Monturet, C. Joachim, <i>One-way rotation</i> of a molecule-rotor driven by a shot noise, Nanoscale 6(5), 2793 (2014). doi: 10.1039/c3nr05814j WOS:000332127200038 2-s2.0-84894669110	76	Z. Futera, T. Watanabe, Y. Einaga, Y. Tateyama, <i>First</i> <i>Principles Calculation Study on Surfaces and Water</i> <i>Interfaces of Boron-Doped Diamond</i> , Journal of Physical Chemistry C 118(38), 22040 (2014). doi: 10.1021/jp506046m WOS:000342396300034
68	K.S. El-Said, E.M. Ali, K. Kanehira, A. Taniguchi, <i>Molecular mechanism of DNA damage induced by</i> <i>titanium dioxide nanoparticles in toll-like receptor 3 or 4</i> <i>expressing human hepatocarcinoma cell lines</i> , Journal of Nanobiotechnology 12, 48 (2014). doi: 10.1186/s12951-014-0048-2 WOS:000346435400001 2-s2.0-84924911880	77	2-s2.0-84907453793 X. Gao, S. Aikawa, N. Mitoma, M.F. Lin, T. Kizu, T. Nabatame, K. Tsukagoshi, <i>Self-formed copper oxide</i> <i>contact interlayer for high-performance oxide thin film</i> <i>transistors</i> , Applied Physics Letters 105 (2), 023503 (2014). doi: 10.1063/1.4890312 WOS:000341151400075 2-s2.0-84904734641
69	G. Elumalai, H. Noguchi, K. Uosaki, <i>Electrocatalytic</i> activity of various types of h-BN for the oxygen reduction reaction, Physical Chemistry Chemical Physics 16 (27), 13755 (2014). doi: 10.1039/c4cp00402g WOS:000338116700025 2-s2.0-84902682794	78	Y.X. Gao, J. Qi, J. Zhang, S.S. Kang, W.Q. Qiao, M. Li, H.Z. Sun, J.P. Zhang, K. Ariga, <i>Fabrication of both the</i> <i>photoactive layer and the electrode by electrochemical</i> <i>assembly: towards a fully solution-processable device</i> , Chemical Communications 50 (72), 10448 (2014). doi: 10.1039/c4cc04788e WOS:000340898400023 2-s2.0-84906259205
70	F. Fabbri, E. Rotunno, L. Lazzarini, N. Fukata, G. Salviati, Visible and Infra-red Light Emission in Boron-Doped Wurtzite Silicon Nanowires, Scientific Reports 4, 3603 (2014). doi: 10.1038/srep03603 WOS:000329839000011 2-s2.0-84891782404		

79	J. Garel, C. Zhao, R. Popovitz-Biro, D. Golberg, W.L. Wang, E. Joselevich, <i>BCN Nanotubes as Highly Sensitive</i> <i>Torsional Electromechanical Transducers</i> , Nano Letters 14 (11), 6132 (2014). doi: 10.1021/n1502161h WOS:000345723800017 2-s2.0-84910129344	88	S. Ghosh, M. Dutta, S. Sahu, D. Fujita, A. Bandyopadhyay, Nano Molecular-Platform: A Protocol to Write Energy Transmission Program Inside a Molecule for Bio-Inspired Supramolecular Engineering, Advanced Functional Materials 24(10), 1364 (2014). doi: 10.1002/adfm.201302111 WOS:000332523300003 2 s2 0 84805918201
80	J. Ge, J. Gutierrez, J. Li, J. Yuan, H.B. Wang, K. Yamaura, E. Takayama-Muromachi, V.V. Moshchalkov, <i>Dependence</i> of the flux-creep activation energy on current density and magnetic field for a $Ca_{10}(Pt_3As_8)[(Fe_{1:s}Pt_s)_2As_2]_5$ single crystal, Applied Physics Letters 104 (11), 112603 (2014). doi: 10.1063/1.4868871 WOS:000333252300049 2-s2.0-84897888551	89	D. Golberg, C. Zhang, Z. Xu, <i>Cubic Lattice Nanosheets:</i> <i>Thickness-Driven Light Emission</i> , ACS Nano 8(7), 6516 (2014). doi: 10.1021/nn502999g WOS:000339463100002 2-s2.0-84904721580
81	F.X. Geng, R.Z. Ma, Y. Ebina, Y. Yamauchi, N. Miyamoto, T. Sasaki, <i>Gigantic Swelling of Inorganic Layered</i> <i>Materials: A Bridge to Molecularly Thin Two-Dimensional</i> <i>Nanosheets</i> , Journal of the American Chemical Society 136 (14), 5491 (2014). doi: 10.1021/ja501587y WOS:000334572200051	90	M. Goto, M. Sasaki, A. Kasahara, M. Tosa, Frictional Property Depended on Crystal Preferred Orientation Analyzed by a Combinatorial Technique, Tribology Letters 55(2), 289 (2014). doi: 10.1007/s11249-014-0349-5 WOS:000338650700010 2-s2.0-84904729678
82	2-s2.0-84898009676 F.X. Geng, R.Z. Ma, Y. Yamauchi, T. Sasaki, <i>Tetrabutylphosphonium ions as a new swelling/</i> <i>delamination agent for layered compounds</i> , Chemical Communications 50 (69), 9977 (2014). doi: 10.1039/c4cc03736g WOS:000340513400044 2-s2.0 84005454501		J. Radecki, H. Radecka, <i>Multiple Redox-Active Sites</i> in Copper Dipyrromethene-Corrole Self-Assembled Monolayers Deposited onto Gold Electrodes, International Journal of Electrochemical Science 9(3), 1232 (2014). doi:- WOS:000331194200016 2-s2.0-84893460488
83	D. Gerlach, M. Wimmer, R.G. Wilks, R. Felix, F. Kronast, F. Ruske, M. Bär, <i>The complex interface chemistry of</i> <i>thin-film silicon/zinc oxide solar cell structures</i> , Physical Chemistry Chemical Physics 16 (47), 26266 (2014). doi: 10.1039/c4cp03364g WOS:000345208200067	92	O. Guillermet, A. Mahmood, J.S. Yang, J. Echeverria, J. Jeannoutot, S. Gauthier, C. Joachim, F. Cherioux, F. Palmino, <i>Seeding Molecular Rotators on a Passivated</i> <i>Silicon Surface</i> , ChemPhysChem 15(2), 271 (2014). doi: 10.1002/cphc.201301015 WOS:000331333800004 2-s2.0-84894111968
84	A. Ghoneum, H.Q. Zhu, J. Woo, N. Zabinyakov, S. Sharma, J.K. Gimzewski, <i>Biophysical and morphological</i> <i>effects of nanodiamond/nanoplatinum solution (DPV576)</i> <i>on metastatic murine breast cancer cells in vitro</i> , Nanotechnology 25 (46), 465101 (2014). doi: 10.1088/0957-4484/25/46/465101 WOS:000344375500002	93 94	J.J. Guo, H. Zhou, S.X. Ouyang, T. Kako, J.H. Ye, <i>An</i> <i>Ag₃PO₄/nitridized</i> Sr ₂ <i>Nb</i> ₂ <i>O</i> ₇ composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation, Nanoscale 6(13), 7303 (2014). doi: 10.1039/c4nr00537f WOS:000337786700024 2-s2.0-84902481523
85	B. Ghosh, Y. Masuda, Y. Wakayama, Y. Imanaka, J. Inoue, K. Hashi, K. Deguchi, H. Yamada, Y. Sakka, S. Oki, T. Shimizu, N. Shirahata, <i>Hybrid White Light Emitting Diode</i> <i>Based on Silicon Nanocrystals</i> , Advanced Functional Materials 24(45), 7151 (2014). doi: 10.1002/adfm.201401795 WOS:000345974600011		S.H. Guo, H.J. Yu, D.Q. Liu, W. Tian, X.Z. Liu, N. Hanada, M. Ishida, H.S. Zhou, A novel tunnel $Na_{a_{6l}}Ti_{a_{48}}Mn_{a_{52}}O_2$ cathode material for sodium-ion batteries, Chemical Communications 50 (59), 7998 (2014). doi: 10.1039/c4cc02362e WOS:000338439700020 2-s2.0-84903515635
86	 2-s2.0-84919395402 B. Ghosh, M. Ogawara, Y. Sakka, N. Shirahata, <i>Reductant-Free Colloidal Synthesis of Near-IR Emitting Germanium Nanocrystals: Role of Primary Amine</i>, Journal of Nanoscience and Nanotechnology 14(3), 2204 (2014). doi: 10.1166/jnn.2014.8546 WOS:000331624700010 2-s2.0-84894107865 	95	 M. Hatupka-Bryt, K. Asai, S. Thangavel, M. Bednarowicz, R. Krzyminiewski, Y. Nagasaki, Synthesis and in vitro and in vivo evaluations of poly(ethylene glycol)-block- poly(4-vinylbenzylphosphonate) magnetic nanoparticles containing doxorubicin as a potential targeted drug delivery system, Colloids and Surfaces B 118, 140 (2014). doi: 10.1016/j.colsurfb.2014.03.025 WOS:000337013900019 2-s2.0-84899622875
87	B. Ghosh, N. Shirahata, <i>Colloidal silicon quantum dots:</i> synthesis and luminescence tuning from the near-UV to the near-IR range, Science and Technology of Advanced Materials 15(1), 014207 (2014). doi: 10.1088/1468-6996/15/1/014207 WOS:000332466700009 2-s2.0-84897731140	96	I. Hamada, Van der Waals density functional made accurate, Physical Review B 89 (12), 121103 (2014). doi: 10.1103/PhysRevB.89.121103 WOS:000332505500002 2-s2.0-84896964181

97	I. Hamada, R. Shimizu, T. Ohsawa, K. Iwaya, T. Hashizume, M. Tsukada, K. Akagi, T. Hitosugi, <i>Imaging</i> <i>the Evolution of d States at a Strontium Titanate Surface</i> , Journal of the American Chemical Society 136 (49), 17201 (2014). doi: 10.1021/ja509231w WOS:000346544200036 2-s2.0-84918566659	106	H. Hikiji, K. Tomizuka, T. Taguchi, H. Koyama, D. Chikazu, Y. Mori, T. Takato, <i>An in vivo murine model for</i> <i>screening cranial bone regenerative materials: testing of a</i> <i>novel synthetic collagen gel</i> , Journal of Materials Science - Materials in Medicine 25 (6), 1531 (2014). doi: 10.1007/s10856-014-5185-5 WOS:000336904200013 2-s2.0-84903724166
98	H. Hamoudi, <i>Crossbar nanoarchitectonics of the</i> <i>crosslinked self-assembled monolayer</i> , Nanoscale Research Letters 9, 287 (2014). doi: 10.1186/1556-276X-9-287 WOS:000338446100001 2-s2.0-84904018318	107	J.P. Hill, L.K. Shrestha, S. Ishihara, Q.M. Ji, K. Ariga, Self-Assembly: From Amphiphiles to Chromophores and Beyond, Molecules 19(6), 8589 (2014). doi: 10.3390/molecules19068589 WOS:000338586700104 2-s2.0-84903288890
99	H. Hamoudi, <i>Bottom-up nanoarchitectonics of two- dimensional freestanding metal doped carbon nanoshe</i> et, RSC Advances 4 (42), 22035 (2014). doi: 10.1039/c4ra02846e WOS:000337123100042 2-s2.0-84901772894	108	J.P. Hill, W. Van Rossom, S. Ishihara, N. Subbaiyan, F. D'Souza, Y.S. Xie, N.M. Sanchez-Ballester, K. Ariga,, <i>Unexpected but convenient synthesis of soluble meso-</i> <i>tetrakis(3,4-benzoquinone)-substituted porphyrins</i> , Journal of Porphyrins and Phthalocyanines 18(3), 173 (2014). doi: 10.1142/S1088424613501071 WOS:000335917800001
100	Hamoudi, K. Uosaki, K. Ariga, V.A. Esaulov, Going yond the self-assembled monolayer: metal intercalated hiol multilayers and their conductance, RSC Advances 75), 39657 (2014). i: 10.1039/c4ra05476h OS:000341779000007 ;2.0-84907157878	109	2-s2.0-84900023719 R. Hiraoka, R. Arafune, N. Tsukahara, M. Kawai, N. Takagi, <i>Transport characteristics of a single C-60-</i> <i>molecule junction revealed by multiple Andreev reflections</i> , Physical Review B 90(24), 241405 (2014). doi: 10.1103/PhysRevB.90.241405 WOS:000345875200003
101	1. Hanashi, I. Yamazaki, H. Ianaka, K. Ikebukuro, W. Tsugawa, K. Sode, <i>The development of an autonomous</i> <i>self-powered bio-sensing actuator</i> , Sensors and Actuators B 196, 429 (2014). doi: 10.1016/j.snb.2014.01.117 WOS:000333652400057 2-s2.0-84897748545	110	2-s2.0-84916221917 N. Hiroshiba, J.P. Hill, R. Hayakawa, K. Ariga, K. Matsuishi, Y. Wakayama, <i>Layer-by-layer growth of</i> <i>precisely controlled hetero-molecular multi-layers and</i> <i>superlattice structures</i> , Thin Solid Films 554 , 74 (2014). doi: 10.1016/j.tsf.2013.03.082
102	J. Haruyama, K. Sodeyama, L.Y. Han, K. Takada, Y. Tateyama, <i>Space-Charge Layer Effect at Interface between</i> <i>Oxide Cathode and Sulfide Electrolyte in All-Solid-State</i> <i>Lithium-Ion Battery</i> , Chemistry of Materials 26 (14), 4248 (2014). doi: 10.1021/cm5016959 WOS:000339471400028 2-s2.0-84904630425	111	2-s2.0-84893902864 N. Hiroshiba, K. Morimoto, R. Hayakawa, Y. Wakayama, T. Mori, K. Matsuishi, <i>Exciton dynamics at the</i> <i>heteromolecular interface between N,N '-dioctyl-3,4,9,10-</i> <i>perylenedicarboximide and quaterrylene, studied using</i> <i>time-resolved photoluminescence</i> , AIP Advances 4(6), 067112 (2014).
103	J. Haruyama, K. Sodeyama, L.Y. Han, Y. Tateyama, <i>Termination Dependence of Tetragonal CH₃NH₃PbI₃</i> <i>Surfaces for Perovskite Solar Cells</i> , Journal of Physical Chemistry Letters 5 (16), 2903 (2014). doi: 10.1021/jz501510v WOS:000340807100023 2-s2.0-84906486531 H. Hattori, Y. Ide, T. Sano, <i>Microporous titanate nanofibers</i>	112	doi: 10.1063/1.4880495 WOS:000338995700013 2-s2.0-84902112590 C.V. Hoang, M. Rana, T. Nagao, <i>Electron- and photon-</i>
104			<i>induced plasmonic excitations in two-dimensional silver</i> <i>nanostructures</i> , Applied Physics Letters 104 (25), 251117 (2014). doi: 10.1063/1.4885387 WOS:000228515000017
	for highly efficient UV-protective transparent coating, Journal of Materials Chemistry A 2(39), 16381 (2014). doi: 10.1039/c4ta02975e WOS:000342880200007 2s2 0.84907788293	113	 wOS:000338515900017 eid:- K. Honda, Y. Ide, N. Tsunoji, M. Torii, W. Sadakane, T. Sano, An Efficient Way to Synthesize Hiroshima University Silicate-1 (HUS-1) and the Selective Adsorption Property of Ni²⁺ from Seawater, Bulletin of the Chemical Society of Japan 87(1), 160 (2014). doi: 10.1246/bcsj.20130251 WOS:000329895600015 2-s2.0-84892854455
105	 2-s2.0-84907788293 105 X.M. He, N. Kawazoe, G.P. Chen, Preparation of Cylinder- Shaped Porous Sponges of Poly(L-lactic acid), Poly(DL- lactic-co-glycolic acid), and Poly(epsilon-caprolactone), Biomed Research International 2014, 106082 (2014). doi: 10.1155/2014/106082 WOS:000332611200001 2-s2.0-84897910594 		
		114	Y. Horiguchi, N. Nakayama, N. Kanayama, Y. Nagasaki, Sulfobetaine-terminated PEG improves the qualities of an immunosensing surface, Biomaterials Science 2(6), 819 (2014). doi: 10.1039/c3bm60212e WOS:000335984000002 2-s2.0-84900315148

115	B. Horvath, J. Kawakita, T. Chikyow, <i>Diffusion Barrier</i> and Adhesion Properties of SiO _x N _y and SiO _x Layers between Ag/Polypyrrole Composites and Si Substrates, ACS Applied Materials & Interfaces 6(12), 9201 (2014). doi: 10.1021/am501305b WOS:000338184500035 2-s2.0-84903537434	124	 J. Hu, Y. Shirai, L. Han, Y. Wakayama, One-step fabrication of large-scaled indium tin oxide/poly(3,4-et hylenedioxythiophene):poly(styrenesulfonate)/poly(3- hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester multi-layered structure, Thin Solid Films 554, 46 (2014). doi: 10.1016/j.tsf.2013.04.098 WOS:000331078800009 2-s2.0-84893948150 J. Hu, M. Tanabe, J. Sato, K. Uosaki, K. Ikeda, <i>Effects of</i> <i>Atomic Geometry and Electronic Structure of Platinum</i> <i>Surfaces on Molecular Adsorbates Studied by Gap-Mode</i> <i>SERS</i>, Journal of the American Chemical Society 136(29), 10299 (2014). doi: 10.1021/ja502008t WOS:000339471900027 2-s2.0-84904861331 Y.T. Huang, Y. Yamauchi, C.W. Lai, W.J. Chen, <i>Evaluating</i> <i>the antibacterial property of gold-coated hydroxyapatite:</i> <i>A molecular biological approach</i>, Journal of Hazardous Materials 277, 20 (2014). doi: 10.1016/j.jhazmat.2013.10.054 WOS:000340331000004 2-s2.0-84903790331
110	B. Horvain, J. Kawakita, I. Chikyow, <i>Through stiticon via</i> <i>filling methods with metal/polymer composite for three-</i> <i>dimensional LSI</i> , Japanese Journal of Applied Physics 53 (6), 06JH01 (2014). doi: 10.7567/JJAP.53.06JH01 WOS:000338439500059 2-s2.0-84903306838	125	
117	T. Hoshiba, M. Nikaido, M. Tanaka, <i>Characterization of</i> <i>the Attachment Mechanisms of Tissue-Derived Cell Lines</i> <i>to Blood-Compatible Polymers</i> , Advanced Healthcare Materials 3(5), 775 (2014). doi: 10.1002/adhm.201300309		
118	 WOS:000335730200014 2-s2.0-84899847954 K. Hosono, K. Wakabayashi, <i>Theory of carrier transport</i> <i>in graphene double-layer structure with carrier imbalance</i>, Janapese Journal of Applied Physics 53(6), 06ID07 (2014) 		
	doi:10.7567/JJAP.53.06JD07 WOS:000338439500019 2-s2.0-84903310761		Z. Huang, X. Hu, Josephson effects in three-band superconductors with broken time-reversal symmetry, Applied Physics Letters 104 (16), 162602 (2014). doi: 10.1063/1.4872261 WOS:000335145600059 2-s2.0-84900315611
119	M.A. Hossain, M. Yamashita, L.B. Vong, Y. Ikeda, Y. Nagasaki, <i>Silica-installed redox nanoparticles for novel</i> <i>oral nanotherapeutics - improvement in intestinal delivery</i>		
	with anti-inflammatory effects, Journal of Drug Targeting 22(7), 638 (2014). doi: 10.3109/1061186X.2014.928716 WOS:000339804000010 2-s2.0-84904349420	128	S.M. Hwang, Y.G. Lim, J.G. Kim, Y.U. Heo, J.H. Lim, Y. Yamauchi, M.S. Park, Y.J. Kim, S.X. Dou, J.H. Kim, <i>A case study on fibrous porous</i> SnO ₂ anode for robust, high-capacity lithium-ion batteries, Nano Energy 10 , 53 (2014). doi: 10.1016/j.nanoen.2014.08.020
120	S.H. Hsu, C.T. Li, H.T. Chien, R.R. Salunkhe, N. Suzuki, Y. Yamauchi, K.C. Ho, K.C.W. Wu, <i>Platinum-Free Counter</i> <i>Electrode Comprised of Metal-Organic-Framework</i>	129	2-s2.0-84908024825 Y. Ide, H. Hattori, T. Sano, <i>Extraordinary effects of</i>
	MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient ye-Sensitized Solar Cells (DSSCs), Scientific Reports 4, 983 (2014). oi: 10.1038/srep06983 WOS:000344759400007		<i>an argon atmosphere on TiO</i> ₂ <i>photocatalysis</i> , Physical Chemistry Chemical Physics 16(17), 7913 (2014). doi: 10.1039/c4cp00734d WOS:000334200400031 2-s2.0-84898732984
121	C.W. Hu, T. Sato, J. Zhang, S. Moriyama, M. Higuchi, <i>Three-Dimensional Fe(II)-based Metallo-Supramolecular</i> <i>Polymers with Electrochromic Properties of Quick</i> <i>Switching, Large Contrast, and High Coloration Efficiency</i> , ACS Applied Materials & Interfaces 6 (12), 9118 (2014). doi: 10.1021/am5010859 WOS:000338184500026 2x20, 84002547440	130	Y. Ide, F. Liu, J. Zhang, N. Kawamoto, K. Komaguchi, Y. Bando, D. Golberg, <i>Hybridization of Au nanoparticle-</i> <i>loaded TiO</i> ₂ with BN nanosheets for efficient solar-driven photocatalysis, Journal of Materials Chemistry A 2(12), 4150 (2014). doi: 10.1039/C3TA13769D WOS:000332388900010 2-s2.0-84897658678
122	H.Y. Hu, Z.B. Jiao, G.X. Lu, J.H. Ye, Y.P. Bi, <i>Enhanced photocatalytic properties of biomimetic Ag/AgCl heterostructures</i> , RSC Advances 4 (60), 31795 (2014). doi: 10.1039/c4ra04804k WOS:000341298000036 2 s2 0.84905502359	131	Y. Ide, M. Sadakane, T. Sano, M. Ogawa, <i>Functionalization</i> of Layered Titanates, Journal of Nanoscience and Nanotechnology 14(3), 2135 (2014). doi: 10.1166/jnn.2014.8525 WOS:000331624700004 2-s2.0-84894203698
123	H.Y. Hu, Z.B. Jiao, J.H. Ye, G.X. Lu, Y.P. Bi, <i>Highly</i> efficient hydrogen production from alkaline aldehyde solutions facilitated by palladium nanotubes, Nano Energy 8 , 103 (2014). doi: 10.1016/j.nanoen.2014.05.015 WOS:000340981700013 2-s2.0-84902954526	132	K. Ikeda, N. Fujimoto, K. Uosaki, <i>Nanoscale Optical</i> and Mechanical Manipulation of Molecular Alignment in Metal–Molecule–Metal Structures, Journal of Physical Chemistry C 118(37), 21550 (2014). doi: 10.1021/jp5036426 WOS:000342118500027 2-s2.0-84920263061

133	 Y. Ikeda, Y. Nagasaki, <i>Impacts of PEGylation on the Gene</i> and Oligonucleotide Delivery System, Journal of Applied Polymer Science 131(9), 40293 (2014). doi: 10.1002/app.40293 WOS:000334599600034 2-s2.0-84895065145 Y. Imai, K. Wakabayashi, M. Sigrist, <i>Effect of the RuO</i>₆ 	142	Y. Ishiguro, R. Hayakawa, T. Chikyow, Y. Wakayama, Optically Controllable Dual-Gate Organic Transistor Produced via Phase Separation between Polymer Semiconductor and Photochromic Spiropyran Molecules, ACS Applied Materials & Interfaces 6(13), 10415 (2014). doi: 10.1021/am501884q WOS:000338979900058 2-s2 0-84904108833
	Octahedron Rotation at the Sr_2RuO_4 Surface on Topological Property, Journal of the Physical Society of Japan 83(12), 124712 (2014). doi: 10.7566/JPSJ.83.124712 WOS:000350288900013 2-s2.0-84925002957	143 144 144 145 146 147	S. Ishihara, Y. Furuki, J.P. Hill, K. Ariga, S. Takeoka, <i>Homeotropic Alignment of Dendritic Columnar Liquid</i> <i>Crystal Induced by Hydrogen-Bonded Triphenylene Core</i> <i>Bearing Fluoroalkyl Chains</i> , Journal of Nanoscience and Nanotechnology 14(7), 5130 (2014). doi: 10.1166/jnn.2014.8684 WOS:000332926400050 2-s2.0-84903852625 S. Ishihara, L. Labuta, W. Van Rossom, D. Ishikawa, K.
135	M. Inoue, M. Sakane, T. Taguchi, <i>Fabrication of reactive</i> <i>poly(vinyl alcohol) membranes for prevention of bone</i> <i>cement leakage</i> , Journal of Biomedical Materials Research.		
	doi: 10.1002/jbm.b.33165 WOS:000343011400020 2-s2.0-84908117499		S. Isminara, J. Labuta, W. Van Rossom, D. Ismikawa, K. Minami, J.P. Hill, K. Ariga, <i>Porphyrin-based sensor</i> <i>nanoarchitectonics in diverse physical detection modes</i> , Physical Chemistry Chemical Physics 16 (21), 9713 (2014). doi: 10.1039/C3CP55431G WOS:000335924800004 2-s2.0-84899831982
136	M. Inoue, M. Sasaki, Y. Katada, T. Taguchi, <i>Effects of ultraviolet irradiation on bonding strength between Co-Cr alloy and citric acid-crosslinked gelatin matrix</i> , Journal of Dispertences 28 (6), 280 (2014).		
	biomaterials Applications 28(0), 880 (2014). doi: 10.1177/0885328213485140 WOS:000329317100008 2-s2.0-84891596791		S. Ishii, S.I. Inoue, R. Ueda, A. Otomo, <i>Optical Detection</i> <i>in a Waveguide Geometry with a Single Metallic Contact</i> , ACS Photonics 1(11), 1089 (2014). doi: 10.1021/ph500131v
137	M. Inoue, M. Sasaki, Y. Katada, T. Taguchi, <i>Quantitative biocompatibility evaluation of nickel- free high- nitrogen stainless steel in vitro/in vivo</i> , Journal of Biomedical		WOS:000345542400001 2-s2.0-84925860817 S. Ishii, M.Y. Shalaginov, V.E. Babicheva, A. Boltasseva,
	Materials Research Part B 102(1), 68 (2014). doi: 10.1002/jbm.b.32982 WOS:000328153100008 2-s2.0-84890312919		A.V. Kildishev, <i>Plasmonic waveguides cladded by</i> hyperbolic metamaterials, Optics Letters 39 (16), 4663 (2014). doi: 10.1364/OL.39.004663 WOS:000341099400008 2-s2.0-84906098482 L.C. Jia, H.Q. Wang, D. Dhawale, C. Anand, M.A. Wahab, Q.M. Ji, K. Ariga, A. Vinu, <i>Highly ordered macro-</i> <i>mesoporous carbon nitride film for selective detection of</i> <i>acidic/basic molecules</i> , Chemical Communications 50 (45), 5976 (2014). doi: 10.1039/c4cc02042a WOS:000335984700008 2-s2.0-84899960612
138	R. Inoue, H. Takayanagi, T. Akazaki, K. Tanaka, H. Sasakura, I. Suemune, <i>Carrier flow and nonequilibrium</i> superconductivity in superconductor based <i>LEDs</i> . Applied		
	Superconductivity in superconductor-based LEDS, Applied Physics Express 7(7), 073101 (2014). doi: 10.7567/APEX.7.073101 WOS:000339930100021 2-s2.0-84904700951		
139	R. Ishiguro, T. Sakurai, M. Yakabe, T. Nakamura, S. Yonezawa, S. Kashiwaya, H. Takayanagi, Y. Maeno, <i>Broken time-reversal symmetry in a SQUID based on</i> <i>chiral superconducting Sr</i> ₂ <i>RuO</i> ₄ , Journal of Physics: Conference Series 568 (2), 022020 (2014). doi: 10.1088/1742-6596/568/2/022020 WOS:- 2-s2.0-84919756120		
		148 H J P A C C 2 149 7	H.Y. Jiang, C.G. Liu, P. Li, D. Hao, X.G. Meng, T. Wang, J. Lin, J.H. Ye, <i>Nanorod-like alpha-Bi</i> ₂ O ₃ : a highly active photocatalyst synthesized using g-C ₃ N ₄ as a template, RSC Advances 4(98), 55062 (2014). doi: 10.1039/c4ra08541h
140	R. Ishiguro, E. Watanabe, T. Shinozaki, Y. Nago, H. Osato, D. Tsuya, H. Kashiwaya, S. Kashiwaya, S. Nomura, H. Takayanagi, Y. Maeno, <i>Development of nano and micro</i>		V 05:000344989800016 2-s2.0-84908566002 Z.B. Jiao, Y. Zhang, S.X. Ouyang, H.C. Yu, G.X. Lu, J.H.
	SQUIDs based on AI tunnel junctions, Journal of Physics: Conference Series 568(2), 022019 (2014). doi: 10.1088/1742-6596/568/2/022019 WOS:- 2-s2.0-84919725865		Ye, Y.P. Bi, <i>BiAg Alloy Nanospheres: A New Photocatalyst</i> for H-2 Evolution from Water Splitting, ACS Applied Materials & Interfaces 6(22), 19488 (2014). doi: 10.1021/am506030p WOS:000345721400005 2-s2 0-84914703005
141	Y. Ishiguro, M. Frigoli, R. Hayakawa, T. Chikyow, Y. Wakayama, <i>Improved thermal stability in photochromism- based optically controllable organic thin film transistor</i> , Organic Electronics 15 (9), 1891 (2014). doi: 10.1016/j.orgel.2014.05.030 WOS:000340072200001 2-s2.0-84903196292	150	X. Jie, K. Uosaki, <i>Electrochemical quartz crystal</i> <i>microbalance study on the oxygen reduction reaction in Li</i> ⁺ <i>containing DMSO solution</i> , Journal of Electroanalytical Chemistry 716 , 49 (2014). doi: 10.1016/j.jelechem.2013.10.010 WOS:000334985100007 2-s2.0-84897994926
151	Y. Jing, X.Y. Bao, W. Wei, C. Li, K. Sun, D.P.R. Aplin,	160	K. Kawakami, T. Harada, K. Miura, Y. Yoshihashi, E.
-----	--	-----	---
	Y. Ding, Z.L. Wang, Y. Bando, D.L. Wang, <i>Catalyst-Free</i> <i>Heteroepitaxial MOCVD Growth of In As Nanowires on Si</i> <i>Substrates</i> , Journal of Physical Chemistry C 118(3), 1696 (2014). doi: 10.1021/jp406428z WOS:000330252600033 2-s2.0-84893045530		Yonemochi, K. Terada, H. Moriyama, <i>Relationship between</i> <i>Crystallization Tendencies during Cooling from Melt and</i> <i>Isothermal Storage: Toward a General Understanding of</i> <i>Physical Stability of Pharmaceutical Glasses</i> , Molecular Pharmaceutics 11 (6), 1835 (2014). doi: 10.1021/mp400679m WOS:000336941900010
152	B. Joddar, T. Hoshiba, C.P. Chen, Y. Ito, <i>Stem cell culture</i> using cell-derived substrates, Biomaterials Science 2(11), 1595 (2014). doi: 10.1039/c4bm00126e WOS:000343034200005 2-s2.0-84907552094	161	K. Kawakami, Y. Hasegawa, S.L. Zhang, Y. Yoshihashi, E. Yonemochi, K. Terada, <i>Low-Density Microparticles with</i> <i>Petaloid Surface Structure for Pulmonary Drug Delivery</i> , Journal of Pharmaceutical Sciences 103 (4), 1309 (2014). doi: 10.1002/jps.23899 WOS:000332778100031
155	S. Kamba, V. Golan, V. Skoromets, J. Hejtmanek, V. Bovtun, M. Kempa, F. Borodavka, P. Vanek, A.A. Belik, J.H. Lee. O. Pacherova, K.M. Rabe, <i>Strong spin-phonon</i> <i>coupling in infrared and Raman spectra of SrMnO</i> ₃ , <i>Duviage Review</i> 8 90(6) 064208 (2014)	162	2-s2.0-84896405613 T. Kawakami, Y. Nagai, S. Yoshizawa, H. Kim, Y. Hasegawa, T. Nakayama, T. Uchihashi, X. Hu, <i>Excitation</i> spectrum of <i>Losenbase</i> vortices on surface superconductor.
	Physical Review B 89(0), 004508 (2014). doi: 10.1103/PhysRevB.89.064308 WOS:000332409900002 2-s2.0-84897713828		Journal of Physics: Conference Series 568(2), 022022 (2014). doi: 10.1088/1742-6596/568/2/022022
154	Y. Kaneko, H. Toyodome, T. Mizumo, K. Shikinaka, N. Ivi, <i>Preparation of a Sulfo-Group-Containing Rod-Like</i>		2-s2.0-84919779771
	Polysilsesquioxane with a Hexagonally Stacked Structure and Its Proton Conductivity, Chemistry - A European Journal 20 (30), 9394 (2014). doi: 10.1002/chem.201402011 WOS:000339568800035 2-s2.0-84904671428	163	D.Y. Kim, S. Miyoshi, T. Tsuchiya, S. Yamaguchi, <i>Electronic Defect Formation in Fe-Doped BaZrO₃ Studied</i> <i>by X-Ray Absorption Spectroscopy</i> , Chemistry of Materials 26 (2), 927 (2014). doi: 10.1021/cm402369v WOS:000330543600008
155	Q. Kang, Z.W. Mai, T. Wang, K. Chang, L.Q. Liu, J.H. Ye, <i>Efficient photochemical oxygen generation from water by</i> <i>phosphorus-doped</i> H_2MoO_5 , Chemical Communications 50 (81), 12185 (2014). doi: 10.1039/c4cc06513a WOS:000342343300048	164	 2-82.0-84893506578 D.K. Kim, J.D. Oh, E.S. Shin, H.S. Seo, J.H. Choi, <i>Study</i> on copper phthalocyanine and perylene-based ambipolar organic light-emitting field-effect transistors produced using neutral beam deposition method, Journal of Applied Physics 115(16), 164503 (2014). doi: 10.1063/1.4873299 WOS:000335228400072 2-s2.0-84900019230
156	2-s2.0-84907833603 M. Kanno, R. Arafune, C.L. Lin, E. Minamitani, M. Kawai,		
	N. Takagi, Electronic decoupling by h-BN layer between silicene and Cu(111): A DFT-based analysis, New Journal of Physics 16, 105019 (2014). doi: 10.1088/1367-2630/16/10/105019 WOS:000344099500007 2-s2.0-84908328582	165	D. Kim, T. Sawada, C.Y. Zhi, Y. Bando, D. Golberg, T. Serizawa, <i>Dispersion of Boron Nitride Nanotubes in</i> <i>Aqueous Solution by Simple Aromatic Molecules</i> , Journal of Nanoscience and Nanotechnology 14(4), 3028 (2014). doi: 10.1166/jnn.2014.8579
157	S. Kasai, K. Kondou, H. Sukegawa, S. Mitani, K.		WOS:000332226600050 2-s2.0-84897805144
	<i>constant using spin Hall effect</i> , Applied Physics Letters 104 (9), 092408 (2014). doi: 10.1063/1.4867649 WOS:000332729200060 2-s2.0-84896771119	166	Y.H. Kim, H.J. Kim, M. Osada, B.W. Li, Y. Ebina, T. Sasaki, 2D Perovskite Nanosheets with Thermally- Stable High-kappa Response: A New Platform for High- Temperature Capacitors, ACS Applied Materials & Interfaces 6(22), 19510 (2014).
158	C. Kataoka-Hamai, M. Higuchi, Packing Density Changes of Supported Lipid Bilayers Observed by Fluorescence Microscopy and Quartz Crystal Microbalance-Dissipation.	167	doi: 10.1021/am506629g WOS:000345721400009 2-s2.0-84914690068
	Journal of Physical Chemistry B 118(37), 10934 (2014). doi: 10.1021/jp503905r WOS:000342120100014 eid:-		T. Kimura, N.L. Torad, Y. Yamauchi, <i>Trace-level</i> gravimetric detection promoted by surface interactions of mesoporous materials with chemical vapors, Journal of Materials Chemistry A 2(22), 8196 (2014). doi: 10.1039/c4to00775c
159	K. Kawahara, T. Shirasawa, R. Arafune, C.L. Lin, T. Takahashi, M. Kawai, N. Takagi, <i>Determination of atomic</i> <i>positions in silicene on Ag(11) by low-energy electron</i>		G0: 10.1039/c4ta00775a WOS:000336848000006 2-s2.0-84900790295
	<i>positions in suicene on Ag(111) by tow-energy electron diffraction</i> , Surface Science 623 , 25 (2014). doi: 10.1016/j.susc.2013.12.013 WOS:000332910100005 2-s2.0-84894197572	168	T. Kizu, S. Aikawa, N. Mitoma, M. Shimizu, X. Gao, M.F. Lin, T. Nabatame, K. Tsukagoshi, <i>Low-temperature</i> <i>processable amorphous In-W-O thin-film transistors</i> <i>with high mobility and stability</i> , Applied Physics Letters 104 (15), 152103 (2014). doi: 10.1063/1.4871511 WOS:000335145200026 2-s2.0-84899626852

169	R. Kodiyath, M. Manikandan, L.Q. Liu, G.V. Ramesh, S. Koyasu, M. Miyauchi, Y. Sakuma, T. Tanabe, T. Gunji, T.D. Dao, S. Ueda, T. Nagao, J.H. Ye, H. Abe, <i>Visible-light photodecomposition of acetaldehyde by TiO₂-coated gold nanocages: plasmon-mediated hot electron transport via defect states, Chemical Communications</i> 50 (98), 15553 (2014). doi: 10.1039/c4cc06229a WOS:000345207900016 2-s2.0-84912124649	177	K. Komatsu, S. Kasai, S.L. Li, S. Nakaharai, N. Mitoma, M. Yamamoto, K. Tsukagoshi, <i>Spin injection and detection</i> <i>in a graphene lateral spin valve using an yttrium-oxide</i> <i>tunneling barrier</i> , Applied Physics Express 7(8), 085101 (2014). doi: 10.7567/APEX.7.085101 WOS:000341479000015 2-s2.0-84906250971 Y. Kotsuchibashi, R. Narain, <i>Dual-temperature and pH</i>
170	S. Kohiki, K. Nara, M. Mitome, D. Tsuya, <i>Magnetoresistance of Drop-Cast Film of Cobalt-</i> <i>Substituted Magnetite Nanocrystals</i> , ACS Applied Materials & Interfaces 6(20), 17410 (2014). doi: 10.1021/am500713k WOS.000343684200011	179	responsive (ethylene glycol)-based nanogels via structural design, Polymer Chemistry 5(8), 3061 (2014). doi: 10.1039/c3py01772a WOS:000333122600046 2-s2.0-84897879540 D.P. Kozlenko, N.T. Dang, S.H. Jabarov, A.A. Belik, S.E.
171	2-s2.0-84908191936 M. Kohno, Spectral properties near the Mott transition in the two-dimensional Hubbard model with next-nearest- neighbor hopping, Physical Review B 90 (3), 035111 (2014). doi: 10.1103/PhysRevB.90.035111 WOS:000339168000004 2-s2.0-84904284744		Kochanov, E.V. Lukin, C. Lathe, L.S. Dubrovinsky, V.Y. Kazimirov, M.B. Smirnov, B.N. Savenko, A.I. Mammadov, E. Takayama-Muromachi, L.H. Khiem, <i>Structural</i> <i>polymorphism in multiferroic BiMnO₃ at high pressures</i> <i>and temperatures</i> , Journal of Alloys and Compounds 585 , 741 (2014). doi: 10.1016/j.jallcom.2013.10.020 WOS:000327492600109 2-s2.0-84886555557
172	J. Kolar, J.M. Macak, K. Terabe, T. Wagner, <i>Down-scaling</i> of resistive switching to nanoscale using porous anodic alumina membranes, Journal of Materials Science C 2(2), 349 (2014). doi: 10.1039/c3tc31969e WOS:000329068000017 2-s2.0-84890059625	180	A.V. Krasheninnikov, N. Berseneva, D.G. Kvashnin, J. Enkovaara, T. Bjorkman, P. Sorokin, D. Shtansky, R.M. Nieminen, D. Golberg, <i>Toward Stronger Al-BN Nanotube</i> <i>Composite Materials: Insights into Bonding at the Al/BN</i> <i>Interface from First-Principles Calculations</i> , Journal of Physical Chemistry C 118(46), 26894 (2014). doi: 10.1021/jp509505j
173	M.E. Koleva, M. Dutta, N. Fukata, <i>SERS substrates</i> of doped germanium nanowires decorated with silver nanoparticles, Materials Science and Engineering B 187 , 102 (2014). doi: 10.1016/j.mseb.2014.05.008 WOS:000339536900016 2-s2.0-84902316073	181	 wOS:0003434/4000054 2-s2.0-84914682501 P. Kujawa, F.M. Winnik, <i>Materials nanoarchitectonics: a conspectus for polymer scientists</i>, Polymer International 63(3), 377 (2014). doi: 10.1002/pi.4663 WOS:000331263200001 WOS:0003631263200001
174	M. Kolmer, S. Godlewski, R. Zuzak, M. Wojtaszek, C. Rauer, A. Thuaire, J.M. Hartmann, H. Moriceau, C. Joachim, M. Szymonski, <i>Atomic scale fabrication of</i> <i>dangling bond structures on hydrogen passivated Si(0 0</i> <i>1) wafers processed and nanopackaged in a clean room</i> <i>environment</i> , Applied Surface Science 288 , 83 (2014). doi: 10.1016/j.apsusc.2013.09.124 WOS:000327493400012	182	2-s2.0-84893/96039 D.G. Kvashnin, L.Y. Antipina, P.B. Sorokin, R. Tenne, D. Golberg, <i>Theoretical aspects of WS</i> ₂ nanotube chemical unzipping, Nanoscale 6(14), 8400 (2014). doi: 10.1039/c4nr00437j WOS:000338638900089 2-s2.0-84903639144
175	2-s2.0-84888432374 H. Komatsu, Y. Daimon, K. Kawakami, M. Kanai, J.P. Hill, K. Ariga, <i>Reaction mediated artificial cell termination:</i> <i>control of vesicle viability using Rh(I)-catalyzed</i> <i>hydrogenation</i> , Physical Chemistry Chemical Physics 16 (31), 16454 (2014). doi: 10.1039/c4cp02255f	185	J. Labuta, Z. Futera, S. Ishihara, H. Kournova, T. Tateyama, K. Ariga, J.P. Hill, <i>Chiral Guest Binding as</i> <i>a Probe of Macrocycle Dynamics and Tautomerism in</i> <i>a Conjugated Tetrapyrrole</i> , Journal of the American Chemical Society 136 (5), 2112 (2014). doi: 10.1021/ja4124175 WOS:000331493700064 2-s2.0-84893743123
176	 WOS.000340073700013 2-s2.0-84904439058 H. Komatsu, Y. Shindo, K. Oka, J.P. Hill, K. Ariga, Ubiquinone- Rhodol (UQ-Rh) for Fluorescence Imaging of NAD(P) H through Intracellular Activation, Angewandte Chemie - International Edition 53(15), 3993 (2014). doi: 10.1002/anie.201311192 	184	J. Labuta, S. Ishihara, K. Ariga, J.P. Hill, <i>Dynamic</i> <i>Processes in Prochiral Solvating Agents (pro-CSAs)</i> <i>Studied by NMR Spectroscopy</i> , Symmetry-Basel 6(2), 345 (2014). doi: 10.3390/sym6020345 WOS:000340200000011 eid:-
	w OS:000333634800041 2-s2.0-84898076222	185	T. Lakshmipriya, Y. Horiguchi, Y. Nagasaki, <i>Co-</i> <i>immobilized poly(ethylene glycol)-block-polyamines</i> <i>promote sensitivity and restrict biofouling on gold sensor</i> <i>surface for detecting factor IX in human plasma</i> , Analyst 139 (16), 3977 (2014). doi: 10.1039/c4an00168k WOS:000339538500021 2-s2.0-84904336941

186	Y.T.R. Lau, M. Yamaguchi, X. Li, Y. Bando, D. Golberg, F.M. Winnik, Length Fractionation of Boron Nitride Nanotubes Using Creamed Oil-in-Water Emulsions, Langmuir 30 (7), 1735 (2014). doi: 10.1021/la404961p WOS:000332059500002 2-s2.0-84894658536	195	J. Li, J. Yuan, J.Y. Ge, M. Ji, H.L. Feng, Y.H. Yuan, T. Hatano, J. Vanacken, K. Yamaura, H.B. Wang, E. Takayama-Muromachi, V.V. Moshchalkov, <i>Depairing</i> <i>current density of</i> $Ba_{0.5}K_{0.5}Fe_{1.95}Co_{a05}As_2$ microbridges with nanoscale thickness, Physica C 503 , 101 (2014). doi: 10.1016/j.physc.2014.03.033 WOS:000340070600020 2-s2 0-84904401806
187	T. Lavanya, K. Satheesh, M. Dutta, N.V. Jaya, N. Fukata, Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO ₂ nanofibers, Journal of Alloys and Compounds 615 , 643 (2014). doi: 10.1016/j.jallcom.2014.05.088 WOS:000342245700101 2-s2.0-84904994024	196	J. Li, J. Yuan, M. Ji, G.F. Zhang, J.Y. Ge, H.L. Feng, Y.H. Yuan, T. Hatano, W. Hu, K. Jin, T. Schwarz, R. Kleiner, D. Koelle, K. Yamaura, H.B. Wang, P.H. Wu, E. Takayama-Muromachi, J. Vanacken, V.V. Moshchalkov, <i>Impurity effects on the normal-state transport properties of</i> $Ba_{a_5}K_{a_3}Fe_2As_2$ superconductors, Physical Review B 90 (2), 024512 (2014).
188	B.W. Li, M. Osada, Y. Ebina, K. Akatsuka, K. Fukuda, T. Sasaki, <i>High Thermal Robustness of Molecularly Thin</i> <i>Perovskite Nanosheets and Implications for Superior</i> <i>Dielectric Properties</i> , ACS Nano 8(6), 5449 (2014). doi: 10.1021/nn502014c	197	 doi: 10.1103/PhysRevB.90.024512 WOS:000339444300005 2-s2.0-84904669462 P. Li, H. Abe, J.H. Ye, Band-Gap Engineering of NaNbO₃ for Photocatalytic H-2 Evolution with Visible Light.
180	WOS:000338089200010 2-s2.0-84903455100		International Journal of Photoenergy 2014 , 380421 (2014). doi: 10.1155/2014/380421 WOS:000342947500001
109	of a Mesoporous Pt Skin onto Co Nanochains in a Low- Concentration Surfactant Solution, Chemistry - A European Journal 20(12), 3277 (2014). doi: 10.1002/chem.201303250 WOS:000332747400004 2-s2.0-84896395504	198	eid:- P. Li, H. Xu, L.Q. Liu, T. Kako, N. Umezawa, H. Abe, J.H. Ye, <i>Constructing cubic-orthorhombic surface-phase</i> <i>junctions of NaNbO₃ towards significant enhancement of</i> <i>CO₂ photoreduction</i> , Journal of Materials Chemistry A 2 (16), 5606 (2014).
190	C. Li, M. Imura, Y. Yamauchi, A universal approach to the preparation of colloidal mesoporous platinum papoparticles with controlled particle sizes in a wide range		doi: 10.1039/c4ta00105b WOS:000333524800005 2-s2.0-84897008534
	from 20 nm to 200 nm, Physical Chemistry Chemical Physics 16(19), 8787 (2014). doi: 10.1039/c4cp00039k WOS:000335015700008 2-s2.0-84898804241	199	 W. Li, A. Thirumurugan, P.T. Barton, Z.S. Lin, S. Henke, H.H.M. Yeung, M.T. Wharmby, E.G. Bithell, C.J. Howard, A.K. Cheetham, <i>Mechanical Tunability via Hydrogen</i> <i>Bonding in Metal-Organic Frameworks with the Perovskite</i> <i>Architecture</i>, Journal of the American Chemical Society 136(22), 7801 (2014). doi: 10.1021/ja500618z WOS:000337014400005 2-s2.0-84901951857
191	C.L. Li, B. Jiang, M. Imura, V. Malgras, Y. Yamauchi, <i>Mesoporous Pt hollow cubes with controlled shell</i> <i>thicknesses and investigation of their electrocatalytic</i>		
	(2014). doi: 10.1039/c4cc07071b WOS:000345065000013 2-s2.0-84911369494	200	X. Li, N. Hanagata, X.B. Wang, M. Yamaguchi, W. Yu, Y. Bando, D. Golberg, <i>Multimodal luminescent-magnetic</i> boron nitride nanotubes@NaGdF ₄ :Eu structures for cancer therapy, Chemical Communications 50 (33), 4371 (2014).
192	C. Li, T. Sato, Y. Yamauchi, <i>Size-controlled synthesis of</i> mesoporous palladium nanoparticles as highly active and stable electrocatalysts, Chemical Communications 50 (79),		doi: 10.1039/c4cc00990h WOS:000333580200028 2-s2.0-84897129851
	11753 (2014). doi: 10.1039/c4cc04955a WOS:000342069600033 eid:-	201	Y.Q. Li, B.P. Bastakoti, M. Imura, S.M. Hwang, Z.Q. Sun, J.H. Kim, S.X. Dou, Y. Yamauchi, <i>Synthesis of Mesoporous</i> <i>TiO₂/SiO₂ Hybrid Films as an Efficient Photocatalyst by</i> <i>Polymeric Micelle Assembly</i> , Chemistry - A European
193	C.L. Li, Y. Yamauchi, Synthesis of Mesoporous Platinum- Copper Films by Electrochemical Micelle Assembly and Their Electrochemical Applications, Chemistry - A European Journal 20(3), 729 (2014).		Journal 20(20), 6027 (2014). doi: 10.1002/chem.201304689 WOS:000335433500022 2-s2.0-84900015055
	doi: 10.1002/chem.201302579 WOS:000329481800017 2-s2.0-84892154702		Y. Li, H.B. Sun, Y. Shi, K. Tsukagoshi, <i>Patterning</i> technology for solution-processed organic crystal field- effect transistors, Science and Technology of Advanced
194	F.J. Li, Y. Chen, D.M. Tang, Z.L. Zian, C. Liu, D. Golberg, A. Yamada, H.S. Zhou, <i>Performance-improved LiO</i> ₂ <i>battery with Ru nanoparticles supported on binder-free</i> <i>multi-walled carbon nanotube paper as cathode</i> , Energy & Environmental Science 7(5), 1648 (2014). doi: 10.1039/c3ee44043e WOS:000335013700011 2-s2.0-84898824882		

203	Z.X. Li, T.D. Dao, T. Nagao, M. Yoshino, <i>Optical</i> properties of ordered Dot-on-Plate nano-sandwich arrays, Microelectronic Engineering 127 , 34 (2014). doi: 10.1016/j.mee.2014.03.045 WOS:000339221000006 2-s2.0-84902257384 J.B. Liang, R.Z. Ma, T. Sasaki, <i>Layered rare earth</i>	212	 C. Liu, Y. Xu, G. Ghibaudo, X.B. Lu, T. Minari, Y.Y. Noh, Evaluating injection and transport properties of organic field-effect transistors by the convergence point in transfer- length method, Applied Physics Letters 104(1), 013301 (2014). doi: 10.1063/1.4860958 WOS:000329838800080 2-s2.0-84892154316 C. Liu, Y. Xu, Z. Liu, H.N. Tsao, K. Mullen, T. Minari, Y.Y. Noh, H. Sirringhaus, Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions, Organic Electronics 15(8), 1884 (2014). doi: 10.1016/j.orgel.2014.04.032 WOS:000338933400026 2-s2.0-84903312420 D.Q. Liu, X. Wang, D.Y. He, T.D. Dao, T. Nagao, Q.H. Weng, D.M. Tang, X.B. Wang, W. Tian, D. Golberg, Y.
	hydroxides (LREHs): synthesis and structure characterization towards multifunctionality, Dalton Transactions 43(27), 10355 (2014). doi: 10.1039/c4dt00425f WOS:000338117200007 2-s2.0-84902664443	213	
205	Q.F. Liang, Z. Wang, X. Hu, <i>Scheme for topological single electron pumping assisted by Majorana fermions</i> , Physical Review B 89 (22), 224514 (2014). doi: 10.1103/PhysRevB.89.224514 WOS:000338639600004	214	
206	2-s2.0-84903520901 M.Y. Liao, M. Toda, L.W. Sang, S. Hishita, S. Tanaka, Y. Koide, <i>Energy dissipation in micron- and submicron-thick</i> <i>single crystal diamond mechanical resonators</i> , Applied Physics Letters 105 (25), 251904 (2014). doi: 10.1063/1.4904990		Bando, Magnetically Assembled Ni@Ag Urchin-Like Ensembles with Ultra-Sharp Tips and Numerous Gaps for SERS Applications, Small 10(13), 2564 (2014). doi: 10.1002/smll.201303857 WOS:000338992900008 2-s2.0-84903782854
	WOS:000346914000011 2-s2.0-84920070772	215	F. Liu, H.B. Gan, D.M. Tang, Y.Z. Cao, X.S. Mo, J. Chen, S.Z. Deng, N.S. Xu, D. Golberg, Y. Bando, <i>Growth of</i>
207	K.L. Lin, D. Zhai, N. Zhang, N. Kawazoe, G.P. Chen, J. Chang, <i>Fabrication and characterization of bioactive</i> <i>calcium silicate microspheres for drug delivery</i> , Ceramics International 40 (2), 3287 (2014). doi: 10.1016/j.ceramint.2013.09.106 WOS:000329882100094		Up Mode and In Situ Field Emission Studies of Individua Boron Nanowire, Small 10 (4), 685 (2014). doi: 10.1002/smll.201301948 WOS:000331899800009 2-s2.0-84888863767
208	2-s2.0-84889084207 Y.F. Lin, W.W. Li, S.L. Li, Y. Xu, A. Aparecido-Ferreira, K. Komatsu, H.B. Sun, S. Nakaharai, K. Tsukagoshi, <i>Barrier</i> <i>inhomogeneities at vertically stacked graphene-based</i> <i>heterostructures</i> , Nanoscale 6(2), 795 (2014). doi: 10.1039/c3nr03677d WOS:000328892300023 2-s2.0-84890843138	216	F. Liu, X.S. Mo, H.B. Gan, T.Y. Guo, X.B. Wang, B. Chen, J. Chen, S.Z. Deng, N.S. Xu, T. Sekiguchi, D. Golberg, Y. Bando, <i>Cheap, Gram-Scale Fabrication of BN Nanosheets</i> <i>via Substitution Reaction of Graphite Powders and Their</i> <i>Use for Mechanical Reinforcement of Polymers</i> , Scientific Reports 4, 4211 (2014). doi: 10.1038/srep04211 WOS:000331956200005 eid:-
209	Y.F. Lin, Y. Xu, S.T. Wang, S.L. Li, M. Yamamoto, A. Aparecido-Ferreira, W.W. Li, H.B. Sun, S. Nakaharai, W.B. Jian, K. Ueno, K. Tsukagoshi, <i>Ambipolar MoTe</i> ₂ <i>Transistors and Their Applications in Logic Circuits</i> , Advanced Materials 26 (20), 3263 (2014). doi: 10.1002/adma.201305845 WOS:000336999800012 2-s2.0-84901493242	217	L.Q. Liu, T.D. Dao, R. Kodiyath, Q. Kang, H. Abe, T. Nagao, J.H. Ye, <i>Plasmonic Janus-Composite Photocatalyst</i> <i>Comprising Au and C-TiO</i> ₂ for Enhanced Aerobic Oxidation over a Broad Visible-Light Range, Advanced Functional Materials 24 (48), 7754 (2014). doi: 10.1002/adfm.201402088 WOS:000346498900022 2-s2.0-84919936261
210	B.D. Liu, B. Yang, B. Dierre, T. Sekiguchi, X. Jiang, Local defect-induced red-shift of cathodoluminescence in individual ZnS nanobelts, Nanoscale 6(21), 12414 (2014). doi: 10.1039/c4nr04464a WOS:000344997500027 2-s2.0-84907963390	218	L.Q. Liu, P. Li, B. Adisak, S.X. Ouyang, N. Umezawa, J.H. Ye, <i>Gold photosensitized SrTiO₃ for visible-light water</i> <i>oxidation induced by Au interband transitions</i> , Journal of Materials Chemistry A 2(25), 9875 (2014). doi: 10.1039/c4ta01988a WOS:000337774100055
211	B.D. Liu, F. Yuan, B. Dierre, T. Sekiguchi, S. Zhang, Y.K. Xu, X. Jiang, <i>Origin of Yellow-Band Emission in</i> <i>Epitaxially Grown GaN Nanowire Arrays</i> , ACS Applied Materials & Interfaces 6(16), 14159 (2014). doi: 10.1021/am5034878 WOS:000341122000101 2-s2.0-84906810081	219	2-s2.0-84902682570 M.Z. Liu, T. Wang, X.X. Zhang, X.L. Fan, J. Tang, Q.Q. Xie, H.R. Xue, H. Guo, J.P. He, <i>A facile synthesis of highly</i> <i>compacted, molybdenum-embedded, ordered, mesoporous,</i> <i>protective carbon films of graphitic structure</i> , Corrosion Science 87 , 297 (2014). doi: 10.1016/j.corsci.2014.06.039 WOS:000341334800033 2-s2.0-84905406796

220	W. Liu, T. Tsuchiya, S. Miyoshi, S. Yamaguchi, K. Kobayashi, W. Pan, <i>The effect of local structure on ionic</i> <i>conductivity of apatite-type La_{9.5}Si</i> ₆ O ₂₆₂₅ , Journal of Power Sources 243, 685 (2014). doi: 10.1016/j.jpowsour.2013.10.011 WOS:000330551000088 2-s2.0-84886524453	229	S.S. Mano, K. Kanehira, S. Sonezaki, A. Taniguchi, <i>Toll-Like Receptor 4 is Involved in Titanium Dioxide</i> <i>Nanoparticle Incorporation Into Cells</i> , Science of Advanced Materials 6(7), 1562 (2014). doi: 10.1166/sam.2014.1821 WOS:000338125200041 2-s2.0-84902956582
221	X.H. Liu, R.Z. Ma, Y. Bando, T. Sasaki, <i>High-Yield</i> <i>Preparation, Versatile Structural Modification, and</i> <i>Properties of Layered Cobalt Hydroxide Nanocones,</i> Advanced Functional Materials 24 (27), 4292 (2014). doi: 10.1002/adfm.201400193 WOS:000339713500010 2-s2 0-84904567711	230	H.L. Mao, R. Cai, N. Kawazoe, G.P. Chen, <i>Long-term</i> stem cell labeling by collagen-functionalized single-walled carbon nanotubes, Nanoscale 6 (3), 1552 (2014). doi: 10.1039/c3nr05273g WOS:000330041400043 2-s2.0-84892666554
222	X.Z. Liu, X. Wang, A. Iyo, H.J. Yu, D. Li, H.S. Zhou, <i>High stable post-spinel NaMn₂O₄ cathode of sodium ion battery</i> , Journal of Materials Chemistry A 2(36), 14822 (2014). doi: 10.1039/c4ta03349c WOS:000340781400007 2-s2.0-84906222744	. 231	H.L. Mao, N. Kawazoe, G.P. Chen, <i>Cellular Uptake of</i> Single-Walled Carbon Nanotubes in 3D Extracellular Matrix-Mimetic Composite Collagen Hydrogels, Journal of Nanoscience and Nanotechnology 14(3), 2487 (2014). doi: 10.1166/jnn.2014.8526 WOS:000331624700049 2-s2.0-84894150218
223	A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, Adsorption and Catalytic Activation of the Molecular Oxygen on the Metal Supported h-BN, Topics in Catalysis 57 (10-13), 1032 (2014). doi: 10.1007/s11244-014-0267-7 WOS:000344156900027 2-s2.0-84902665525	232	N. Martin, D.W. Ma, A. Herbert, D. Boquet, F.M. Winnik, C. Tribet, <i>Prevention of Thermally Induced Aggregation</i> <i>of IgG Antibodies by Noncovalent Interaction with</i> <i>Poly(acrylate) Derivatives</i> , Biomacromolecules 15 (8), 2952 (2014). doi: 10.1021/bm5005756 WOS:000340348600015
224	D.W. Ma, N. Martin, C. Tribet, F.M. Winnik, <i>Quantitative characterization by asymmetrical flow field-flow fractionation of IgG thermal aggregation with and without polymer protective agents</i> , Analytical and Bioanalytical Chemistry 406 (29), 7539 (2014). doi: 10.1007/s00216-014-8200-2 WOS:000344860300013 2-s2.0-84919897664	233	 2-s2.0-84905845208 H. Matsushita, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chen, T. Sekiguchi, <i>Contrast analysis of Shockley partial dislocations in 4H-SiC observed by synchrotron Berg-Barrett X-ray topography</i>, Philosophical Magazine 94(15), 1674 (2014). doi: 10.1080/14786435.2014.894646 WOS:000335868500004 WOS:000420004
225	R.Z. Ma, X.H. Liu, J.B. Liang, Y. Bando, T. Sasaki, Molecular-Scale Heteroassembly of Redoxable Hydroxide Nanosheets and Conductive Graphene into Superlattice Composites for High-Performance Supercapacitors, Advanced Materials 26(24), 4173 (2014). doi: 10.1002/adma.201400054 WOS:000337970900030 2-s2.0-84903146005	234	2-s2.0-84900516206 X.G. Meng, S.X. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang, J.H. Ye, <i>Photocatalytic CO₂ conversion over alkali</i> <i>modified TiO₂ without loading noble metal cocatalyst</i> , Chemical Communications 50 (78), 11517 (2014). doi: 10.1039/c4cc04848b WOS:000341774200020 eid:-
226	W. Ma, R.Z. Ma, J.B. Liang, C.X. Wang, X.H. Liu, K.C. Zhou, T. Sasaki, <i>Layered zinc hydroxide nanocones:</i> <i>synthesis, facile morphological and structural modification,</i> <i>and properties</i> , Nanoscale 6(22). 13870 (2014). doi: 10.1039/c4nr04166f WOS:000344836800072 2-s2.0-84911405526	235	X.G. Meng, T. Wang, L.Q. Liu, S.X. Ouyang, P. Li, H.L. Hu, T. Kako, H. Iwai, A. Tanaka, J.H. Ye, <i>Photothermal</i> <i>Conversion of CO</i> ₂ <i>into CH</i> ₄ <i>with H</i> ₂ <i>over Group VIII</i> <i>Nanocatalysts: An Alternative Approach for Solar Fuel</i> <i>Production</i> , Angewandte Chemie International Edition 53(43), 11478 (2014). doi: 10.1002/anie.201404953
227	T. Maluangnont, Y. Yamauchi, T. Sasaki, W.J. Roth, J. Cejka, M. Kubu, <i>The aqueous colloidal suspension</i> <i>of ultrathin 2D MCM-22P crystallites</i> , Chemical Communications 50 (55), 7378 (2014). doi: 10.1039/c4cc02540g WOS:000337764300039 2-s2.0-84902439148		 WOS:000343870400010 2-s2.0-84908090794 S. Migita, A. Moquin, H. Fujisjiro, S. Himeno, D. Maysinger, F.M. Winnik, A. Taniguchi, <i>Quantum dots induce heat shock-related cytotoxicity at intracellular environment</i>, In Vitro Cellular & Developmental Biology-Animal 50(4), 367 (2014).
228	M. Manikandan, T. Tanabe, P. Li, S. Ueda, G.V. Ramesh, R. Kodiyath, J.J. Wang, T. Hara, A. Dakshanamoorthy, S. Ishihara, K. Ariga, J.H. Ye, N. Umezawa, H. Abe, <i>Photocatalytic Water Splitting under Visible Light by</i> <i>Mixed-Valence Sn₃O₄</i> , ACS Applied Materials & Interfaces 6 (6), 3790 (2014). doi: 10.1021/am500157u WOS:000333551500005 2-s2.0-84897004931	237	 doi: 10.1007/s11626-013-9693-2 WOS:000334410700011 2-s2.0-84898444768 K. Minami, K. Okamoto, K. Doi, K. Harano, E. Noiri, E. Nakamura, <i>SiRNA delivery targeting to the lung via</i> agglutination-induced accumulation and clearance of cationic tetraamino fullerene, Scientific Reports 4, 4916 (2014). doi: 10.1038/srep04916 WOS:000235540600001
			2-s2.0-84900419623

238	Y. Minami, J. Takeda, T.D. Dao, T. Nagao, M. Kitajima, I. Katayama, Nonlinear electron dynamics of gold ultrathin films induced by intense terahertz waves, Applied Physics Letters 105(24), 241107 (2014). doi: 10.1063/1.4904883 WOS:000346643600007 2-s2.0-84919363434 N. Mitoma, S. Aikawa, X. Gao, T. Kizu, M. Shimizu, M.F. Lin, T. Nabatame, K. Tsukagoshi, Stable amorphous In Q. based thin film transistors by incorporating SiQ	246	N. Morimoto, Y. Sasaki, K. Mitsunushi, E. Korchagina, T. Wazawa, X.P. Qiu, S.I.M. Nomura, M. Suzuki, F.M. Winnik, <i>Temperature-responsive telechelic</i> <i>dipalmitoylglyceryl poly(N-isopropylacrylamide) vesicles:</i> <i>real-time morphology observation in aqueous suspension</i> <i>and in the presence of giant liposomes</i> , Chemical Communications 50 (61), 8350 (2014). doi: 10.1039/c4cc03199g WOS:000339230500019 2-s2.0-84903975989
	<i>In</i> ₂ 0,-based min-full transitions by incorporating 510 ₂ to suppress oxygen vacancies, Applied Physics Letters 104 (10), 102103 (2014). doi: 10.1063/1.4868303 WOS:000333082800036 2-s2.0-84896269240	247	S. Moriyama, Y. Morita, E. Watanabe, D. Tsuya, <i>Field-induced confined states in graphene</i> , Applied Physics Letters 104 (5), 053108 (2014). doi: 10.1063/1.4864074 WOS:000331644100109 2x20.84899842938
240	T. Miyake, K. Terakura, Y. Harashima, H. Kino, S. Ishibashi, <i>First-Principles Study of Magnetocrystalline</i> <i>Anisotropy and Magnetization in NdFe</i> ₁₂ , <i>NdFe</i> ₁₁ <i>Ti, and</i> <i>NdFe</i> ₁₁ <i>TiN</i> , Journal of the Physical Society of Japan 83 (4), 043702 (2014). doi: 10.7566/JPSJ.83.043702 WOS:000333179400005 2-s2.0-84897502395	248	D. Mosqueira, S. Pagliari, K. Uto, M. Ebara, S. Ramanazzo, C. Escobedo-Lucea, J. Nakanishi, A. Taniguchi, O. Franzese, P. Di Nardo, M.J. Goumans, E. Traversa, P. Pinto-do-Ó, T. Aoyagi, G. Forte, <i>Hippo</i> <i>Pathway Effectors Control Cardiac Progenitor Cell Fate</i> <i>by Acting as Dynamic Sensors of Substrate Mechanics and</i> <i>Nanostructure</i> , ACS Nano 8(3), 2033 (2014).
241	N. Miyamoto, K. Shimasaki, K. Yamamoto, M. Shintatem Y. Kamachi, B.P. Bastakoti, N. Suzuki, R. Motokawa, Y. Yamauchi, <i>Mesoporous Silica Particles as Topologically</i> <i>Crosslinking Fillers for Poly(N-isopropylacrylamide)</i>		doi: 10.1021/hh4038964 WOS:000333539400019 2-s2.0-84896911335 K. Motobayashi, Y. Kim, R. Arafune, M. Ohara, H. Ueba, M. K. Shiraka and K. Kataka and K. Katak
	Hydrogels, Chemistry - A European Journal 20(46), 14955 (2014). doi: 10.1002/chem.201403762 WOS:000344647300005 2-s2.0-84915758741		M. Kawai, Dissociation pathways of a single dimethyl disulfide on Cu(111): Reaction induced by simultaneous excitation of two vibrational modes, Journal of Chemica Physics 140(19), 194705 (2014). doi: 10.1063/1.4875537
242	Y. Miyamura, J. Chen, R.R. Prakash, K. Jiptner, H. Harada, T. Sekiguchi, <i>Dislocation Generation and Propagation</i>	250	w05:000336832700034 2-s2.0-84901507613
	across the Seed in Seed Cast-St Ingots, Acta Physica Polonica A 125(4), 1024 (2014). doi: 10.12693/APhysPolA.125.1024 WOS:000339830200041 2-s2.0-84899729932		Nishikawa, K. Shiba, T. Uehara, T. Kobayashi, <i>Effective preparation of graphite nanoparticles using</i> <i>mechanochemical solid-state reactions</i> , Solid State Communications 200, 28 (2014).
243	Y. Miyamura, T. Sekiguchi, J. Chen, J.Y. Li, K. Watanabe, K. Kumigai, A. Ogura, <i>Focused Ion Beam Imaging of</i>		doi: 10.1016/j.ssc.2014.03.023 WOS:000337864300006 2-s2.0-84899743403
	Defects in Multicrystatine St for Photovoltaic Application, Acta Physica Polonica A 125(4), 991 (2014). doi: 10.12693/APhysPolA.125.991 WOS:000339830200032 2-s2.0-84899724164	251	S. Motozuka, M. Tagaya, K. Shiba, Z.F. Xu, M. Nishikawa, T. Yoshioka, T. Ikoma, J. Tanaka, <i>Effective Composite</i> <i>Preparation between Graphite and Iron Particles by the</i> <i>Interfacial Mediation of Force-Activated Oxygen Atoms</i> ,
244	R. Miyazaki, N. Ohta, T. Ohnishi, I. Sakaguchi, K. Takada, <i>An amorphous Si film anode for all-solid-state lithium</i> <i>batteries</i> , Journal of Power Sources 272 , 541 (2014). doi: 10.1016/j.jpowsour.2014.08.109 WOS:000344208700068		Industrial & Engineering Chemistry Research 53(43), 16736 (2014). doi: 10.1021/ie501207u WOS:000344042700016 2-s2.0-84908577132
245	2-s2.0-84907196948 T. Mori, T. Nishimura, W. Schnelle, U. Burkhardtm Y.	252	D. Murai, T. Nakazumi, S. Fujii, Y. Komoto, K. Tsukagoshi, C. Motta, M. Kiguchi, <i>Highly stable Au</i> atomic contacts covered with benzenedithiol under ambient
	Grin, The origin of the n-type behavior in rare earth borocarbide $Y_{1x}B_{28,5}C_4$, Dalton Transactions 43 (40), 15048 (2014). doi: 10.1039/c4dt01303d WOS:000343023200017 2-s2 0-84907891856		<i>conditions</i> , Physical Chemistry Chemical Physics 16 (29), 15662 (2014). doi: 10.1039/c4cp01950d WOS:000339173700071 2-s2.0-84903763516
		253	T. Nabatame, A. Ohi, T. Chikyow, M. Kimura, H. Yamada, T. Ohishi, <i>Electrical properties of anatase TiO₂ films by</i> <i>atomic layer deposition and low annealing temperature</i> , Journal of Vacuum Science and Technology B 32 (3), 03D121 (2014). doi: 10.1116/1.4869059 WOS:000337061900021 eid:-

254	T. Naganuma, E. Traversa, <i>The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation</i> , Biomaterials 35 (15), 4441 (2014). doi: 10.1016/j.biomaterials.2014.01.074 WOS:000334819800004 2-s2.0-84903362342	263	S. Nakaharai, T. Iijima, S. Ogawa, S.L. Li, K. Tsukagoshi, S. Sato, N. Yokoyama, <i>Electrostatically Reversible Polarity</i> of Dual-Gated Graphene Transistors, IEEE Transactions on Nanotechnology 13 (6), 1039 (2014). doi: 10.1109/TNANO.2014.2313134 WOS:000345087900004 2 c2.0 84010656405
255	T. Naganuma, E. Traversa, <i>Air, aqueous and thermal stabilities of Ce³⁺ ions in cerium oxide nanoparticle layers with substrates</i> , Nanoscale 6(12), 6637 (2014). doi: 10.1039/c3nr06662b WOS:000337143900050 2-s2.0-84901810615	264	T. Nakamoto, X.L. Wang, N.P. Kawazoe, G. Chen, Influence of micropattern width on differentiation of human mesenchymal stem cells to vascular smooth muscle cells, Colloids and Surfaces B 122, 316 (2014). doi: 10.1016/j.colsurfb.2014.06.013 WOS:000343612900040
256	K. Nagaoka, S. Yaginuma, T. Nakayama, <i>Phase-operation</i> for conduction electron by atomic-scale scattering via single point-defect, Applied Physics Letters 104 (11), 111602 (2014). doi: 10.1063/1.4869352 WOS:000333252300016 2-s2.0-84897843473	265	2-s2.0-84904875195 E. Nakamura, A. Kogo, N. Sakai, T. Tatsuma, <i>Gold cluster/</i> <i>titanium dioxide heterojunction photovoltaic cell</i> , Applied Physics Letters 105 (8), 083113 (2014). doi: 10.1063/1.4894257 WOS:000342753500071
257	K. Nagaoka, S. Yaginuma, T. Nakayama, <i>STS study of</i> 2D subband state formed in the space charge layer of $Si(111)$ - $\beta \sqrt{3} \times \sqrt{3}$ -Bi, e-Journal of Surface Science and Nanotechnology 12 , 217 (2014). doi: 10.1380/ejssnt.2014.217 WOS:- 2-s2.0-84901300992	266	2-s2.0-8490/301830 J. Nakanishi, <i>Switchable Substrates for Analyzing and</i> <i>Engineering Cellular Functions</i> , Chemistry – An Asian Journal 9(2), 406 (2014). doi: 10.1002/asia.201301325 WOS:000331088600002 2-s2.0-84893006196
258	U. Nagarajan, K. Kawakami, S.L. Zhang, B. Chandrasekaran, B.U. Nair, <i>Fabrication of Solid Collagen</i> <i>Nanoparticles Using Electrospray Deposition</i> , Chemical & Pharmaceutical Bulletin 62 (5), 422 (2014). doi: 10.1248/cpb.c13-01004 WOS:000335273800004 2-s2.0-84899732657	267	T. Nakanishi, <i>Room Temperature Liquid Formulation</i> by Attaching Alkyl Chains on pi-Conjugated Molecules, Journal of Synthetic Organic Chemistry Japan 72 (11), 1265 (2014). doi: 10.5059/yukigoseikyokaishi.72.1265 WOS:000346691000008 eid:-
259	Y. Nagasaki, T. Yaguchi, T. Matsumura, T. Yoshitomi, Y. Ikeda, A. Ueda, A. Hirayama, <i>Design and use of</i> <i>silica-containing redox nanoparticles, siRNPs, for high-</i> <i>performance peritoneal dialysis</i> , Biomaterials Science 2 (4), 522 (2014). doi: 10.1039/c3bm60236b WOS:000332453100008 2-s2.0-s84895827607	268	W. Nakanishi, K. Minami, L.K. Shrestha, Q.M. Ji, J.P. Hill, K. Ariga, <i>Bioactive nanocarbon assemblies:</i> <i>Nanoarchitectonics and applications</i> , Nano Today 9(3), 378 (2014). doi: 10.1016/j.nantod.2014.05.002 WOS:000341481000011 2-s2.0-84905903250
260	Y. Nagasaki, T. Yamazaki, A. Kikuchi, M. Harada-Shibae, Elevated atherogenic index following oral administration of quaternized polyamine nanogels, Colloids and Surfaces B 113(1), 237 (2014). doi: 10.1016/j.colsurfb.2013.09.016 WOS:000331670200030 2-s2.0-84885066038	269	A. Nakata, D.R. Bowler, T. Miyazaki, <i>Efficient</i> <i>Calculations with Multisite Local Orbitals in a Large-</i> <i>Scale DFT Code CONQUEST</i> , Journal of Chemical Theory and Computation 10(11), 4813 (2014). doi: 10.1021/ct5004934 WOS:000344905300007 2-s2.0-84909592533
261	T. Nagata, S. Oh, Y. Yamashita, H. Yoshikawa, N. Ikeno, K. Kobayashi, T. Chikyow, Y. Wakayama, <i>Photoelectron</i> <i>spectroscopic study on band alignment of poly(3-</i> <i>hexylthiophene-2,5-diyl)/polar-ZnO heterointerface</i> , Thin Solid Films 554, 194 (2014). doi: 10.1016/j.tsf.2013.08.018 WOS-000331078800041	270	M. Nakaya, Y. Okawa, C. Joachim, M. Aono, T. Nakayama, Nanojunction between Fullerene and One-Dimensional Conductive Polymer on Solid Surfaces, ACS Nano 8(12), 12259 (2014). doi: 10.1021/nn504275b WOS:000347138000038 2-s2.0-84919742992
262	2-s2.0-84893920630 Y. Nago, R. Ishiguro, T. Sakurai, M. Yakabe, T. Nakamura, S. Yonezawa, H. Takayanagi, Y. Maeno, <i>Superconducting</i> <i>transition of Ru in SQUIDs with Nb/Ru/Sr₂RuO₄ junctions</i> , Journal of Physics: Conference Series 568 (2), 022031 (2014). doi: 10.1088/1742-6596/568/2/022031 WOS:- 2-s2.0-84919775162	271	T. Nakayama, T. Sakuraba, S. Tomita, A. Kaneko, E. Takai, K. Shiraki, K. Tashiro, N. Ishii, Y. Hasegawa, Y. Yamada, R. Kumai, Y. Yamamoto, <i>Charge-Separated Fmoc-Peptide</i> <i>beta-Sheets: Sequence-Secondary Structure Relationship</i> <i>for Arranging Charged Side Chains on Both Sides</i> , Asian Journal of Organic Chemistry 3 (11), 1182 (2014). doi: 10.1002/ajoc.201402129 WOS:000345032100008 2-s2.0-84906723305

272	K. Namekawa, M.T. Schreiber, T. Aoyagi, M. Ebara, Fabrication of zeolite–polymer composite nanofibers for removal of uremic toxins from kidney failure patients, Biomaterials Science 2(5), 674 (2014). doi: 10.1039/C3BM60263J WOS:000333579600009 2-s2.0-84897556462	280	N.T. Nguyen, S.G. Ri, T. Nagata, K. Ishibashi, K. Takahashi, Y. Tsunekawa, S. Suzuki, T. Chikyow, <i>Epitaxial</i> growth of nonpolar ZnO and n-ZnO/i-ZnO/p-GaN heterostructure on Si(001) for ultraviolet light emitting diodes, Applied Physics Express 7(6), 062102 (2014). doi: 10.7567/APEX.7.062102 WOS:000338692500009 2x20.84904608888
273	H.S. Nanda, S.W. Chen, Q. Zhang, N. Kawazoe, G.P. Chen, <i>Collagen Scaffolds with Controlled Insulin Release</i> <i>and Controlled Pore Structure for Cartilage Tissue</i> <i>Engineering</i> , BioMed Research International 2014 , 623805 (2014). doi: 10.1155/2014/623805 WOS:000332651200001 2-s2.0-84897847745	281	M.Y. Ni, K. Wakabayashi, <i>Stacking sequence dependence</i> of electronic properties in double-layer graphene heterostructures, Japanese Journal of Applied Physics 53(6), 06JD03 (2014). doi: 10.7567/JJAP.53.06JD03 WOS:000338439500015 2-s2.0-84903318883
274	H.S. Nanda, N. Kawazoe, Q. Zhang, S.W. Chen, G.P. Chen, <i>Preparation of collagen porous scaffolds with controlled</i> <i>and sustained release of bioactive insulin</i> , Journal of Bioactive and Compatible Polymers 29 (2), 95 (2014). doi: 10.1177/0883911514522724 WOS:000331618800001 2s2 0.84896739780	282	K. Nishio, T. Ohnishi, K. Akatsuka, K. Takada, <i>Crystal</i> orientation of epitaxial LiCoO ₂ films grown on SrTiO ₃ substrates, Journal of Power Sources 247 , 687 (2014). doi: 10.1016/j.jpowsour.2013.08.132 WOS:000328177000092 2-s2.0-84885151502
275	H.S. Nanda, T. Nakamoto, S.W. Chen, R. Cai, N. Kawazoe, G.P. Chen, <i>Collagen microgel-assisted dexamethasone</i> release from PLLA-collagen hybrid scaffolds of controlled pore structure for osteogenic differentiation of mesenchymal stem cells, Journal of Biomaterials Science - Polymer Edition 25(13), 1374 (2014). doi: 10.1080/09205063.2014.938080	. 283	S.M. Niu, Y.S. Zhou, S.H. Wang, Y. Liu, L. Lin, Y. Bando, Z.L. Wang, <i>Simulation method for optimizing the</i> <i>performance of an integrated triboelectric nanogenerator</i> <i>energy harvesting system</i> , Nano Energy 8 , 150 (2014). doi: 10.1016/j.nanoen.2014.05.018 WOS:000340981700019 2-s2.0-84903481156
	WOS:000340719600004 2-s2.0-84906324439	284	K. Nomura, T. Nakaji-Hirabayashi, M. Gemmei-Ide, H. Kitano, H. Noguchi, K. Uosaki, <i>Sum-frequency generation analyses of the structure of water at amphoteric SAM-</i>
276	M. Naruse, S.J. Kim, M. Aono, H. Hori, M. Ohtsu, Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer, Scientific Reports 4, 6039 (2014). doi: 10.1038/srep06039		<i>liquid water interfaces</i> , Colloids and Surfaces B 121, 264 (2014). doi: 10.1016/j.colsurfb.2014.04.025 WOS:000341335800032 2-s2.0-84905961511
277	2-s2.0-84906070189 M. Naruse, W. Nomura, M. Aono, M. Ohtsu, Y. Sonnefraud, A. Drezet, S. Huantm S.J. Kim, <i>Decision</i> making based on optical excitation transfer via near-field interactions between quantum dots, Journal of Applied Physics 116(15), 154303 (2014). doi: 10.1063/1.4898570 WOS:000344345400043 2.c2.0.84008142083		W. Nomura, M. Naruse, M. Aono, S.J. Kim, T. Kawazoe, T. Yatsui, M. Ohtsu, <i>Demonstration of controlling</i> <i>the spatiotemporal dynamics of optical near-field</i> <i>excitation transfer in y-junction structure consisting of</i> <i>randomly distributed quantum dots</i> , Advances in Optical Technologies 2014, 569684 (2014). doi: 10.1155/2014/569684 WOS:- 2-s2.0-84901266039
278	C. Nethravathi, C.R. Rajamathi, M. Rajamathi, R. Maki, T. Mori, D. Golberg, Y. Bando, <i>Synthesis and thermoelectric</i> <i>behaviour of copper telluride nanosheets</i> , Journal of Materials Chemistry A 2(4), 985 (2014). doi: 10.1039/c3ta12877f WOS:000328886800016	286	C. O'Rourke, D.R. Bowler, <i>Intrinsic Oxygen Vacancy</i> <i>and Extrinsic Aluminum Dopant Interplay: A Route to</i> <i>the Restoration of Defective TiO</i> ₂ , Journal of Physical Chemistry C 118(14), 7261 (2014). doi: 10.1021/jp407736f WOS:000334571700002 2-s2.0-84898480955
279	 2-s2.0-84890841932 C. Nethravathi, C.R. Rajamathi, M. Rajamathi, X. Wang, U.K. Gautam, D. Golberg, Y. Bando, <i>Cobalt Hydroxide/</i> <i>Oxide Hexagonal Ring-Graphene Hybrids through</i> <i>Chemical Etching of Metal Hydroxide Platelets by</i> <i>Graphene Oxide: Energy Storage Applications</i>, ACS Nano 	287	C. O'Rourke, D.R. Bowler, <i>DSSC anchoring groups: a surface dependent decision</i> , Journal of Physics: Condensed Matter 26 (19), 195302 (2014). doi: 10.1088/0953-8984/26/19/195302 WOS:000335825000004 2-s2.0-84899570468
	8 (3), 2755 (2014). doi: 10.1021/nn406480g WOS:000333539400091 2-s2.0-84896990871	288	M. Ochi, K. Sodeyama, S. Tsuneyuki, <i>Optimization of the Jastrow factor using the random-phase approximation and a similarity-transformed Hamiltonian: Application to band-structure calculation for some semiconductors and insulators</i> , Journal of Chemical Physics 140 (7), 074112 (2014). doi: 10.1063/1.4865500 WOS:000332039900013 2-s2.0-84898798307

289	D. Ogawa, K. Akatsuka, T. Fukumura, M. Osada, T. Sasaki, T. Hasegawa, <i>Fabrication and Properties of</i> <i>Microcapacitors with a One-nanometer-thick Single Ti_{0.87}O₂</i> <i>Nanosheet</i> , Chemistry Letters 43 (3), 307 (2014). doi: 10.1246/cl.130925 WOS:000332439400013 2-s2.0-84897677774	298	T.C. Ozawa, M. Onoda, N. Iyi, Y. Ebina, T. Sasaki, <i>Bulk</i> <i>Functional Materials Design Using Oxide Nanosheets as</i> <i>Building Blocks: A New Upconversion Material Fabricated</i> <i>by Flocculation of Ca</i> ₂ <i>Nb</i> ₃ <i>O</i> ₁₀ - <i>Nanosheets with Rare-Earth</i> <i>Ions</i> , Journal of Physical Chemistry C 118(3), 1729 (2014). doi: 10.1021/jp410522g WOS:000330252600037 2-s2.0-84893086520
290	T. Ogawa, K. Koniatsi, K. Kuwaiara, M. Isuji, K. Tsukagoshi, H. Ago, <i>Structure and transport properties</i> <i>of the interface between CVD-grown graphene domains</i> , Nanoscale 6(13), 7288 (2014). doi: 10.1039/c3nr06828e WOS:000337786700022 2-s2.0-84902491372	299	T.C. Ozawa, T. Sasaki, <i>Partial alkali-metal ion extraction</i> from $K_{0.8}(Li_{0.27}Ti_{1.73})O_4$ using PTFE as an extraction reagent, Dalton Transactions 43 (39), 14902 (2014). doi: 10.1039/c4dt01869a WOS:000342965200050 2-s2.0-84907833568
291	I. Ohkubo, T. Mori, <i>Two-Dimensional Layered Complex</i> <i>Nitrides as a New Class of Thermoelectric Materials</i> , Chemistry of Materials 26 (8), 2532 (2014). doi: 10.1021/cm403840e WOS:000334991300008 2-s2.0-84899463158	300	S. Pagliari, A. Tirella, A. Ahluwalia, S. Duim, M.J. Goumans, T. Aoyagi, G. Forte, <i>A multistep procedure</i> <i>to prepare pre-vascularized cardiac tissue constructs</i> <i>using adult stem sells, dynamic cell cultures, and porous</i> <i>scaffolds</i> , Frontiers in Physiology 5 , 210 (2014). doi: 10.3389/fphys.2014.00210 WOS:000247050200002
292	I. Ohkubo, T. Mori, <i>Three-Dimensionality of Electronic</i> Structures and Thermoelectric Transport in $SrZrN_2$ and SrHfN ₂ Layered Complex Metal Nitrides, Inorganic Chemistry 53 (17), 8979 (2014). doi: 10.1021/ic500902q WOS:000341229600019 2-s2.0-84906877824	301	A. Pakdel, Y. Bando, D. Golberg, <i>Plasma-Assisted</i> <i>Interface Engineering of Boron Nitride Nanostructure</i> <i>Films</i> , ACS Nano 8(10), 10631 (2014). doi: 10.1021/nn5041729 WOS:000343952600099
293	N. Ohta, R. Arafune, N. Tsukahara, N. Takagi, M. Kawai, Adsorbed states of iron(II) phthalocyanine on Ag(111) studied by high-resolution electron energy loss spectroscopy, Surface and Interface Analysis 46(12-13), 1253 (2014). doi: 10.1002/sia.5529	302	2-s2.0-84908409408 A. Pakdel, Y. Bando, D. Golberg, <i>Nano boron nitride flatland</i> , Chemical Society Reviews 43 (3), 934 (2014). doi: 10.1039/c3cs60260e WOS:000329927100012 2-s2.0-84892414383
294	 WOS:000345574200033 2-s2.0-84912150174 T. Omura, M. Ebara, J.J. Lai, X.C. Yin, A.S. Hoffman, P.S. Stayton, <i>Design of Smart Nanogels that Respond to</i> <i>Physiologically Relevant pH Values and Temperatures</i>, Journal of Nanoscience and Nanotechnology 14(3), 2557 (2014). 	303	R.K. Pandey, M.D. Hossain, S. Moriyama, M. Higuchi, <i>Real-time humidity-sensing properties of ionically</i> <i>conductive Ni(II)-based metallo-supramolecular polymers</i> , Journal of Materials Chemistry A 2(21), 7754 (2014). doi: 10.1039/c4ta00884g WOS:000335924100020 2-s2.0-84899889109
	doi: 10.1166/jnn.2014.8551 WOS:000331624700060 2-s2.0-84894220493	304	H. Pang, L.Q. Liu, S.X. Ouyang, H. Xu, Y.X. Li, D.F. Wang, Structure, Optical Properties, and Photocatalytic Activity towards H-2 Generation and CO ₂ Reduction
295	M. Osada, S. Yoguchi, M. Itose, B.W. Li, Y. Ebina, K. Fukuda, Y. Kotani, K. Ono, S. Ueda, T. Sasaki, <i>Controlled</i> <i>doping of semiconducting titania nanosheets for tailored</i> <i>spinelectronic materials</i> , Nanoscale 6 (23), 14227 (2014). doi: 10.1039/c4nr04465g WQS:000344997600021		of GaN Nanowires via Vapor-Liquid-Solid Process, International Journal of Photoenergy 2014 , 894396 (2014). doi: 10.1155/2014/894396 WOS:000346297500001 2-s2.0-84918554695
296	2-s2.0-84908876412 S.X. Ouvang, P. Li, H. Xu, H. Tong, L.O. Liu, J.H.	305	K.C. Park, N. Idota, T. Tsukahara, <i>Synthesis of NIPAAm-</i> based polymer-grafted silica beads by surface-initiated ATRP using Me(4)Cyclam ligands and the thermo-
	Ye, Bifunctional-Nanotennplate Assisted Synthesis of Nanoporous SrTiO ₃ Photocatalysts Toward Efficient Degradation of Organic Pollutant, ACS Applied Materials & Interfaces 6(24), 22726 (2014). doi: 10.1021/am506877b		responsive behaviors for lanthanide(III) ions, Reactive and Functional Polymers 79 , 36 (2014). doi: 10.1016/j.reactfunctpolym.2014.03.011 WOS:000336771900006 2-s2.0-84898961606
297	w OS:00034/139400118 2-s2.0-84919934096 T.C. Ozawa, T. Naka, A. Matsushita, S.M. Kauzlarich, T. Sasaki, <i>Chemical composition and magnetic property</i> <i>modifications of Na</i> ₂ <i>Ti</i> ₂ <i>Sb</i> ₂ <i>O using PTFE as an alkali-metal</i> <i>ion extraction reagent</i> , Journal of Fluorine Chemistry 16 8, 189 (2014). doi: 10.1016/j.jfluchem.2014.09.028 WOS:000347019300028 2-s2.0-84922591977	306	P. Petrik, E. Agocs, J. Volk, I. Lukacs, B. Fodor, P. Kozma, T. Lohner, S. Oh, Y. Wakayama, T. Nagata, M. Fried, <i>Resolving lateral and vertical structures by ellipsometry</i> <i>using wavelength range scan</i> , Thin Solid Films 571 (3), 579 (2014). doi: 10.1016/j.tsf.2014.02.008 WOS:000346055200045 2-s2.0-84920706193

307	V.T. Pham, M. Dutta, H.T. Bui, N. Fukata, <i>Effect of</i> nanowire length on the performance of silicon nanowires based solar cell, Advances in Natural Sciences: Nanoscience and Nanotechnology 5 (4), 045014 (2014). doi: 10.1088/2043-6262/4/3/035007 WOS:- 2-s2.0-84916897660	316	M. Ramanathan, K.L. Hong, Q.M. Ji, Y. Yonamine, J.P. Hill, K. Ariga, <i>Nanoarchitectonics of Molecular</i> <i>Aggregates: Science and Technology</i> , Journal of Nanoscience and Nanotechnology 14(1), 390 (2014). doi: 10.1166/jnn.2014.8766 WOS:000331803900022 2-s2.0-84893805658
308	V.G. Pol, L.K. Shrestha, K. Ariga, <i>Tunable, Functional</i> <i>Carbon Spheres Derived from Rapid Synthesis of</i> <i>Resorcinol-Formaldehyde Resins</i> , ACS Applied Materials & Interfaces 6(13), 10649 (2014). doi: 10.1021/am502324m WOS:000338979900087 2-s2.0-84904096626	317	G.V. Ramesh, R. Kodiyath, T. Tanabe, M. Manikandan, T. Fujita, F. Matsumoto, S. Ishihara, S. Ueda, Y. Yamashita, K. Ariga, H. Abe, <i>NbPt₃ Intermetallic Nanoparticles: Highly</i> <i>Stable and CO-Tolerant Electrocatalyst for Fuel Oxidation</i> , ChemElectroChem 1 (4), 728 (2014). doi: 10.1002/celc.201300240 WOS:000338296100006
309	M. Portais, C. Joachim, <i>Hole-electron quantum tunnelling interferences through a molecular junction</i> , Chemical Physics Letters 592 , 272 (2014). doi: 10.1016/j.cplett.2013.12.048 WOS:000330110400052 2-s2.0-84892728439	318	 eid:- G.V. Ramesh, R. Kodiyath, T. Tanabe, M. Manikandan, T. Fujita, N. Umezawa, S. Ueda, S. Ishihara, K. Ariga, H. Abe, <i>Stimulation of Electro-oxidation Catalysis by Bulk-Structural Transformation in Intermetallic ZrPt₃</i> Nanoparticles, ACS Applied Materials & Interfaces 6(18),
310	K.C. Pradel, W.Z. Wu, Y. DIng, Z.L. Wang, Solution- Derived ZnO Homojunction Nanowire Films on Wearable Substrates for Energy Conversion and Self-Powered Gesture Recognition, Nano Letters 14(12), 6897 (2014). doi: 10.1021/nJ5029182.	319	16124 (2014). doi: 10.1021/am504147q WOS:000342328300059 2-s2.0-84912057004 J.L.M. Rupp, E. Fabbri, D. Marrocchelli, J.W. Han, D.
	WOS:000346322800023 2-s2.0-84916613492	517	Chen, E. Traversa, H.L. Tuller, B. Yildiz, Scalable Oxygen- Ion Transport Kinetics in Metal-Oxide Films: Impact of Thermally Induced Lattice Compaction in Acceptor Doped
311	I. Presniakov, V. Rusakov, A. Sobolev, A. Gapochka, M. Matsnev, A.A. Belik, ³⁷ Fe Mössbauer study of new multiferroic AgFeO ₂ , Hyperfine Interactions 226 (1-3), 41 (2014). doi: 10.1007/s10751-013-0948-9 WOS:-		Ceria Films, Advanced Functional Materials 24(11), 1: (2014). doi: 10.1002/adfm.201302117 WOS:000332927700007 2-s2.0-84900614649
312	2-s2.0-84901194052 H.L. Qian, Y.G. Ma, Q. Yang, B.G. Chen, Y. Liu, X. Guo, S.S. Lin, J.L. Ruan, X. Liu, L.M. Tong, Z.L. Wang, <i>Electrical Tuning of Surface Plasmon Polariton</i> <i>Propagation in Graphene-Nanowire Hybrid Structure</i> , ACS Nano 8(3), 2584 (2014). doi: 10.1021/nn406221s	320	G. Rydzek, T.G. Terentyeva, A. Pakdel, D. Golberg, J.P. Hill, K. Ariga, <i>Simultaneous Electropolymerization and</i> <i>Electro-Click Functionalization for Highly Versatile</i> <i>Surface Platforms</i> , ACS Nano 8(5), 5240 (2014). doi: 10.1021/nn501306y WOS:000336640600117 2-s2.0-84901675769
313	X.P. Qiu, E.V. Korchagina, J. Rolland, F.M. Winnik,	521	R. Sanara, I. Mori, S. Maruyama, Y. Miyazaki, K. Hayashi, T. Kajitani, <i>Theoretical and experimental investigation</i> of the excellent p-n control in yttrium aluminoborides,
	Synthesis of a poly(N-isopropylacrylamide) charm bracelet decorated with a photomobile alpha-cyclodextrin charm, Polymer Chemistry 5(11), 3656 (2014). doi: 10.1039/c3py01776a WOS:000335977600017		Science and rechnology of Advanced Materials 15(3), 035012 (2014). doi: 10.1088/1468-6996/15/3/035012 WOS:000339380700020 2-s2.0-84903650180
314	2-s2.0-84899861196 D.P. Rai, M.P. Ghimire, R.K. Thapa, <i>A DFT Study of BeX (X</i> = <i>S, Se, Te) Semiconductor: Modified Becke Johnson (mBJ)</i> <i>Potential</i> , Semiconductors 48 (11), 1411 (2014). doi: 10.1134/S1063782614110244 WOS:000344812300003 2-s2.0-84920163274	322	P. Sahoo, S. Ishihara, K. Yamada, K. Deguchi, S. Ohki, M. Tansho, T. Shimizu, N. Eisaku, R. Sasai, J. Labuta, D. Ishikawa, J.P. Hill, K. Ariga, B.P. Bastakoti, Y. Yamauchi, N. Iyi, <i>Rapid Exchange between Atmospheric CO₂ and</i> <i>Carbonate Anion Intercalated within Magnesium Rich</i> <i>Layered Double Hydroxide</i> , ACS Applied Materials & Interfaces 6(20), 18352 (2014). doi: 10.1021/am5060405
315	R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel, K. Ariga, <i>Dimensionally integrated</i> <i>nanoarchitectonics for a novel composite from 0D</i> ,		WOS:000343684200120 2-s2.0-84908200408
	<i>ID, and 2D nanomaterials: RGO/CNT/CeO₂ ternary nanocomposites with electrochemical performance</i> , Journal of Materials Chemistry A 2(43), 18480 (2014). doi: 10.1039/c4ta03996c WOS:000344380000043 2-s2.0-84908147451	323	K. Sakakibara, P. Chithra, B. Das, T. Mori, M. Akada, J. Labuta, T. Tsuruoka, S. Maji, S. Furumi, L.K. Shrestha, J.P. Hill, S. Acharyam K. Ariga, <i>Aligned 1-D Nanorods</i> of a pi-Gelator Exhibit Molecular Orientation and Excitation Energy Transport Different from Entangled Fiber Networks, Journal of the American Chemical Society 136 (24), 8548 (2014). doi: 10.1021/ja504014k WOS:000337720200016 2-s2.0-84902665557

324	K. Sakakibara, T. Fujisawa, J.P. Hill, K. Ariga, <i>Conformational interchange of a carbohydrate by</i> <i>mechanical compression at the air-water interface</i> , Physical Chemistry Chemical Physics 16 (22), 10286 (2014). doi: 10.1039/c3cp55078h WOS:000336781500004 2-s2.0-84900828545	333	D. Sawant-Dhuri, V.V. Balasubramanian, K. Ariga, D.H. Park, J.H. Choy, W.S. Cha, S.S. Al-Deyab, S.B. Halligudi, A. Vinu, <i>Titania Nanoparticles Stabilized HPA in SBA-</i> <i>15 for the Intermolecular Hydroamination of Activated</i> <i>Olefins</i> , ChemCatChem 6(12), 3347 (2014). doi: 10.1002/cctc.201402449 WOS:000345975300012 2-s2.0-84914144176
325	M. Sakurai, P. Koley, M. Aono, A new approach to molecular self-assembly through formation of dipeptide- based unique architectures by artificial supersaturation, Chemical Communications 50 (83), 12556 (2014). doi: 10.1039/c4cc05820h WOS:000342992000034 2-s2.0-84907855014	334	Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy & Environmental Science 7(2), 627 (2014). doi: 10.1039/c3ee41655k WOS:000331413700011 2-s2.0-84893028915
326	M. Sakurai, K.W. Liu, M. Aono, <i>Reversible and nonvolatile</i> modulation of electrical resistance in SnO ₂ by external strain, Applied Physics Express 7(3), 031101 (2014). doi: 10.7567/APEX.7.031101 WOS:000336118000004 2-s2.0-84904647389	335	H.S. Seo, R. Hayakawa, T. Chikyow, Y. Wakayama, Multilevel Operation of Resonant Tunneling with Binary Molecules in a Metal-Insulator-Semiconductor Configuration, Journal of Physical Chemistry C 118(12), 6467 (2014). doi: 10.1021/jp411386s WOS:000323578300055
327	R.R. Salunkhe, B.P. Bastakoti, C.T. Hsu, N. Suzuki, J.H. Kim, S.X. Dou, C.C. Hu, Y. Yamauchi, <i>Direct Growth</i> of Cobalt Hydroxide Rods on Nickel Foam and Its	336	A. Sharma, T. Mori, H.C. Lee, M. Worden, F. Bidwell, T.
	Application for Energy Storage, Chemistry - A European Journal 20 (11), 3084 (2014). doi: 10.1002/chem.201303652 WOS:000332043500018 2-s2.0-84897638993	550	Hegmann, Detecting, Visualizing, and Measuring Gold Nanoparticle Chirality Using Helical Pitch Measurements in Nematic Liquid Crystal Phases, ACS Nano 8(12), 11966 (2014). doi: 10.1021/nn504980w
328	R.R. Salunkhe, S.H. Hsu, K.C.W. Wu, Y. Yamauchi, Large-Scale Synthesis of Reduced Graphene Oxides		WOS:000347138000009 2-s2.0-84919741393
	with Uniformly Coated Polyaniline for Supercapacitor Applications, ChemSusChem 7(6), 1551 (2014). doi: 10.1002/cssc.201400147 WOS:000339240600008 2-s2.0-84903549107	337	A.K. Sharma, T. Nagao, <i>Design of a silicon-based</i> <i>plasmonic optical sensor for magnetic field monitoring in</i> <i>the infrared</i> , Applied Physics B 117(1), 363 (2014). doi: 10.1007/s00340-014-5843-9 WOS:000342225300042
329	R.R. Salunkhe, Y. Kamachi, N.L. Torad, S.M. Hwang, Z.Q. Sun, S.X. Dou, J.H. Kim, Y. Yamauchi, <i>Fabrication</i> of symmetric supercapacitors based on MOF-derived nanoporous carbons, Journal of Materials Chemistry A 2 (46), 19848 (2014). doi: 10.1039/c4ta04277h WOS:000344598700036 2-s2.0-84908638623	338	S. Sharma, K. Das, J. Woo, J.K. Gimzewski, <i>Nanofilaments</i> on glioblastoma exosomes revealed by peak force microscopy, Journal of the Royal Society Interface 11 (92), 20131150 (2014). doi: 10.1098/rsif.2013.1150 WOS:000332384700027 2-s2.0-84893055199
330	R.R. Salunkhe, Y.H. Lee, K.H. Chang, J.M. Li, P. Simon, J. Tang, N.L. Torad, C.C. Hu, Y. Yamauchi, <i>Nanoarchitectured Graphene-Based Supercapacitors for</i> <i>Next-Generation Energy-Storage Applications</i> , Chemistry - A European Journal 20(43), 13838 (2014). doi: 10.1002/chem.201403649 WOS:000343800700001 2-s2.0-84911163655	339	S. Sharma, E.E. Grintsevich, J. Woo, P.S. Gurel, H.N. Higgs, E. Reisler, J.K. Gimzewski, <i>Nanostructured Self-</i> <i>Assembly of Inverted Formin 2 (INF2) and F-Actin-</i> <i>INF2 Complexes Revealed by Atomic Force Microscopy</i> , Langmuir 30 (25), 7533 (2014). doi: 10.1021/la501748x WOS:000338488600032 2-s2.0-84903719941
331	C.I. Sathish, Y. Shirako, Y. Tsujimoto, H.L. Feng, Y. Sun, M. Akaogi, K. Yamaura, <i>Superconductivity of delta-MoC</i> _{0.75} <i>synthesized at 17 GPa</i> , Solid State Communications 177 , 33 (2014). doi: 10.1016/j.ssc.2013.09.024 WOS:000329479500008 2-s2.0-84886245672	340	S. Sharma, S. Lavender, J. Woo, L. Guo, W. Shi, L. Kilpatrick-Liverman, J.K. Gimzewski, <i>Nanoscale</i> <i>characterization of effect of L-arginine on Streptococcus</i> <i>mutans biofilm adhesion by atomic force microscopy</i> , Microbiology (United Kingdom) 160 (7), 1466 (2014). doi: 10.1099/mic.0.075267-0 WOS:- 2-s2.0-84903589658
332	K. Sato, M. Dutta, N. Fukata, <i>Inorganic/organic hybrid</i> solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays, Nanoscale 6(11), 6092 (2014). doi: 10.1039/c4nr00733f WOS:000336883000072 2-s2.0-84901022703	341	S. Sharma, C. Santiskulvong, J.Y. Rao, J.K. Gimzewski, O. Dorigo, <i>The role of Rho GTPase in cell stiffness and</i> <i>cisplatin resistance in ovarian cancer cells</i> , Integrative Biology 6(6), 611 (2014). doi: 10.1039/c3ib40246k WOS:000336835100004 2-s2.0-84901593953

342	X.L. Sheng, Z.J. Wang, R. Yu, H.M. Weng, Z. Fang, X. Dai, <i>Topological insulator to Dirac semimetal transition</i> <i>driven by sign change of spin-orbit coupling in thallium</i> <i>nitride</i> , Physical Review B 90 (24), 245308 (2014). doi: 10.1103/PhysRevB.90.245308 WOS:000347124000011	351	N. Shirahata, Solution-processable white-light-emitting germanium nanocrystals, Journal of Solid State Chemistry 214 , 74 (2014). doi: 10.1016/j.jssc.2013.10.021 WOS:000336350600013 2-s2.0-84901004748
343	eid:- Z.W. Shi, H. Lu, Q. Liu, K.M. Deng, L.Y. Xu, R.J. Zou, J.Q. Hu, Y. Bando, D. Golberg, L. Li, <i>NiCo₂O₄ Nanostructures</i> <i>as a Promising Alternative for NiO Photocathodes in</i> <i>p-Type Dye-Sensitized Solar Cells with High Efficiency</i> , Energy Technology 2 (6), 517 (2014). doi: 10.1002/ente.201400013	352	Q.H. Shou, K. Uto, M. Iwanaga, M. Ebara, T. Aoyagi, Near-infrared light-responsive shape-memory poly(epsilon- caprolactone) films that actuate in physiological temperature range, Polymer Journal 46 (8), 492 (2014). doi: 10.1038/pj.2014.48 WOS:000340349900009 2-s2.0-84905437724
344	eid:- K. Shiba, M. Tagaya, N. Hanagata, <i>Synthesis of</i> <i>Cytocompatible Luminescent Titania/Fluorescein Hybrid</i> <i>Nanoparticles</i> , ACS Applied Materials & Interfaces 6(9), 6825 (2014). doi: 10.1021/am500636d WOS:000336075300099 2.s2.0.84900861117	353	Q.H. Shou, K. Uto, W.C. Lin, T. Aoyagi, M. Ebara, Near-Infrared-Irradiation-Induced Remote Activation of Surface Shape-Memory to Direct Cell Orientations, Macromolecular Chemistry and Physics 215 (24), 2473 (2014). doi: 10.1002/macp.201400353 WOS:000346268200010 2-s2.0-84918565050
345	K. Shiba, M. Tagaya, S. Samitsu, S. Motozuka, <i>Effective</i> Surface Functionalization of Carbon Fibers for Fiber/ Polymer Composites with Tailor-Made Interfaces, ChemPlusChem 78(2), 197 (2014). doi: 10.1002/cplu.201300356 WOS:000330902800001 2-s2.0-84893967343	354	L.K. Shrestha, R.G. Shrestham N. Vilanova, C. Rodriguez- Abreu, K. Ariga, <i>In-Situ Formation of Silver Nanoparticles</i> <i>Using Nonionic Surfactant Reverse Micelles as</i> <i>Nanoreactors</i> , Journal of Nanoscience and Nanotechnology 14 (3), 2238 (2014). doi: 10.1166/jnn.2014.8548 WOS:000331624700015 2-s2.0-84894222644
346	T. Shibata, H. Takano, Y. Ebina, D.S. Kim, T.C. Ozawa, K. Akatsuka, T. Ohnishi, K. Takada, T. Kogure, T. Sasaki, Versatile van der Waals epitaxy-like growth of crystal films using two-dimensional nanosheets as a seed layer: orientation tuning of SrTiO ₃ films along three important axes on glass substrates, Journal of Materials Chemistry C 2(3), 441 (2014). doi: 10.1039/c3tc31787k	355	L.K. Shrestha, J.S. Wi, J. Williams, M. Akada, K. Ariga, Facile Fabrication of Silver Nanoclusters as Promising Surface-Enhanced Raman Scattering Substrates, Journal of Nanoscience and Nanotechnology 14(3), 2245 (2014). doi: 10.1166/jnn.2014.8538 WOS:000331624700016 2-s2.0-84894128752 R.G. Shrestha, L.K. Shrestha, A.H. Khan, G.S. Kumar, S.
347	 WOS.000329003290032900003 2-s2.0-84890379385 M. Shimizu, T. Yoshitomi, Y. Nagasaki, <i>The behavior of ROS-scavenging nanoparticles in blood</i>, Journal of Clinical Biochemistry and Nutrition 54(3), 166 (2014). doi: 10.3164/jcbn.13-85 WOS:000336889700006 2-20.8400048177 		Acharya, K. Ariga, <i>Demonstration of Ultrarapid Interfacial</i> <i>Formation of 1D Fullerene Nanorods with Photovoltaic</i> <i>Properties</i> , ACS Applied Materials & Interfaces 6(17), 15597 (2014). doi: 10.1021/am5046235 WOS:000341544200100 2-s2.0-84907842246
348	 Z-SZ.0-84900448177 T. Shimizu, T. Nakai, K. Deguchi, K. Yamada, B. Yue, J.H. Ye, A Visible-light-responsive Photocatalyst of Nitrogen- doped Solid-acid HNb₃O₈-N Studied by Ultrahigh-field ¹H MAS NMR and ¹H-⁹³Nb⁴H-¹⁵N HETCOR NMR in Solids, Chemistry Letters 43(1), 80 (2014). doi: 10.1246/cl.130784 	357	D.N.A. Shri, K. Tsuchiya, A. Yamamoto, <i>Surface</i> characterization of TiNi deformed by high-pressure torsion, Applied Surface Science 289 , 338 (2014). doi: 10.1016/j.apsusc.2013.10.161 WOS:000328635700048 2-s2.0-84890553536 D.N.A. Shri, K. Tsuchiya, A. Yamamoto, <i>Effect of high</i> -
349	 WOS:000329475000008 2-s2.0-84891778702 Y. Shimizu, H. Boehm, K. Yamaguchi, J.P. Spatz, J. Nakanishi, A Photoactivatable Nanopatterned Substrate for Analyzing Collective Cell Migration with Precisely Tuned Cell-Extracellular Matrix Ligand Interactions, Plos One 9(3), e91875 (2014). 	338	pressure torsion deformation on surface properties and biocompatibility of Ti-50.9 mol. %Ni alloys, Biointerphases 9(2), 029007 (2014). doi: 10.1116/1.4867402 WOS:000339817200007 eid:-
350	doi: 10.1371/journal.pone.0091875 WOS:000332858400113 2-s2.0-84898016689 N. Shirahata, <i>Monolayer Formation of Luminescent</i>	359	D.N.A. Shri, K. Tsuchiya, A. Yamamoto, <i>Cytocompatibility</i> evaluation and surface characterization of TiNi deformed by high-pressure torsion, Materials Science and Engineering C 43, 411 (2014). doi: 10.1016/j.msec.2014.07.014
	Germanium Nanoparticles on Silica Surface in Aqueous Buffer Solution, Journal of Nanoscience and Nanotechnology 14 (3), 2640 (2014). doi: 10.1166/jnn.2014.8640 WOS:000331624700073 2-s2.0-84894125210		WOS:000342529000050 2-s2.0-84905384339

360	 H.O. Sillin, E.J. Sandouk, A.V. Avizienis, M. Aono, A.Z. Stieg, J.K. Gimzewski, <i>Benchtop Fabrication</i> of Memristive Atomic Switch Networks, Journal of Nanoscience and Nanotechnology 14(4), 2792 (2014). doi: 10.1166/jnn.2014.8636 WOS:000332226600013 2-s2.0-84897792242 A. Sinitskii, K.J. Erickson, W. Lu, A.L. Gibb, C.Y. Zhi, 	369	P. Srinivasu, K. Suresh, G. Datt, A.C. Abhayankar, P.N. Rao, M.L. Kantam, S.K. Bhargava, J. Tang, Y. Yamauchi, <i>Ordered mesoporous ferrosilicate materials with highly</i> <i>dispersed iron oxide nanoparticles and investigation of</i> <i>their unique magnetic properties</i> , Physical Chemistry Chemical Physics 16 (41), 22471 (2014). doi: 10.1039/c4cp03216k WOS:000342766500005		
	Y. Bando, D. Golberg, A. Zettl, J.M. Tour, <i>High-Yield</i> Synthesis of Boron Nitride Nanoribbons via Longitudinal Splitting of Boron Nitride Nanotubes by Potassium Vapor, ACS Nano 8(10), 9867 (2014). doi: 10.1021/nn504809n WOS:000343952600020 2-s2.0-84908439338	370	 2-s2.0-8490/487260 A.Z. Stieg, A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, M.L. Lam, M. Aono, J.K. Gimzewski, <i>Self-organized</i> <i>atomic switch networks</i>, Japanese Journal of Applied Physics 53(1), 01AA02 (2014). doi: 10.7567/JJAP.53.01AA02 WOS:000332397900003 2-s2.0-84893320638 Y.J. Su, Y. Yang, X.D. Zhong, H.L. Zhang, Z.M. Wu, Y.D. Jiang, Z.L. Wang, Fully Enclosed Cylindrical Single- Electrode-Based Triboelectric Nanogenerator, ACS Applied Materials & Interfaces 6(1), 553 (2014). doi: 10.1021/am404611h WOS:000329586300074 2-s2.0 84892412567 		
362	R. Smith, V. Brazdova, D.R. Bowler, <i>Hydrogen</i> <i>adsorption and diffusion around Si(001)/Si(110) corners</i> <i>in nanostructures</i> , Journal of Physics: Condensed Matter 26 (29), 295301 (2014). doi: 10.1088/0953-8984/26/29/295301 WOS:000339710100003 2-s2.0-84903853521	371			
363	A. Sobolev, I. Presniakov, A. Belik, M. Matsnev, D. Gorchakov, I. Glazkova, <i>Mössbauer investigations of</i> <i>hyperfine interactions features of</i> ⁵⁷ <i>Fe nuclei in BiFeO</i> ₃ <i>ferrite</i> , AIP Conference Proceedings 1622 , 104 (2014). doi: 10.1063/1.4898617 WOS:- 2-s2.0-84911417388	372	H.B. Sun, Q.J. Wang, Y. Li, Y.F. Lin, Y. Wang, Y. Yin, Y. Xu, C. Liu, K. Tsukagoshi, L.J. Pan, X.Z. Wang, Z. Hu, Y. Shi, <i>Boost Up Carrier Mobility for Ferroelectric Organic Transistor Memory via Buffering Interfacial Polarization Fluctuation</i> , Scientific Reports 4 , 7227 (2014). doi: 10.1038/srep07227		
364	K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, Y. Tateyama, <i>Sacrificial Anion Reduction Mechanism</i> <i>for Electrochemical Stability Improvement in Highly</i> <i>Concentrated Li-Salt Electrolyte</i> , Journal of Physical Chemistry C 118(26), 14091 (2014). doi: 10.1021/jp501178n WOS:000338693600004 2-s2.0-84903763391	373	eid:- S.K. Sun, G.J. Zhang, W.W. Wu, J.X. Liu, J. Zou, T. Suzuki, Y. Sakka, <i>Reactive spark plasma sintering of</i> <i>binderless WC ceramics at 1500 C</i> , International Journal o Refractory Metals and Hard Materials 43 , 42 (2014). doi: 10.1016/j.ijrmhm.2013.10.013 WOS:000333789700008		
365	R. Souda, <i>Thermal Decomposition of Thin Methanol Films</i> <i>on Deoxygenated Vanadium</i> , Journal of Physical Chemistry C 118(21), 11333 (2014). doi: 10.1021/jp501098v WOS:000336771700020 2-s2.0-84901791867	374	2-s2.0-84888379178 Y. Sun, Y.F. Guo, J. Li, C. Wang, X. Wang, C.I. Sathish, K. Yamaura, <i>The Unusual Resistivity Behavior and Correlated</i> <i>Magnetic Properties of Antiperovskite</i> $Mn_3Ag_{1,3}M_3N$ ($M =$ <i>Sn, Zn</i>) <i>Compounds</i> , Science of Advanced Materials 6 (7), 1394 (2014).		
366	R. Souda, Decomposition of Formaldehyde Multi layer Films on Deoxygenated, Oxygenated, and Water-Adsorbed Vanadium Substrates at Cryogenic Temperatures, Journal of Physical Chemistry C 118(32), 18537 (2014). doi: 10.1021/jp504306m WOS:000340444500031 2-s2.0-84906251873	375	 doi: 10.1166/sam.2014.1818 WOS:000338125200014 2-s2.0-84902968747 Y. Sun, Y.F. Guo, Y. Tsujimoto, C. Wang, J. Li, X. Wang, H.L. Feng, C.I. Satish, Y. Matsushita, K. Yamaura, <i>Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn₃SbN</i>, Journal of Applied 		
367	R. Souda, Interfacial reaction of water ice on polycrystalline vanadium and its effects on thermal desorption of water, Physical Chemistry Chemical Physics 16 (3), 1095 (2014). doi: 10.1039(3cp53320b	376	Physics 115(4), 043509 (2014). doi: 10.1063/1.4863173 WOS:000331210800024 2-s2.0-84907487464 U. Surrayanchi, V.V. Balasubramanian, K.S. Lakhi, C.D.		
	WOS:000328643900033 2-s2.0-84890290304	370	Mane, K. Ariga, J.H. Choy, D.H. Park, A.M. Al-Enizi, A. Vinu, <i>Mesoporous BN and BCN nanocages with</i> <i>high surface area and spherical morphology</i> . Physical		
368	R. Souda, Interactions of multilayer ethanol, acetone, and diethyl ether films with clean and oxygenated vanadium substrates, RSC Advances 4(92), 50782 (2014). doi: 10.1039/c4ra07856j WOS:000344325400060 2-s2.0-84908139105		<i>h surface area and spherical morphology</i> , Physical emistry Chemical Physics 16 (43), 23554 (2014). : 10.1039/c4cp04210g DS:000343974100006 2.0-84908010594		

377	N. Suzuki, X.F. Jiang, R.R. Salunkhe, M. Osada, Y. Yamauchi, <i>Chemical Preparation of Ferroelectric</i> <i>Mesoporous Barium Titanate Thin Films: Drastic</i> <i>Enhancement of Curie Temperature Induced by Mesopore</i> - <i>Derived Strain</i> , Chemistry - A European Journal 20 (36), 11283 (2014). doi: 10.1002/chem.201403308 WOS:000341629800003 2-s2.0-84906875762	386	D.M. Tang, D.G. Kvashnin, S. Najmaei, Y. Bando, K. Kimoto, P. Koskinen, P.M. Ajayan, B.I. Yakobson, P. B. Sorokin, J. Lou, D. Golberg, <i>Nanomechanical cleavage</i> of molybdenum disulphide atomic layers, Nature Communications 5, 4631 (2014). doi: 10.1038/ncomms4631 WOS:000335220800005 2-s2.0-84898738151
378	N. Suzuki, Y. Kamachi, K. Takai, S. Kiba, Y. Sakka, N. Miyamoto, Y. Yamauchi, <i>Effective Use of Mesoporous</i> <i>Silica Filler: Comparative Study on Thermal Stability and</i> <i>Transparency of Silicone Rubbers Loaded with Various</i> <i>Kinds of Silica Particles</i> , European Journal of Inorganic Chemistry 2014(17), 2773 (2014). doi: 10.1002/ejic.201301615 WOS:000337749700004 2-s2.0-84902324396		D.M. Iang, C. Liu, W.J. Yu, L.L. Zhang, P.X. Hou, J.C. Li, F. Li, Y. Bando, D. Golberg, H.M. Cheng, <i>Structural</i> <i>Changes in Iron Oxide and Gold Catalysts during</i> <i>Nucleation of Carbon Nanotubes Studied by In Situ</i> <i>Transmission Electron Microscopy</i> , ACS Nano 8(1), 292 (2014). doi: 10.1021/nn403927y WOS:000330542900029 2-s2.0-84893507384
379	N. Suzuki, J. Liu, Y. Yamauchi, <i>Recent progress on the tailored synthesis of various mesoporous fibers toward practical applications</i> , New Journal of Chemistry 38 (8), 3330 (2014). doi: 10.1039/C4NJ00016A WOS:000339469500001	388	J. Tang, J. Liu, N.L. Torad, T. Kimura, Y. Yamauchi, <i>Tailored design of functional nanoporous carbon materials</i> <i>toward fuel cell applications</i> , Nano Today 9(3), 305 (2014). doi: 10.1016/j.nantod.2014.05.003 WOS:000341481000007 2-s2.0-84905922560 J. Tang, N.L. Torad, R.R. Salunkhe, J.H. Yoon, M.S. Al
380	T. Taguchi, Y. Endo, <i>Crosslinking Liposomes/Cells Using Cholesteryl Group-Modified Tilapia Gelatin</i> , International Journal of Molecular Sciences 15 (7), 13123 (2014). doi: 10.3390/ijms150713123 WOS:000340038500119 2-s2.0-84904959807		Hossain, S.X. Dou, J.H. Kim, T. Kimura, Y. Yamauchi, <i>Towards Vaporized Molecular Discrimination: A Quartz</i> <i>Crystal Microbalance (QCM) Sensor System Using Cobalt-</i> <i>Containing Mesoporous Graphitic Carbon</i> , Chemistry - An Asian Journal 9(11), 3238 (2014). doi: 10.1002/asia.201402629 WOS:000344332200027
381	T. Taguchi, M. Okada, Y. Kogai, M. Masuda, Y. Shimoura, M. Inoue, T. Ito, T. Hamahata, K. Funatogawa, T. Kirikae, T. Furuzono, <i>Prevention of catheter infection using a biodegradable tissue adhesive composed of human serum albumin and disuccinimidyl tartrate</i> , Journal of Bioactive and Compatible Polymers 29 (3), 284 (2014). doi: 10.1177/0883911514528409 WOS:000340132000007 2-s2.0-84902177531	390	2-s2.0-84919360785 R. Tanoue, R. Higuchi, K. Ikebe, S. Uemura, N. Kimizuka, A.Z. Stieg, J.K. Gimzewski, M. Kunitake, <i>Positional</i> selectivity of reversible azomethine condensation reactions at solid/liquid interfaces leading to supramolecule formation, Journal of Electroanalytical Chemistry 716 , 145 (2014). doi: 10.1016/j.jelechem.2013.11.022 WOS:000334985100020
382	R. Takahashi, X.P. Qiu, N. Xue, T. Sato, K. Terao, F.M. Winnik, <i>Self-Association of the Thermosensitive Block</i> <i>Copolymer Poly</i> (2- <i>isopropyl-2-oxazoline</i>)- <i>b-poly</i> (<i>N-isopropylacrylamide</i>) <i>in Water Methanol Mixtures</i> , Macromolecules 47 (19), 6900 (2014). doi: 10.1021/ma501538t WOS:000343196200041 2-s2.0-84908125334	391	2-s2.0-84897991424 R. Tanoue, R. Higuchi, K. Ikebe, S. Uemura, N. Kimizuka, A.Z. Stieg, J.K. Gimzewski, M. Kunitake, <i>Thermodynamic</i> <i>Self-Assembly of Two-Dimensional pi-Conjugated Metal-</i> <i>Porphyrin Covalent Organic Frameworks by "On-Site"</i> <i>Equilibrium Polymerization</i> , Journal of Nanoscience and Nanotechnology 14 (3), 2211 (2014). doi: 10.1166/jnn.2014.8540
383	Y. Takahashi, Z. Huang, X. Hu, <i>H-T Phase Diagram of</i> <i>Multi-component Superconductors with Frustrated Inter-</i> <i>component Couplings</i> , Journal of the Physical Society of Japan 83 (3), 034701 (2014). doi: 10.7566/JPSJ.83.034701 WOS:000331880400023 2-s2.0-84894202598	392	WOS:000331624700011 2-s2.0-84894187114 K. Tashiro, <i>Supramolecular Interactions between C-60</i> <i>and a Zirconium Bisporphyrinate Double-decker Complex</i> , Fullerines Nanotubes and Carbon Nanostructures 22 (1-3), 61 (2014). doi: 10.1080/1536383X.2013.787607
384	Y. Takahashi, M.B. Luo, T. Nishizaki, N. Kobayashi, X. Hu, <i>Probing Commensurate Ground States of Josephson</i> <i>Vortex in Layered Superconductors</i> , Journal of Nanoscience and Nanotechnology 14 (4), 2859 (2014). doi: 10.1166/jnn.2014.8635 WOS:000332226600022 2-s2.0-84897747863	393	 WOS:000329813200006 2-s2.0-84892732758 Y. Tateyama, M. Sumita, Y. Ootani, K. Aikawa, R. Jono, L.Y. Han, K. Sodeyama, Acetonitrile Solution Effect on Ru N749 Dye Adsorption and Excitation at TiO₂ Anatase Interface, Journal of Physical Chemistry C 118(30), 16863 (2014)
385	D. Tanaka, Y. Inuta, M. Sakamoto, A. Furube, M. Haruta, Y.G. So, K. Kimoto, I. Hamada, T. Teraishi, <i>Strongest pi-</i> <i>metal orbital coupling in a porphyrin/gold cluster system</i> , Chemical Science 5(5), 2007 (2014). doi: 10.1039/c3sc53460j WOS:000334492700042 2-s2.0-84898061256		doi: 10.1021/jp5004006 WOS:000339930900069 2-s2.0-84905460123

394 395	L. Thirugnanam, S. Kaveri, M. Dutta, N.V. Jaya, N. Fukata, <i>Porous Tubular Rutile TiO</i> ₂ <i>Nanofibers: Synthesis,</i> <i>Characterization and Photocatalytic Properties</i> , Journal of Nanoscience and Nanotechnology 14 (4), 3034 (2014). doi: 10.1166/jnn.2014.8585 WOS:000332226600051 2-s2.0-84897775577 L. Thirugnanam, S. Kaveri, J. Victor, M. Dutta, A simple	403	V. Trepakov, M. Makarova, O. Stupakov, E.A. Tereshina, J. Drahokoupil, M. Cernansky, Z. Potucek, F. Borodavka, V. Valvoda, A. Lynnyk, A. Jager, L. Jastrabik, A. Dejneka, <i>Synthesis, structure and properties of heavily Mn-doped</i> <i>perovskite-type SrTiO₃ nanoparticles</i> , Materials Chemistry and Physics 143 (2), 570 (2014). doi: 10.1016/j.matchemphys.2013.09.034 WOS:000329888300016 2-s2.0-84888204449	
	and facile route to synthesize anatase/ruitle mixed phase TiO ₂ nanofibers with superior photocatalytic performance, International Journal of ChemTech Research 6(3), 1681 (2014). doi:- WOS:- 2-s2.0-84902159189	404	S. Tsuchiya, M. Matsuno, R. Ishiguro, H. Kashiwaya, S. Kashiwaya, S. Nomura, H. Takayanagi, Y. Maeno, <i>Magnetization of a Mesoscopic Superconducting Sr₂RuO</i> . <i>Plate on Micro-dc-SQUIDs</i> , Journal of the Physical Socie of Japan 83(9), 094715 (2014). doi: 10.7566/JPSJ.83.094715	
396	W. Tian, C. Zhang, T.Y. Zhai, S.L. Li, X. Wang, J.W. Liu, X. Jie, D.Q. Liu, M.Y. Liao, Y. Koide, D. Golberg, Y. Bando, <i>Flexible Ultraviolet Photodetectors with</i> <i>Broad Photoresponse Based on Branched ZnS-ZnO</i> <i>Heterostructure Nanofilms</i> , Advanced Materials 26 (19), 3088 (2014). doi: 10.1002/adma.201305457 WOS:000335869100019 2-s2.0-84901026960	405	2-s2.0-84924942913 T. Tsuchiya, K. Terabe, M. Aono, <i>In Situ and Non-Volatil</i> <i>Bandgap Tuning of Multilayer Graphene Oxide in an All-</i> <i>Solid-State Electric Double-Layer Transistor</i> , Advanced Materials 26 (7), 1087 (2014). doi: 10.1002/adma.201304770 WOS:000331909800013 2-s2.0-84894225077	
397	S. Tominaka, A.K. Cheetham, <i>Intrinsic and extrinsic proton</i> <i>conductivity in metal-organic frameworks</i> , RSC Advances 4 (97), 54382 (2014). doi: 10.1039/c4ra11473f WOS:000344600400029 2-s2.0-84908542948	406	T. Tsuchiya, K. Terabe, M. Aono, <i>Micro x-ray</i> photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device, Applied Physics Letters 105 (18), 183101 (2014). doi: 10.1063/1.4901103 WOS.000245000000056	
398	S. Tominaka, H. Yoshikawa, Y. Matsushita, A.K. Cheetham, <i>Topotactic reduction of oxide nanomaterials:</i> <i>unique structure and electronic properties of reduced TiO</i> ₂ <i>nanoparticles</i> , Materials Horizons 1(1), 106 (2014). doi: 10.1039/c3mh00087g WOS:000348071200015 eid:-	407	2-s2.0-84908577250 K. Tsukagoshi, S.L. Li, H. Miyazaki, A. Aparecido- Ferreira, S. Nakaharai, <i>Semiconducting properties of</i> <i>bilayer graphene modulated by an electric field for next-</i> <i>generation atomic-film electronics</i> , Journal of Physics D 47 (9), 094003 (2014). doi: 10.1088/0022.3727/47/0/004002	
399	N.L. Torad, M. Hu, S. Ishihara, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, Y. Yamauchi, <i>Direct synthesis of</i> <i>MOF-derived nanoporous carbon with magnetic Co</i> <i>nanoparticles toward efficient water treatment</i> , Small 10 (10), 2096 (2014). doi: 10.1002/smll.201302910 WOS:000336611000027 2-s2 0-84901275362	408	 WOS:000322398300004 2-s2.0-84894450583 N. Tsunoji, Y. Ide, Y. Yagenji, M. Sadakane, T. Sano, Design of Layered Silicate by Grafting with Metal Acetylacetonate for High Activity and Chemoselectivity in Photooxidation of Cyclohexane, ACS Applied Materials & Interfaces 6(7), 4616 (2014) 	
400	N.L. Torad, Y.Q. Li, S. Ishihara, K. Ariga, Y. Kamachi, H.Y. Lian, H. Hamoudi, Y. Sakka, W. Chaikittisilp, K.C.W. Wu, Y. Yamauchi, <i>MOF-derived Nanoporous Carbon as</i>		doi: 10.1021/am500515p WOS:000334572800004 2-s2.0-84898480757	
	Intracellular Drug Delivery Carriers, Chemistry Letters 43 (5), 717 (2014). doi: 10.1246/cl.131174 WOS:000335619600050 2-s2.0-84899861341	409	M. Ujihara, M.M.M. Ahmed, T. Imae, Y. Yamauchi, <i>Massive-exfoliation of magnetic graphene from acceptor-</i> <i>type GIC by long-chain alkyl amine</i> , Journal of Materials Chemistry A 2(12), 4244 (2014). doi: 10.1039/c3ta14117a WOS-000323288000021	
401	N.L. Torad, M. Naito, J. Tatami, A. Endo, S.Y. Leo, S. Ishihara, K.C. W. Wu, T. Wakihara, Y. Yamauchi, <i>Highly</i> <i>Crystallized Nanometer</i> , <i>Sized Zeolite</i> 4 with Large Cs	410	V Usselii C. Elumelei II. Neguchi T. Maguda A. Luglin	
	Adsorption Capability for the Decontamination of Water, Chemistry - An Asian Journal 9(3), 759 (2014). doi: 10.1002/asia.201301132 WOS:000331611900011 2-s2.0-84894546696	410	A. Nakayama, T. Taketsugu, <i>Boron Nitride Nanosheet on Gold as an Electrocatalyst for Oxygen Reduction Reaction: Theoretical Suggestion and Experimental Proof</i> , Journal of the American Chemical Society 136 (18), 6542 (2014). doi: 10.1021/ja500393g	
402	N.L. Torad, R.R. Salunkhe, Y.Q. Li, H. Hamoudi, M. Imura, Y. Sakka, C.C. Hu, Y. Yamauchi, <i>Electric</i> <i>Double-Layer Capacitors Based on Highly Graphitized</i> <i>Nanoporous Carbons Derived from ZIF-67</i> , Chemistry - A European Journal 20(26), 7895 (2014). doi: 10.1002/chem.201400089 WOS:000337742600005 2-s2.0-84902973208		WOS:000335720200004 2-s2.0-84900316590	

411	K. Uosaki, H. Fukumitsu, T. Masuda, D. Qu, <i>Construction</i> of a metal-organic monolayer-semiconductor junction on a hydrogen-terminated Si (111) surface via Si-C covalent linkage and its electrical properties, Physical Chemistry Chemical Physics 16 (21), 9960 (2014). doi: 10.1039/c3cp54619e WOS.000225004800022	420	Y. Wakayama, R. Hayakawa, H.S. Seo, <i>Recent progress</i> <i>in photoactive organic field-effect transistors</i> , Science and Technology of Advanced Materials 15(2), 024202 (2014). doi: 10.1088/1468-6996/15/2/024202 WOS:000336264800003 2-s2.0-84898687285	
412	 Control of Myoblast Morphology, International Journal of Molecular Sciences 15(1), 1511 (2014). 	421	C.X. Wang, M. Osada, Y. Ebina, B.W. Li, K. Akatsuka, K. Fukuda, W. Sugimoto, R.Z. Ma, T. Sasaki, <i>All-Nanosheet</i> <i>Ultrathin Capacitors Assembled Layer-by-Layer via</i> <i>Solution-Based Processes</i> , ACS Nano 8(3), 2658 (2014). doi: 10.1021/nn406367p WOS:000333539400081 2-s2.0-84896950919	
413	 doi: 10.3390/jiiiS13011311 WOS:000335776100090 2-s2.0-84892884615 K. Uto, K. Yamamoto, K. Iwahori, T. Aoyagi, I. Yamashita, Solid-phase PEGylation of an immobilized protein cage on reducted test the multilayer Colloide and Surfaces P 113 	422	L.Z. Wang, T. Sasaki, <i>Titanium Oxide Nanosheets:</i> <i>Graphene Analogues with Versatile Functionalities</i> , Chemical Reviews 114(19), 9455 (2014). doi: 10.1021/cr400627u WOS:000343017900006	
	bolyelectrolyle multidyer, Colloids and Suffaces B 113, 338 (2014). doi: 10.1016/j.colsurfb.2013.09.013 WOS:000331670200043 2-s2.0-84885442810	423	Q.H. Wang, S. Kishimoto, X.F. Jiang, Y. Yamauchi, Spot Moire Fringes: Determination of Domain Boundaries and Structural Parameters in Ordered Nanoporous Structures, Chemistry - A European Journal 20 (8), 2179 (2014).	
414	K. Uto, K. Yamamoto, N. Kishimoto, M. Muraoka, T. Aoyagi, I. Yamashita, <i>Direct Evidence of Spatially Selective</i> <i>Iron Mineralization Using an Immobilized Ferritin Protein</i>		doi: 10.1002/chem.201303319 WOS:000330903700011 2-s2.0-84893862474	
	<i>Cage</i> , Journal of Nanoscience and Nanotechnology 14(4), 3193 (2014). doi: 10.1166/jnn.2014.8575 WOS:000332226600075 2-s2.0-84897769411	424	T. Wang, B.J. Jin, Z.B. Jiao, G.X. Lu, J.H. Ye, Y.P. Bi, Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances, Journal Materials Chemistry A 2(37), 15553 (2014). doi: 10.1039/c4ta02960g	
415	W. Van Rossom, Y. Matsushita, K. Ariga, J.P. Hill, New synthesis of unsymmetrically-substituted 2,5-diarylpyrroles from homopropargyl sulfonamides, RSC Advances 4(10),	425	WOS:000341457000040 2-s2.0-84907073972	
	4897 (2014). doi: 10.1039/c3ra46579a WOS:000329254100018 2-s2.0-84891769639	423	G.G. Liu, Z.W. Mei, J.H. Ye, <i>Photoreduction of CO</i> ₂ over the well-crystallized ordered mesoporous <i>TiO</i> ₂ with the confined space effect, Nano Energy 9 , 50 (2014). doi: 10.1016/j.nanoen.2014.06.027	
416	W. Van Rossom, T.G. Terentyeva, K. Sodeyama, Y. Matsushitam Y. Tateyama, K. Ariga, J.P. Hill, <i>Arylpyrrole</i> <i>oligomers as tunable anion receptors</i> , Organic &	126	WOS:000344632800006 2-s2.0-84904566218 X Wong 7 H Chan D.O. Liu W Tian O Wong C Zhang	
	Biomolecular Chemistry 12(29), 5492 (2014). doi: 10.1039/c4ob00357h WOS:000339012100023 2-s2.0-84903789344	420	J.W. Liu, L.Y. Han, Y. Bando, D. Golberg, <i>Triple-Yolked ZnO/CdS Hollow Spheres for Semiconductor-Sensitized Solar Cells</i> , Particle & Particle Systems Characterization 31 (7), 757 (2014).	
417	I.A. Vladymyrskyi, M.V. Karpets, G.L. Katona, D.L. Beke, S.I. Sidorenko, T. Nagata, T. Nabatame, T. Chikyow, F. Ganss, G. Beddies, M. Albrecht, I.M. Makogon, <i>Influence</i>		doi: 10.1002/ppsc.201300365 WOS:000340670600004 2-s2.0-84904570583	
	of the substrate choice on the L1(0) phase formation of post-annealed Pt/Fe and Pt/Ag/Fe thin films, Journal of Applied Physics 116(4), 044310 (2014). doi: 10.1063/1.4891477 WOS:000340710700086 2-s2.0-84905833779	427	X.J. Wang, T. Mori, I. Kuzmych-Ianchuk, Y. Michiue, K. Yubata, T. Shishido, Y. Grin, S. Okada, D.G. Cahill, <i>Thermal conductivity of layered borides: The effect of</i> <i>building defects on the thermal conductivity of TmAlB</i> ₄ and <i>the anisotropic thermal conductivity of AlB</i> ₂ , APL Materials 2(4), 046113 (2014)	
418	L.B. Vong, T. Yoshitomi, K. Morikawa, S. Saito, H. Matsui, Y. Nagasaki, Oral nanotherapeutics: effect of redox nanoparticle on microflora in mice with dextran sodium		doi: 10.1063/1.4871797 WOS:000336083600014 2-s2.0-84900005276	
	sulfate-induced colitis, Journal of Gastroenterology 49(5), 806 (2014). doi: 10.1007/s00535-013-0836-8 WOS:000336222500004 2-s2.0-84901408959	428	X. Wang, W. Tian, M.Y. Liao, Y. Bando, D. Golberg, Recent advances in solution-processed inorganic nanofilm photodetectors, Chemical Society Reviews 43 (5), 1400 (2014). doi: 10.1039/C3CS60348B	
419	Y. Wakayama, R. Hayakawa, <i>Integration of molecular functions into Si device for nanoscale molecular devices</i> , Thin Solid Films 554, 2 (2014). doi: 10.1016/j.tsf.2013.03.081 WOS:000331078800002 2-s2.0-84893908891		WOS:000331188400005 2-s2.0-84893870627	

429	X. Wang, Q.H. Weng, X.Z. Liu, X.B. Wang, D.M. Tang, W. Tian, C. Zhang, W. Yi, D.Q. Liu, Y. Bando, D. Golberg, <i>Atomistic Origins of High Rate Capability and Capacity</i> <i>of N-Doped Graphene for Lithium Storage</i> , Nano Letters 14 (3), 1164 (2014). doi: 10.1021/nl4038592 WOS:000335720300010 2-s2.0-84896386203	438	Q.H. Weng, B.J. Wang, X.B. Wang, N. Hanagata, X. Li, D.Q. Liu, X. Wang, X.F. Jiang, Y. Bando, D. Golberg, <i>Highly Water-Soluble, Porous, and Biocompatible Boron</i> <i>Nitrides for Anticancer Drug Delivery</i> , ACS Nano 8(6), 6123 (2014). doi: 10.1021/nn5014808 WOS:000338089200078 2-s2.0-84903486287	
430	X.B. Wang, Q.H. Weng, X. Wang, X. Li, J. Zhang, F. Liu, X.F. Jiang, H.X. Guo, N.S. Xu, D. Golberg, Y. Bando, <i>Biomass-Directed Synthesis of 20 g High-Quality Boron</i> <i>Nitride Nanosheets for Thermoconductive Polymeric</i> <i>Composites</i> , ACS Nano 8(9), 9081 (2014) doi: 10.1021/nn502486x WOS:000342184400036 2-s2.0-84923977369	439	Q.H. Weng, X.B. Wang, Y. Bando, D. Golberg, One-Step Template-Free Synthesis of Highly Porous Boron Nitride Microsponges for Hydrogen Storage, Advanced Energy Materials 4(7), 1301525 (2014). doi: 10.1002/aenm.201301525 WOS:000336503800019 2-s2.0-84900483124	
431	Y.A. Wang, Y. Kotsuchibashi, Y. Liu, R. Narain, <i>Temperature-Responsive Hyperbranched Amine-Based</i> <i>Polymers for Solid-Liquid Separation</i> , Langmuir 30 (9), 2360 (2014). doi: 10.1021/la5003012 WOS:000334571300007 2x20.84896748221	440	J.S. WI, J.H. Park, S. Tominaka, J.Y. Lee, Enhanced two- photon luminescence from nanoporous gold capped with microcontact-printed salts, Physica Status Solidi - Rapid Research Letters 8(1), 52 (2014). doi: 10.1002/pssr.201308208 WOS:000331086600008 2-s2.0-84892892998	
432	Z.E. Wang, B.D. Liu, F. Yuan, T. Hu, G.F. Zhang, B. Dierre, N. Hirosaki, T. Sekiguchi, X. Jiang, <i>Synthesis and cathodoluminescence of Sb/P co-doped GaN nanowires</i> , Journal of Luminescence 145 , 208 (2014). doi: 10.1016/j.jlumin.2013.07.038 WOS:000330821200036 2-s2.0-84882263761	441	A. Wiengarten, K. Seufert, W. Auwaerter, D. Ecija, K. Diller, F. Allegretti, F. Buischoff, S. Fischer, D.A. Duncan, A.C. Papageorgiou, F. Klappenberger, R.G. Acres, T.H. Ngo, J.V. Barth, <i>Surface-assisted Dehydrogenative</i> <i>Homocoupling of Porphine Molecules</i> , Journal of the American Chemical Society 136 (26), 9346 (2014). doi: 10.1021/ja501680n WOS:000338692700021	
433	K. Watanabe, M. Hashiguchi, I. Sakaguchi, A. Bryant, Y. Adachi, Y.H. Zhen, T. Ohgaki, T. Ohsawa, H. Haneda, N. Ohashi, <i>Hydrogen in tin dioxide films and bulk ceramics:</i> <i>An attempt to identify the most hidden impurity</i> , Applied Physics Letters 104 (4), 042110 (2014). doi: 10.1063/1.4863668 WOS:000331209900041 2-s2.0-84898067100	442	L.H. Wu, Q.F. Liang, X. Hu, <i>New scheme for braiding</i> <i>Majorana fermions</i> , Science and Technology of Advanced Materials 15(6), 064402 (2014). doi: 10.1088/1468-6996/15/6/064402 WOS:000347309200003 2-s2.0-84920517893	
434	K. Watanabe, T. Ohsawa, I. Sakaguchi, O. Bierwagen, M.E. White, M.Y. Tsai, R. Takahashi, E.M. Ross, Y. Adachi, J.S. Speck, H. Haneda, N. Ohashi, <i>Investigation of charge compensation in indium-doped tin dioxide by hydrogen insertion via annealing under humid conditions</i> , Applied Physics Letters 104 (13), 132110 (2014). doi: 10.1063/1.4870425	443	 J.J. Xing, M. Takeguchi, A. Hashimoto, J.Y. Cao, J.H. Ye, Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure, Applied Physics Letters 104(16), 163105 (2014). doi: 10.1063/1.4873336 WOS:000335145600074 2-s2.0-84900340962 H. Xu, S.X. Ouvang, L.O. Liu, P. Reunchan, N. Umezawa. 	
435	 WOS:000334408500034 2-s2.0-84898078734 O.Y. Wei, N. Mitoma, T. Kizu, X. Gao, M.F. Lin, T. Nabatame, K. Tsukagoshi, <i>Controllable film densification and interface flatness for high-performance amorphous</i> 		J.H. Ye, <i>Recent advances in TiO₂-based photocatalysis</i> , Journal of Materials Chemistry A 2(32), 12642 (2014). doi: 10.1039/c4ta00941j WOS:000340347700003 2-s2.0-84904736862	
	<i>indium oxide based thin film transistors</i> , Applied Physics Letters 105 (16), 163503 (2014). doi: 10.1063/1.4898815 WOS:000344363000085 2-s2.0-84908154921	445	H. Xu, S.X. Ouyang, L.Q. Liu, D.F. Wang, T. Kako, J.H. Ye, <i>Porous-structured Cu₂O/TiO₂ nanojunction material</i> <i>toward efficient CO₂ photoreduction</i> , Nanotechnology 25 (16), 165402 (2014). doi: 10.1088/0957-4484/25/16/165402	
436	X.N. Wen, Y.J. Su, Y, Yang, H.L. Zhang, Z.L. Wang, <i>Applicability of triboelectric generator over a wide range</i> <i>of temperature</i> , Nano Energy 4 , 150 (2014). doi: 10.1016/j.nanoen.2014.01.001 WOS:000334392800019	446	WOS:000333814700007 2-s2.0-84897400867 X.J.G. Xu, B.G. Ghamsari, J.H. Jiang, L. Gilburd, G.O. Andreev, C.Y. Zhi, Y. Bando, D. Golberg, P. Berini, G.C	
437	2-s2.0-84893395881 X.N. Wen, W.Q. Yang, Y. Ding, S.M. Niu, Z.L. Wang, <i>Piezoresistive effect in MoO₃ nanobelts and its application</i> <i>in strain-enhanced oxygen sensors</i> , Nano Research 7(2), 180 (2014). doi: 10.1007/s12274-013-0385-8 WOS:000331652700003 2-s2.0-84894293281		Walker, One-dimensional surface phonon polaritons in boron nitride nanotubes, Nature Communications 5, 4782 (2014). doi: 10.1038/ncomms5782 WOS:000341085200001 2-s2.0-84907377437	

447	X.J.G. Xu, J.H. Jiang, L. Gilburd, R.G. Rensing, K.S. Burch, C.Y. Zhi, Y. Bando, D. Golberg, G.C. Walker, <i>Mid- infrared Polaritonic Coupling between Boron Nitride</i> <i>Nanotubes and Graphene</i> , ACS Nano 8(11), 11305 (2014). doi: 10.1021/nn504093g WOS:000345553000032 2-s2.0-84912544815	455	M. Yamamoto, S.T. Wang, M.Y. Ni, Y.F. Lin, S.L. Li, S. Aikawa, W.B. Jian, K. Ueno, K. Wakabayashi, K. Tsukagoshi, <i>Strong Enhancement of Raman Scattering</i> <i>from a Bulk-Inactive Vibrational Mode in Few-Layer</i> <i>MoTe</i> ₂ , ACS Nano 8(4), 3895 (2014). doi: 10.1021/nn5007607 WOS:000334990600087 2-s2.0-84899451693
448	Y. Xu, C. Liu, P.S.K. Amegadze, W. I. Park, D.X. Long, T. Minari, F. Balestra, G. Ghibaudo, Y.Y. Noh, <i>Significant</i> <i>roles of low-temperature post-metallization annealing in</i> <i>solution-processed oxide thin-film transistors</i> , Applied Physics Letters 105 (13), 133505 (2014). doi: 10.1063/1.4897003 WOS:000343031700073 2-s2.0-84907605996	456	Y. Yamauchi, S. Ishihara, N. Suzuki, K.C.W. Wu, Lithography-assisted alignment control for preparation of mesoporous silica films with uniaxially oriented mesochannels, Chemical Communications 50 (19), 2448 (2014). doi: 10.1039/c3cc47667g WOS:000331174700013
449	H.R. Xue, T. Wang, H. Guo, X.L. Fan, Z.T. Zhu, X.C. Pan, J.P. He, In situ synthesis of graphene/carbon nanotube modified ordered mesoporous carbon as protective film of stainless steel bipolar plates for proton exchange membrane fuel cells, RSC Advances 4(101), 57724 (2014). doi: 10.1039/c4ra09939g WOS:000345651600049 2-s2.0-84909956427	457	S. Yanagisawa, A. Takeda, K. Inagaki, I. Hamada, Y. Morikawa, Search for a Self-Regenerating Perovskite Catalyst with Ab Initio Thermodynamics II: Cu-Doped Layered Perovskites with K ₂ NiF ₄ Structure, Catalysis Letters 144(4), 736 (2014). doi: 10.1007/s10562-014-1215-7 WOS:000332866400025 2-s2.0-84900652399
450	H.R. Xue, J.Q. Zhao, T. Wang, H. Guo, X.L. Fan, J.P. He, Facile and economical synthesis for "plum pudding"- shaped porous LiFePO4/carbon composites for lithium ion batteries, RSC Advances 4(74), 39400 (2014). doi: 10.1039/c4ra05342g WOS:000347452000008 2-s2.0-84906858455	458	S. Yanagisawa, K. Yamauchi, T. Inaoka, T. Oguchi, I. Hamada, Origin of the band dispersion in a metal phthalocyanine crystal, Physical Review B 90 (24), 245141 (2014). doi: 10.1103/PhysRevB.90.245141 WOS:000346862200003
451	H. Yamada, C. Urata, S. Higashitamori, Y. Aoyama, Y. Yamauchi, K. Kuroda, <i>Critical Roles of Cationic</i> <i>Surfactants in the Preparation of Colloidal Mesostructured</i> <i>Silica Nanoparticles: Control of Mesostructure, Particle</i> <i>Size, and Dispersion</i> , ACS Applied Materials & Interfaces 6 (5), 3491 (2014). doi: 10.1021/am405633r WOS:00033292000057	459	J.S. Yang, J. Deng, C. Troadec, T. Ondarçuhu, C. Joachim, Solid-state SiO ₂ nano-gears AFM tip manipulation on HOPG, Nanotechnology 25 (46), 465305 (2014). doi: 10.1088/0957-4484/25/46/465305 WOS:000344375500009 2-s2.0-84909606261
452	 2-s2.0-84896322848 S. Yamada, A. Yamamoto, T. Kasuga, <i>Poly(L-lactic acid)/vaterite composite coatings on metallic magnesium</i>, Journal of Materials Science - Materials in Medicine 25(12), 2639 (2014). doi: 10.1007/s10856-014-5302-5 WOS:000345644300004 	460	Y. Yang, C. Liu, S. Gao, Y. Li, X.R. Wang, Y. Wang, T. Minari, Y. Xu, P. Wang, Y. Zhao, K. Tsukagoshi, Y. Shi, <i>Large</i> [6,6]-phenyl C-61 butyric acid methyl (PCBM) hexagonal crystals grown by solvent-vapor annealing, Materials Chemistry and Physics 145(3), 327 (2014). doi: 10.1016/j.matchemphys.2014.02.017 WOS:000335613600009 2-s2.0-84897916835
453	2-s2.0-84912150152 Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, <i>Unusual Stability</i> of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries, Journal of the American Chemical Society 136(13), 5039 (2014). doi: 10.1021/ja412807w	461	Y.J. Yang, Y.T. Zhong, X. Wang, Y. Ma, J.N. Yao, Facile Synthesis of Ultrathin Lepidocrocite Nanosheets from Layered Precursors, Chemistry - An Asian Journal 9(6), 1563 (2014). doi: 10.1002/asia.201301704 WOS:000336248900016 2-s2.0-84901193147
454	WOS:000333947900043 2-s2.0-84897514764 M. Yamaguchi, F.Q. Meng, K. Firestein, K. Tsuchiya, D. Golberg, <i>Powder metallurgy routes toward aluminum</i> <i>boron nitride nanotube composites, their morphologies,</i> <i>structures and mechanical properties</i> , Materials Science and Engineering A 604 , 9 (2014). doi: 10.1016/j.msea.2014.02.086	462	H.H.M. Yeung, M. Kosa, J.M. Griffin, C.P. Grey, D.T. Major, A.K. Cheetham, <i>Topotactic elimination of water</i> <i>across a C-C ligand bond in a dense 3-D metal-organic</i> <i>framework</i> , Chemical Communications 50 (87), 13292 (2014). doi: 10.1039/c4cc06136e WOS:000343965700024 eid:-
	WOS:000335615000002 2-s2.0-84896466381		W. Yi, Y. Kumagai, N.A. Spaldin, Y. Matsushita, A. Sato, I.A. Presniakov, A.V. Sobolev, Y.S. Glazkova, A.A. Belik, <i>Perovskite-Structure TIMnO₃: A New Manganite with New</i> <i>Properties</i> , Inorganic Chemistry 53 (18), 9800 (2014). doi: 10.1021/ic501380m WOS:000341747900037 2-s2.0-84919754546

			· · · · · · · · · · · · · · · · · · ·			
464	W. Yi, Y. Matsushita, A. Sato, K. Kosuda, M. Yoshitake, A.A. Belik, $Bi_3Cr_{2:91}O_{11}$: <i>A Ferromagnetic Insulator from</i> Cr^{t+}/Cr^{5+} <i>Mixing</i> , Inorganic Chemistry 53 (16), 8362 (2014). doi: 10.1021/ic500773b WOS:000340576900020 2-s2.0-84906219417	473	K. Yoshizawa, T. Taguchi, <i>Bonding behavior of</i> <i>hydrophobically modified gelatin films on the intestinal</i> <i>surface</i> , Journal of Bioactive and Compatible Polymers 29 (6), 560 (2014). doi: 10.1177/0883911514553731 WOS:000344654800003 2-s2.0-84908883350			
465	M. Yoshida, T. Yomogida, T. Mineo, K. Nitta, K. Kato, T. Masuda, H. Nitani, H. Abe, S. Takausagi, T. Uruga, K. Asakura, K. Uosaki, H. Kondoh, <i>Photoexcited Hole</i> <i>Transfer to a MnO_x Cocatalyst on a SrTiO₃ Photoelectrode</i> <i>during Oxygen Evolution Studied by In Situ X-ray</i> <i>Absorption Spectroscopy</i> , Journal of Physical Chemistry C 118 (42), 24302 (2014). doi: 10.1021/jp507657p WOS:000343740300012 2-s2.0-84908086740	474	S. Yoshizawa, H. Kim, T. Kawakami, Y. Nagai, T. Nakayama, X. Hu, Y. Hasegawa, T. Uchihashi, <i>Imaging Josephson Vortices on the Surface Superconductor</i> <i>Si(111)-(root 7 x root 3)-In using a Scanning Tunneling Microscope</i> , Physical Review Letters 113 (24), 247004 (2014). doi: 10.1103/PhysRevLett.113.247004 WOS:000346438400005 2-s2.0-84918585781			
466	G. Yoshikawa, C.J.Y. Lee, K. Shiba, <i>Effects of Coating</i> <i>Materials on Two Dimensional Stress-Induced Deflection</i> <i>of Nanomechanical Sensors</i> , Journal of Nanoscience and Nanotechnology 14 (4), 2908 (2014). doi: 10.1166/jnn.2014.8604 WOS:000332226600030 2-s2.0-84897789463	475	S. Yoshizawa, T. Uchihashi, <i>Superconducting Phase</i> <i>Transition of the Si(111)-(root 7 x root 3)-In Surface:</i> <i>Solution of T-c Discrepancy</i> , Journal of the Physical Society of Japan 83 (6), 065001 (2014). doi: 10.7566/JPSJ.83.065001 WOS:000336733300057 2-s2.0-84924912301			
467	K. Yoshimatsu, T. Yamazaki, Y. Hoshino, P.E. Rose, L.F. Epstein, L.P. Miranda, P. Tagari, J.M. Beierle, Y. Yonamine, K.J. Shea, <i>Epitope Discovery for a Synthetic Polymer</i> <i>Nanoparticle: A New Strategy for Developing a Peptide</i> <i>Tag</i> , Journal of the American Chemical Society 136 (4), 1194 (2014). doi: 10.1021/ja410817p WOS:000330598600010 2x2.0.84893440146	476	P. Yuan, N. Zhang, D. Zhang, T. Liu, L.M. Chen, X.H. Liu, R.Z. Ma, G.Z. Qiu, Fabrication of nickel-foam-supported layered zinc-cobalt hydroxide nanoflakes for high electrochemical performance in supercapacitors, Chemical Communications 50(76), 11188 (2014). doi: 10.1039/c4cc05057f WOS:000341358600029 2-s2.0-84906706655			
468	M. Yoshitake, <i>Generic trend of work functions in transition-metal carbides and nitrides</i> , Journal of Vacuum Science and Technology A 32 (6), 061403 (2014). doi: 10.1116/1.4901014 WOS:000345215500013 2-s2.0-84910065414	477	Y. Yuan, H.L. Feng, Y. Shi, Y. Tsujimoto, A.A. Belik, Y. Matsushita, M. Arai, J. He, M. Tanaka, K. Yamaura, <i>High-pressure synthesis, crystal structure, and magnetic</i> <i>properties of KSbO₃-type 5d oxides K</i> _{0.84} <i>OsO₃ and</i> <i>Bi</i> _{2.93} <i>Os</i> ₃ <i>O</i> ₁₁ , Science and Technology of Advanced Materials 15 (6), 064901 (2014). doi: 10.1088/1468-6996/15/6/064901 WOS:000347309200007			
469	T. Yoshitomi, K. Kuramochi, L.B. Vong, Y. Nagasaki, Development of nitroxide radicals-containing polymer for scavenging reactive oxygen species from cigarette smoke, Science and Technology of Advanced Materials 15(3), 035002 (2014). doi: 10.1088/1468-6996/15/3/035002 WOS:000339380700010 2-s2.0-84902674893	478	 2-s2.0-84920546209 K. Yubuta, T. Mori, A. Leithe-Jasper, H. Bormann, Y. Grin, S. Okada, T. Shishido, <i>Intergrowth structure of alphaphase in beta-type TmAlB₄ compound studied by high-angle annular detector dark-field scanning transmission electron microscopy</i>, Journal of Solid State Chemistry 219, 274 (2014). 			
470	T. Yoshitomi, Y. Nagasaki, <i>Reactive Oxygen Species-Scavenging Nanomedicines for the Treatment of Oxidative Stress Injuries</i> , Advanced Healthcare Materials 3 (8), 1149 (2014). doi: 10.1002/adhm.201300576 WOS:000340550500003 2-s2.0-84906079999	479	 doi: 10.1016/j.jssc.2014.07.038 WOS:000342336100037 eid:- M.B. Zakaria, M. Hu, N. Hayashi, Y. Tsujimoto, S. Ishihara, M. Imura, N. Suzuki, Y.Y. Huang, Y. Sakka, K. Ariga, K.C.W. Wu, Y. Yamauchi, <i>Thermal Conversion of Hollow Prussian Blue Nanoparticles into Nanoporous</i> 			
471	T. Yoshitomi, S. Sha, L.B. Vong, P. Chonpathompikunlert, H. Matsui, Y. Nagasaki, <i>Indomethacin-loaded redox</i> <i>nanoparticles improve oral bioavailability of indomethacin</i> <i>and suppress its small intestinal inflammation</i> , Therapeutic Delivery 5(1), 29 (2014).		<i>Iron Oxides with Crystallized Hematite Phase</i> , European Journal of Inorganic Chemistry 2014 (7), 1137 (2014). doi: 10.1002/ejic.201301307 WOS:000332021000003 2-s2.0-84897731665			
472	 doi: 10.4155/tde.13.133 WOS:- 2-s2.0-84890942840 K. Yoshizawa, T. Taguchi, <i>Enhanced Bonding Strength</i> of Hydrophobically Modified Gelatin Films on Wet Blood Vessels, International Journal of Molecular Sciences 15(2), 2142 (2014). doi: 10.3390/ijms15022142 WOS:000335776400027 	480	M.B. Zakaria, M. Hu, M. Imura, R.R. Salunkhe, N. Umezawa, H. Hamoudi, A.A. Belik, Y. Yamauchi, <i>Single-Crystal-like Nanoporous Spinel Oxides: A Strategy for</i> <i>Synthesis of Nanoporous Metal Oxides Utilizing Metal-</i> <i>Cyanide Hybrid Coordination Polymers</i> , Chemistry - A European Journal 20(52), 17375 (2014). doi: 10.1002/chem.201404054 WOS:000346468000017 2-s2.0-84920166473			
	2-s2.0-84893191034					

481	M.B. Zakaria, M. Hu, Y. Tsujimoto, Y. Sakka, N. Suzuki, Y. Kamachi, M. Imura, S. Ishihara, K. Ariga, Y. Yamauchi, <i>Controlled Crystallization of Cyano-Bridged</i> <i>Cu-Pt Coordination Polymers with Two-Dimensional</i> <i>Morphology</i> , Chemistry - An Asian Journal 9(6), 1511 (2014).	485	Q. Zhang, H.X. Lu, N. Kawazoe, G. Chen, <i>Pore size eff</i> of collagen scaffolds on cartilage regeneration, Acta Biomaterialia 10(5), 2005 (2014). doi: 10.1016/j.actbio.2013.12.042 WOS:000335095300022 2-s2.0-84898058465		
	doi: 10.1002/asia.201400097 WOS:000336248900006 2-s2.0-84901233927		Q. Zhang, T. Nakamoto, S.W. Chen, N. Kawazoe, K.L. Lin, J. Chang, G.P. Chen, <i>Collagen/Wollastonite Nanowire</i> <i>Hybrid Scaffolds Promoting Osteogenic Differentiation</i>		
482	O.V. Zamurueva, G.L. Myronchuk, G. Lakshminarayana, O.V. Parasyuk, L.V. Piskach, A.O. Fedorchuk, N.A. Al Zayed, A.M. El-Naggar, I.V. Kityk, <i>Structural and optical</i> <i>features of novel</i> $Tl_{1,x}In_{1,x}Ge_xSe_2$ chalcogenide crystals, Optical Materials 37 , 614 (2014). doi: 10.1016/j.optmat.2014.08.004		and Angiogenic Factor Expression of Mesenchymal Stem Cells, Journal of Nanoscience and Nanotechnology 14(4), 3221 (2014). doi: 10.1166/jnn.2014.8607 WOS:000332226600079 2-s2.0-84897801290		
	WOS:000345181600103 2-s2.0-84906801355	487	X.X. Zhang, J.P. He, T. Wang, M.Z. Liu, H.R. Xue, H. Guo, <i>Synthesis of ordered mesoporous carbon doped with</i> <i>carbon nanotubes and a new strategy to use it as a support</i> <i>for Pt electrocatalysts</i> , Journal of Materials Chemistry A 2 (9), 3072 (2014). doi: 10.1039/c3ta13732e WOS:000331248600028 2-s2.0-84893481877		
483	C. Zhang, W. Tian, Z. Xu, X. Wang, J.W. Liu, S.L. Li, D.M. Tang, D.Q. Liu, M.Y. Liao, Y. Bando, D. Golberg, <i>Photosensing performance of branched CdS/</i> <i>ZnO heterostructures as revealed by in situ TEM and</i> <i>photodetector tests</i> , Nanoscale 6 (14), 8084 (2014). doi: 10.1039/c4nr00963k				
	WOS:000338638900049 2-s2.0-84903639141	488	X. Zhang, W. Yi, K. Feng, D.S. Wu, Y.F. Yang, P. Zheng, J.Y. Yao, Y. Matsushita, A. Sato, H.W. Jiang, H. Wang, Y.G.		
484	H.X. Zhang, Y. Sasaki, M. Abe, Y. Zhang, S. Ye, M. Osawa, K. Uosaki, <i>Electrochemical and infrared spectroscopic</i> <i>study of the self-assembled monolayer of a cyano-bridged</i> <i>dimeric triruthenium complex on gold surface</i> , Journal of Electroanalytical Chemistry 714 , 51 (2014). doi: 10.1016/j.jelechem.2013.12.012 WOS:000331859600008 2-s2.0-84892174446		Shi, K. Yamaura, N.L. Wang, <i>Crystal Growth, Structural, Electrical, and Magnetic Properties of Mixed-Valent Compounds YbOs</i> ₂ <i>Al</i> ₁₀ and <i>LuOs</i> ₂ <i>Al</i> ₁₀ , Inorganic Chemistry 53 (9), 4387 (2014). doi: 10.1021/ic403168v WOS:000335547400016 2-s2.0-84899798526		

Appendix 7.7: MANA Journal Cover Sheets

Journal cover sheets related to MANA affiliated papers (October 2007 – December 2014):

	Journal name Type of cover sheet	Year	Volume	Issue	doi number (of related paper)
1	Physics Today Journal Front Cover	2008	61	12	10.1063/1.3047660
2	Advanced Functional Materials Journal Front Cover	2009	19	15	10.1002/adfm.200900295
3	Advanced Functional Materials Journal Inside Front Cover	2009	19	12	10.1002/adfm.200801435
4	Advanced Materials Journal Inside Front Cover	2009	21	20	10.1002/adma.200802441
5	Advanced Materials Journal Inside Front Cover	2009	21	44	10.1002/adma.200901321
6	Journal of Materials Chemistry Journal Front Cover	2009	19	3	10.1039/b808320g
7	Journal of Materials Chemistry Journal Inside Front Cover	2009	19	25	10.1039/B903791H
8	Journal of Nanoscience and Nanotechnology Journal Front Cover	2009	9	1	10.1166/jnn.2009.J076
9	Journal of Porphyrins and Phthalocyanines Journal Front Cover	2009	13	1	10.1142/S1088424609000061
10	Physical Chemistry Chemical Physics Journal Inside Front Cover	2009	11	29	10.1039/B822802G
11	Soft Matter Journal Back Cover	2009	5	19	10.1039/B909397D
12	Solid State Physics (in Japanese) Journal Front Cover	2009	44	2	(not available)
13	Advanced Functional Materials Journal Front Cover	2010	20	3	10.1002/adfm.200901878
14	Journal of Materials Chemistry Journal Front Cover	2010	20	32	10.1039/C0JM01013H
15	Materials Transactions Journal Front Cover	2010	51	11	10.2320/matertrans.M2010192
16	Nanoscale Journal Inside Front Cover	2010	2	2	10.1039/B9NR00415G
17	Science and Technology of Advanced Materials Front Cover of Promotional Copy	2010	11	5	10.1088/1468-6996/11/5/054506
18	Angewandte Chemie – International Edition Journal Frontispiece	2011	50	6	10.1002/anie.201005271
19	Angewandte Chemie – International Edition Journal Frontispiece	2011	50	17	10.1002/anie.201007370
20	Chemical Communications Journal Inside Front Cover	2011	47	45	10.1039/C1CC15169J
21	Energy & Environmental Science Journal Inside Back Cover	2011	4	11	10.1039/C1EE01400E
22	Journal of Materials Chemistry Journal Front Cover	2011	21	18	10.1039/C0JM04557H
23	Journal of Materials Chemistry Journal Inside Front Cover	2011	21	44	10.1039/C1JM13180J

	Journal name Type of cover sheet	Year	Volume	Issue	doi number (of related paper)
24	Journal of Nanoscience and Nanotechnology Journal Front Cover	2011	11	9	10.1166/jnn.2011.4718
25	Journal of the American Chemical Society Journal Front Cover	2011	133	20	10.1021/ja110691t
26	Physical Chemistry Chemical Physics Journal Back Cover	2011	13	11	10.1039/C0CP02025G
27	Physical Review Letters Journal Front Cover	2011	106	3	10.1103/ PhysRevLett.106.037002
28	Small Journal Frontispiece	2011	7	4	10.1002/smll.201001849
29	Small Journal Frontispiece	2011	7	10	10.1002/smll.201002350
30	Advanced Functional Materials Journal Front Cover	2012	22	13	10.1002/adfm.201103110
31	Advanced Functional Materials Journal Frontispiece	2012	22	17	10.1002/adfm.201290101
32	Advanced Materials Journal Front Cover	2012	24	2	10.1002/adma.201290004
33	Advanced Materials Journal Frontispiece	2012	24	2	10.1002/adma.201102617
34	Advanced Materials Journal Frontispiece	2012	24	2	10.1002/adma.201103241
35	Advanced Materials Journal Frontispiece	2012	24	2	10.1002/adma.201102958
36	Advanced Materials Journal Inside Front Cover	2012	24	2	10.1002/adma.201103053
37	Bulletin of the Chemical Society of Japan Journal Front Cover	2012	85	1	10.1246/bcsj.20110162
38	Chemical Communications Journal Inside Back Cover	2012	48	33	10.1039/C2CC31118F
39	Chemical Communications Journal Inside Front Cover	2012	48	40	10.1039/C2CC30643C
40	Chemistry - A European Journal Journal Frontispiece	2012	18	6	10.1002/chem.201102013
41	Inorganic Chemistry Journal Front Cover	2012	51	19	10.1021/ic300557u
42	Journal of Materials Chemistry Journal Inside Back Cover	2012	22	14	10.1039/C2JM00044J
43	Journal of Materials Chemistry Journal Back Cover	2012	22	21	10.1039/C2JM16629A
44	Nanoscale Journal Front Cover	2012	4	8	10.1039/C2NR11835A
45	Nanoscale Journal Front Cover	2012	4	10	10.1039/C2NR00010E
46	Oyo Buturi (in Japanese) Journal Front Cover	2012	81	12	(not available)
47	Physica Status Solidi: RRL Journal Front Cover	2012	6	5	10.1002/pssr.201206082
48	Physical Chemistry Chemical Physics Journal Back Cover	2012	14	17	10.1039/C2CP24010F

	Journal name Type of cover sheet	Year	Volume	Issue	doi number (of related paper)
49	Polymer Journal Journal Front Cover	2012	44	6	10.1038/pj.2012.30
50	Advanced Materials Journal Inside Front Cover	2013	25	8	10.1002/adma.201204434
51	Angewandte Chemie – International Edition Journal Back Cover	2013	52	31	10.1002/anie.201303035
52	Chemical Communications Journal Inside Front Cover	2013	49	35	10.1039/c3cc40398j
53	Chemical Communications Journal Inside Front Cover	2013	49	36	10.1039/C3CC39273B
54	Chemical Society Reviews Journal Inside Front Cover	2013	42	15	10.1039/C2CS35475F
55	Chemistry – An Asian Journal Journal Frontispiece	2013	8	8	10.1002/asia.201300247
56	Chemistry – An Asian Journal Journal Inside Front Cover	2013	8	12	10.1002/asia.201300940
57	CrystEngComm Journal Inside Front Cover	2013	15	45	10.1039/C3CE41150H
58	Journal of Materials Chemistry A Journal Front Cover	2013	1	13	10.1039/c2ta00450j
59	Journal of Materials Chemistry B Journal Inside Front Cover	2013	1	26	10.1039/C3TB20461H
60	Journal of Materials Chemistry C Journal Front Cover	2013	1	11	10.1039/C3TC00930K
61	Journal of Materials Chemistry C Journal Front Cover	2013	1	14	10.1039/C3TC00952A
62	Langmuir Journal Front Cover	2013	29	24	10.1021/la401652f
63	Langmuir Journal Front Cover	2013	29	27	10.1021/la4006423
64	Physical Chemistry Chemical Physics Journal Back Cover	2013	15	26	10.1039/c3cp50620g
65	Advanced Materials Journal Front Cover	2014	26	26	10.1002/adma.201306055
66	Advanced Materials Journal Frontispiece	2014	26	19	10.1002/adma.201305457
67	Angewandte Chemie - International Edition Journal Inside Front Cover	2014	53	43	10.1002/anie.201404953
68	Biomaterials Science Journal Front Cover	2014	2	5	10.1039/C3BM60263J
69	Biomaterials Science Journal Front Cover	2014	2	6	10.1039/c3bm60212e
70	ChemCatChem Journal Front Cover	2014	6	12	10.1002/cctc.201402449
71	ChemElectroChem Journal Back Cover	2014	1	4	10.1002/celc.201300240
72	Chemical Communications Journal Back Cover	2014	50	49	10.1039/C4CC01336K
73	Chemical Society Reviews Journal Inside Front Cover	2014	43	5	10.1039/C3CS60348B

	Journal name Type of cover sheet	Year	Volume	Issue	doi number (of related paper)
74	Chemistry - A European Journal Journal Back Cover	2014	20	36	10.1002/chem.201403308
75	Chemistry Letters Journal Front Cover	2014	43	1	10.1246/cl.130987
76	Journal of Materials Chemistry A Journal Showcase	2014	2	12	10.1039/C3TA13769D
77	Journal of Materials Chemistry C Journal Inside Front Cover	2014	2	3	10.1039/C3TC31787K
78	Journal of Porphyrins and Phthalocyanines Journal Front Cover	2014	18	3	10.1142/S1088424613501071
79	Journal of Physical Chemistry C Journal Front Cover	2014	118	37	10.1021/jp5036426
80	Journal of the American Chemical Society Journal Front Cover	2014	136	29	10.1021/ja502008t
81	Nanotechnology Journal Front Cover	2014	25	46	10.1088/0957- 4484/25/46/465305
82	New Journal of Chemistry Journal Front Cover	2014	38	8	10.1039/C4NJ00016A
83	New Journal of Chemistry Journal Front Cover	2014	38	11	10.1039/c4nj00864b
84	Particle & Particle Systems Characterization Journal Inside Front Cover	2014	31	7	10.1002/ppsc.201300365
85	Physica Status Solidi C Journal Front Cover	2014	11	2	10.1002/pssc.20130010
86	Physical Chemistry Chemical Physics Journal Back Cover	2014	16	21	10.1039/C3CP55431G

Appendix 7.8: MANA Patents

All MANA patent applications and MANA patent registrations listed in this Appendix are or were partly or fully owned by NIMS.

1. List of Japanese Patent Applications (January 2013 - December 2014):

Between October 2007 and December 2012, MANA has made 377 Japanese Patent Applications. They are listed in Appendix 8.9 of the report *Facts and Achievements 2012*.

No.	Date of ApplicationApplication NumberName of Invention	No.	Date of ApplicationApplication NumberName of Invention
378	2013 Jan 112013-003341Self-heating nanofibers with drug release function,	395	2013 Mar 282013-068164Organic EL devices and fabrication method of the same
	<i>fabrication method of the sane, and fabrication method of the nonwoven material</i>	396	2013 Apr 11 2013-083027 Production and controlling method of surface areas where
379	2013 Jan 182013-006961Fabrication method of adhesion for tissues		crystal orientation, crystal structure or composition varies with position and optimization of abrasive coefficient
380	2013 Jan 242013-011300Fluorescence probe and detection method for materials containing Cs	397	2013 Apr 122013-083992Freestanding organometallics nanomembrane and fabrication method of the same
381	2013 Jan 252013-011584Electric field-tunable topological insulator utilizing perovskite structure	398	2013 Apr 262013-094200Equipment for molecular measurement and fabrication method of the same
382	2013 Jan 282013-012848Multi-functional device for electric conductivity	399	2013 Apr 262013-094728Mesoporous materials of inorganic oxides and fabrication
383	2013 Feb 1 2013-018245 Green light emissive germanium nanoparticles and	400	method of the same 2013 May 2 2013-096690
	fabrication method of the same		Holders for sensor tips
384	2013 Feb 6 2013-021150 Perovskite nano-sheets based on homologous layered provskite-oride, and their applications	401	2013 May 9 2013-099284 Thin film transistors and fabrication method of the same
385	2013 Feb 13 2013-025154 Conductive polymer-metal composites and materials	402	2013 May 13 2013-100815 Conductive polymer-metal composites and materials adhering them, and fabrication method of the same
386	adhered by them, and fabrication method of the same	403	2013 May 13 2013-101259
500	Thermoelectric semiconductors of rare-earth alumino- basid as and fabrication method of the same and		substrates for cell culture and method of cell culture
	thermoelectric devices using the same	404	2013 May 272013-110898Self assembling peptides
387	2013 Mar 12013-040445Nano carbon and graphene or carbon composite materialswith graphene, and fabrication method of the same	405	2013 Jun 42013-117654Transistor of dual gate polymer thin film
388	2013 Mar 132013-050139Adhesive bone filling agents and kits of the same	406	2013 Jun 5 2013-119299 Model surface stress sensors fixing antibodies or antigens and fabrication methods of the same and immunity
389	2013 Mar 18 2013-054733 Resettable ontical sensors and resetting methods of ontical		measurement method using the same
	sensors	407	2013 Jun 72013-120634Contact probe and fabrication method of the same, non-
390	2013 Mar 212013-057544Adhesive agents for cells and clusters of aggregate cells		destructive forming method for contacts, the measurement method in fabrication process of multi-layers
391	2013 Mar 212013-057649Sensor devices for measurement of very small amount of samples	408	2013 Jun 13 2013-124873 Nanoparticles of platinum alloy, and fabrication method of the same, electrodes using nanoparticles of platinum alloy and fuel cells
392	2013 Mar 22 2013-060077 Nanoparticles with high sensitivity for light emission and light amplifiers using laser media	409	2013 Jun 132014-521410Thin film transistors, fabrication method of the same and
393	2013 Mar 28 2013-067782 Organic EL devices	410	semiconductor equipment 2013 Jun 27 2013-134534
394	2013 Mar 28 2013-067801 Organic EL devices and fabrication method of the same		Devices for variable electric conductivity using all solid electric double layers and electric equipment using the same

No.	Date of ApplicationApplication NumberName of Invention	No.	Date of ApplicationApplication NumberName of Invention
411	2013 Jun 27 2013-135565 Substrates for surface enhancement Raman spectroscopy	430	2013 Nov 262013-243413Thin film transistors and fabrication method of the same
412	(SERS), fabrication method of the same, and biosensors and devices of micro flow channel using the same	431	2013 Nov 262013-243826Photo catalytic materials and fabrication method of the
412	2013 Jul 1 2013-137744 Chiral shift agents for NMR, and method for determination of photo purity and absolute arrangement using the same	432	same 2013 Nov 28 2013-245982 Nanoparticles of platinum alloy, fabrication method of the
413	2013 Jul 3 2013-139425 Thin film transistor and fabrication method of the same	422	same and electrodes and fuel cells containing the same
414	2013 Jul 11 2013-145573 Apparatus for electron back scattering	_ 433	Memory media and memory equipment using the same, method for recording and erasing of information
415	2013 Jul 26 2014-528113 High proton conductive polymer films and fabrication method of the same, and humidity sensors	434	2013 Dec 11 2013-255895 Single crystal silicon wafers of rectangular shape
416	2013 Jul 30 2013-157967 Inactive bio membranes, liquids for coating and fabrication method of the same, and substrates for bio inactive	435	2013 Dec 202013-264489Method of fractionating nanomaterial comprising elongated elements of different lengths2014.006978
417	treatment 2013 Aug 8 2013-164837 Eabrication mathed for recombined proteins using non		Fluorescent probe, and a method for detecting nicotine adenine dinucleotide derivative
/18	protein/non lipid conditioned cell strain	437	2014 Jan 31 2014-016266 Thin film transistor and a method of manufacturing the same
410	Equipment for measurement of micro heat conductivity, and measurement method	438	2014 Jan 31 2014-016273 Thin film transistor and a method of manufacturing the
419	2013 Aug 26 2013-174636 Blood purification membranes, fabrication method of the some and diabaters	439	<i>same</i> 2014 Jan 31 2014-016630
420	2013 Aug 27 2013-175387	-	Oxide thin film transistor and a method of manufacturing the same
	of cancer cells and fabrication method of the same, and equipment for removing cancer cells	440	2014 Jan 31 2014-016631 Oxide semiconductor and a method of manufacturing the same
421	2013 Sep 262013-199700Layered resist films of high sensitive metal layers and method for improving photo sensitivity of resist layers	441	2014 Jan 312014-016632Structure of the thin film transistor, thin film transistor manufacturing method and semiconductor device
422	2013 Sep 27 2013-201187 Metal electrodes and semi-conductive device using the same	442	2014 Jan 312014-016633A gate insulating film induce a fixed charge therein
423	2013 Sep 30 2013-203943 Aromatic amine adsorbents, quartz resonator using the same, and fabrication method of the same	443	2014 Jan 312014-016634Thin film transistor and a method of manufacturing the same
424	2013 Oct 1 2013-206357 Adhesive bone filling agents and kit of the same	444	2014 Jan 31 2014-016635 Thin-film transistor, thin film transistor manufacturing method and semiconductor device
425	2013 Oct 3 2013-208464 Materials of three dimensional graphene foam and fabrication method of the same	445	2014 Feb 32014-018374Neuron operating elements
426	2013 Nov 6 2013-230655 Mesoporous metallic nanoparticles, fabrication method of	446	2014 Feb 6 2014-020952 Semiconductor photodetector 2014-020952
427	the same, and catalysts containing the same 2013 Nov 11 2013-233226	447	2014 Feb 122014-023960Applications fullerene structure and using the same
	Electric conductive devices using oxidized graphene, graphene and/or ion conductive materials, electric equipment of electric conductive devices using electric conductive devices, and handling method of electric	448	2014 Feb 12 2014-024008 Boron nitride particles and a method of manufacturing the same
428	conductive devices 2013 Nov 15 2013.236845	449	<i>2014 Feb 12 2014-024009</i> <i>Spherical boron nitride particles and a method of</i> <i>manufacturing the same</i>
120	Signal inducing functional polymers for information transfer molecules among cells and fabrication method of the same	450	2014 Feb 28 2014-037643 Semiconductor device comprising a hydrogen diffusion barrier and method of fabricating same
429	2013 Nov 22 2013-241764 Cell adhesive porous membranes, fabrication method of the same and tissue adhesive porous membrane tapes		

No.	Date of ApplicationApplication NumberName of Invention	er No.	Date of ApplicationApplication NumberName of Invention
451	2014 Feb 282014-039Epitaxial film with a substrate having a method and defe	13 471 <i>ct-</i>	2014 Aug 26 2014-171406 Dielectric thin film 2014-171406
450	free region forming an epitaxial film having a defect-free area on the substrate	472	2014 Aug 27 2014-173124 Silicon (Si) based nano-structural materials and a method
452	<i>2014</i> Mar 6 <i>2014-0434</i> <i>An optical amplifier with high efficiency luminescent</i> <i>nanoparticles and the laser medium</i>	473	of manufacturing the same 2014 Aug 27 2014-173156
453	2014 Mar 31 2014-0720 Rust nano coating material, manufacturing method there rust nano coating film and the film-forming method	29 of,	in the negative electrode material (Li) ion secondary battery
454	2014 Apr 3 2014-0768 Luminescent silicon nano-particles and the field-driven	13	2014 Aug 29 2014-176247 Electromagnetic wave absorption and radiation material and a method of manufacturing the same
455	2014 Apr 4 2014-0779 Superlattice structure, the electrode material using the method and the same its production	475 97	2014 Sep 1 2014-177280 Transparent fibroin nanofiber nonwoven fabric, cell culture base material, manufacturing method of the cell sheet and transparent fibroin nanofiber nonwoven fabric
456	2014 Apr 72014-0782Electrode catalyst for hydrogen evolution reaction	97 476	2014 Sep 52014-181325How to monolayer peeling the layered transition metal
457	2014 May 1 2014-0944 Cross-linked polymer gel - method of manufacturing processing body cross-linkable polymer encapsulated -	21	hydroxides nanocone, a method of manufacturing a transition metal oxide nanocone, and transition metal hydroxides nano
	coordination binding polymer gel, cross-linked polymer encapsulated - coordination binding polymer gel	477	2014 Sep 9 2014-183094 Ferroelectric capacitors and electronic devices
458	2014 May 8 2014-0970 The hollow carbon particle, a method for producing a	02 478	2014 Sep 9 2014-183184 Ferroelectric capacitors and electronic devices
	metal or hollow carbon particles and a manufacturing method thereof that are modified with nanoparticles of a oxide	479	2014 Sep 102014-184038Electronic semi-transparent device
459	2014 May 16 2014-1022 Silver diffusion barrier material, silver diffusion barrier, silver diffusion barrier coating	10 480	2014 Sep 182014-189603Organic semiconductor transistor and a method of manufacturing the same
460	2014 May 30 2014-1118 Sensitivity method of improving high sensitivity metal lay laminated resist film and the resist film	83 <i>er</i> 481	2014 Sep 22 2014-192823 Skutterudite thermoelectric variable semiconductor doped with silicon and tellurium, its manufacturing method and a thermoelectric power generating device using the same
461	2014 Jun 5 2014-1163 Contact probe and a method of manufacturing the same,	59 482	2014 Sep 24 2014-193213 Electron scanning microscope
	non-destructive contact formation method, the measuring method in the manufacturing process of the multilayer fu and prober	483	2014 Sep 26 Zinc - gallium binary oxide complex-type thermoelectric
462	2014 Jun 9 2014-1186 Photocatalyst composite material and a method of	01	conversion material and a method of manufacturing the same
463	manufacturing the same 2014 Jun 18 2014-1251 Rust nano coating material manufacturing method there	484 43	2014 Sep 29 2014-198340 Silicon surface passivation method and surface passivation treated silicon
161	rust nano coating material, manufacturing method rust nano coating film and the film-forming method	485	2014 Oct 2 2014-203915 NMR for chiral shift agent and a method of determining
404	Nano-particles and a method of manufacturing the same	486	optical purity using the same2014 Oct 82014-207339
465	2014 Jun 26 2014-1319 Magnetic refrigeration equipment 2014-1319	197	Resistance change element
466	2014 Jul 16 2014-1457 Crosslinked gelatin sponge and a method of manufacture	57 487 ng 487	Proton conductor and fuel cell
467	the same 2014 Jul 23 2014-1495	488 05	2014 Nov 6 2014-226301 Surface stress sensor
468	Corrosive environment sensor 2014 Jul 24 2014-1512	489 29	2014 Nov 10 2014-227661 Method for the synthesis of producing signal-induced 1
	Medical bio-absorbable member and a method of manufacturing the same	400	polymer, producing signal induces monomer precursor and produce signal-induced polymer precursor
469	2014 Jul 28 2014-1533 Band lineup apparatus and measurement method	47 490	Porous particles, and its method of manufacture and the guest molecule inclusion porous particles
470	2014 Aug 252014-1704Particle formation method and particle	57	

No.	Date of ApplicationApplication NumberName of Invention	No.	Date of ApplicationApplication NumberName of Invention
491	2014 Nov 282014-241309Energy discriminating electron detector and scanning electron microscope using it	493	2014 Dec 182014-256239Colloidal solution of silica nanosheet mesh structure coated substrate manufacturing method of gene
492	2014 Dec 11 2014-250651	101	transfection base material and a colloidal solution 2014 Dec 26 2014-264545
	type light-emitting element	+94	Sunlight absorption fluid and distillation process

2. List of Japanese Patent Registrations (January 2013 – December 2014):

Between October 2007 and December 2012, MANA has made 232 Japanese Patent Registrations. They are listed in Appendix 8.9 of the report *Facts and Achievements 2012*.

No.	Date of RegistrationRegistration NumberName of Invention	No.	Date of RegistrationRegistration NumberName of Invention
233	2013 Jan 11 5167738 <i>Cell attaching/culturing base material capable of</i> <i>imparting cell attaching property by irradiation of light</i>	249	2013 Mar 15 5218953 Magnetic semiconductor and its production method
234	2013 Jan 11 5170609 Manufacturing method of silicon carbide nanowire	250	2013 Mar 15 5218955 Porous scaffold material for regeneration and its production method
235	2013 Jan 115170653Method for forming cone emitter	251	2013 Mar 155218961Artificial opal film production device
236	2013 Jan 11 5173516 Electron source, and manufacturing method of electron source	252	2013 Mar 155218969BN thin film having sp3-bonded BN high density phase, and method for producing the same
237	2013 Feb 1 5187797 <i>Method for peeling layered double hydroxide, double</i> <i>hydroxide nanosheet, composite thin film material thereof,</i>	253	2013 Mar 29 5229848 Electronic spectroscopic measuring apparatus under voltage impression
238	layered double hydroxide thin film material	254	2013 Mar 29 5229851 Heteronanowire structure having trunk part and branch- shaped part, and its producing method
230	Supramolecular structure and its production method	255	2013 Mar 29 5229868 Mathed for producing MaB superconductor
239	<i>Crystalline nano structure consisting of strontium</i> <i>aluminate and its producing method</i>	256	2013 Apr 12 5240754 Method for producing fiber-reinforced composite
240	2013 Feb 15 5196363 Ribbon-like beta Ga_2O_2 tube with cylindrical internal passage filled up with thin nanowire	257	2013 Apr 12 5241730 Optical electric field amplifying element and probe using the same
241	2013 Feb 22 5201367 Thermosetting resin composite composition, resin moldedbody, and method for producing the composition	258	2013 Apr 12 5242888 Heat-resistant resin composition with excellent mechanical properties and method for producing the same
242	2013 Feb 22 5201507 Surface cleaning method for biocompatible material and cleaning apparatus used for the same	259	2013 Apr 19 5245176 Iodide-based single crystal materials, method of producing the same, and scintillator based on the same
243	2013 Feb 22 5201707 <i>Cathodic photo-protection coating structure, and its</i> <i>production method</i>	260	2013 Apr 19 5245179 Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) element
244	2013 Mar 15205669Method of injecting molecule by beam, method of processing material by beam, and devices therefor	261	2013 Apr 26 5252460 Manufacturing method for SiC nanoparticle by nitrogen plasma
245	2013 Mar 1 5205670 Solid-state device structure, and electric/electronic device and electric/electronic appliance using it	262	2013 Apr 26 5255284 Dope for forming 5255284
246	2013 Mar 1 5205673 Collagen sponge and method of manufacturing the same	263	2013 May 2 5258117 <i>Metal nanoparticles, method for producing the same, and</i> <i>electrolyte using the same</i>
247	2013 Mar 1 5205675 Photocatalyst nanosheet, photocatalyst material, and their manufacturing methods	264	2013 May 24 5273685 N-type thermoelectric conversion element utilizing carbon- and nitrogen-doped rare-earth polyboride-based high-
248	2013 Mar 15207265Blended polymer fibers and nonwoven fabric thereof and their production method	265	temperature acid-resistant n-type thermoelectric material 2013 Jun 14 Solar cell

No.	Date of RegistrationRegistration NumberName of Invention	No.	Date of RegistrationRegistration NumberName of Invention
266	2013 Jun 21 5294201 Dielectric element and method for producing the dielectric element	289	2013 Sep 27 5370995 Surface increasing Raman scattering reactive nanoscale pH sensor
267	2013 Jun 21 5294234 Nitrogen-doped mesoporous carbon (N-KIT-6) and its	290	2013 Sep 27 5371010 Switching element and application of the same
268	2013 Jun 21 5294238 Electronic element	291	2013 Oct 11 5382673 Cerium oxide nanotube and method for producing the same
269	2013 Jun 21 5294246	292	2013 Oct 11 5382690 Nanoscale pH sensor 5382690
270	Oxide layered infuminant and oxide nanosheet infuminant2013 Jun 21Display element	293	2013 Oct 11 5382691 Nanorod formulation for liquid crystal display for polarization control-type electro-optical apparatus
271	2013 Jul 55306015Probe for scanning type probe microscope, and scanning type probe microscope	294	2013 Oct 11 5382707 Thermoelectric semiconductor, and thermoelectric power generation element using the same
272	2013 Jul 12 5311169 Lithium ion conductive solid electrolyte, its manufacturing method, solid electrolyte for lithium secondary battery using the solid electrolyte, and whole solid lithium battery	295	2013 Oct 18 5386687 Layered rare earth hydroxide and anion-exchange material and fluorescent material using it 5288051
273	using the solid electrolyte for secondary battery 2013 Jul 12 5311298	290	Mesoporous carbon (MC-MCM-48) and method for producing the same
274	Resin composition and method for producing same2013 Jul 195316988	297	2013 Oct 185388215Reduced hydrogen water-forming agent
	Regular mesoporous fullerene having large specific surface area and method for producing the same	298	2013 Oct 25 5395258 All-solid lithium ion secondary battery
275	2013 Jul 19 5317065 Lead-free magneto-optical element and method for manufacturing the same	299	2013 Nov 1 5398017 Detection device and biosenser
276	2013 Jul 19 5317293 Method for producing anion-exchanging layered double	300	2013 Nov 1 5401130 Vapor-deposition apparatus and vapor-deposition method
277	hydroxide 2013 Jul 26 5322146	301	2013 Nov 8 5403497 Substrate for crystal growth and crystal growing method using the same
278	Scaffold material for living body 2013 Jul 26 Co based Heusler alloy 5322209	302	2013 Nov 8 5403502 Cage-type mesoporous silica (SNC-2), method for
279	2013 Aug 9 5331960 Method of preparing decellularized soft tissue, graft and	303	producing the same and adsorbent using the same 2013 Nov 8 5403520 Electrospun fiber mat composite and glucose sensor
280	culture material 2013 Aug 9 5333886	304	2013 Nov 8 5403521 Device for forming polarization inversion region
281	2013 Aug 9 5334081 Borows hady and production method of the same	305	2013 Nov 8 5404391 Magnesium alloys with high strength and high ductility
282	2013 Aug 16 5339323	306	2013 Nov 15 5408564 Amorphous base material
283	2013 Aug 16 Method for producing layered rare earth hydroxide	307	2013 Nov 15 5408565 Surface enhanced infrared absorption sensor and process
284	2013 Aug 16 5339331 Layered hydroxides and mono-layered nano sheets, and fabrication methods of the same	308	Jor producing it 2013 Nov 15 5408567 Rare earth multi-boride thermoelectric element, and thermoelectric element using the same
285	2013 Aug 16 5339347 Medical biological absorbent member and method of manufacturing the same	309	2013 Nov 22 5413770 Dye-sensitized solar cell
286	2013 Sep 65356132Superconducting wire rod5356132	310	2013 Nov 22 5414050 Microscale ultraviolet sensor and method of manufacturing the same
287	2013 Sep 135360739Electronic device and manufacturing method therefor	311	2013 Nov 22 5414053 Metal electrode and semiconductor element using the same
288	2013 Sep 27 5370740 Layered rare earth hydroxide, thin film thereof and method of manufacturing them	312	2013 Nov 295419061Magnesium alloy

No.	Date of RegistrationRegistration NumberName of Invention	No.	Date of RegistrationRegistration NumberName of Invention
313	2013 Nov 295419062Magnesium alloy	335	2014 Apr 11 5515115 Electrode catalyst for fuel cell and manufacturing method
314	2013 Dec 135429848Organic field effect transistor	336	2014 Apr 11 5517024
315	2013 Dec 135429863Thermoelectric element	337	Mg-based structured member 2014 Apr 11 5517034
316	2013 Dec 205435559Ultrathin boron nitride nanosheet, method for production thereof, and optical material containing the nanosheet	338	Electron element substrate 2014 Apr 11 5517048 Method for synthesizing brookite
317	2013 Dec 20 5435600 Production method of group IV semiconductor nano thin wire	339	2014 Apr 11 5517065 Switching element and switch array 5517065
318	2013 Dec 20 5437256 Polymer brush-solid composite material, and method for producing the same	540	Mesoporous carbon nitride material and process for producing the same
319	2014 Jan 10 5445990 Injection method for organic molecule and its apparatus	_ 341	2014 Apr 25 5526324 <i>Photoresponsive drug transporter and photoresponsive drug transporter with drug</i>
320	2014 Jan 10 5445991 Nano flake-like metal composite material, and manufacturing method of the same and surface enhanced Raman scattering active substrate	342	2014 Apr 25 5529439 Fullerene derivative composition and field-effect transistor element using the same
321	2014 Jan 10 5448067 Method for manufacturing boron nitride nanotube	_ 343	2014 Apr 25 5531163 Dielectric thin film, dielectric thin film element, and thin film capacitor
322	2014 Jan 31 546440 <i>Rare earth oxide fluorescent materials, thin film using the</i> <i>same, and methods for producing them</i>	344	2014 May 16 5540301 Porous base, method of producing the same and method of using the porous base
323	2014 Jan 315464429Method for growing single crystal silicon having square cross section and silicon wafer having square section	345	2014 May 16 5540307 Nanocrystal particle coated with organic molecular film and manufacturing method of nanocrystal particle coated with organic molecular film
324	2014 Feb 7 5467312 <i>Biosensor, method for detecting biological material with biosensor, and kit therefor</i>	346	2014 May 16 5540318 Low-temperature sintering method of silicon carbide
325	2014 Feb 21 5476561 New diblock copolymer and high mobility/ photodconductivity anisotropic nanowire formed by self- assembling of the diblock copolymer	347	powder 2014 May 16 5540407 Light emitting nano sheet, fluorescent illumination body, solar cell, color display using the same
326	2014 Feb 21 5476574 Method for manufacturing surface enhanced infrared absorption sensor	348	2014 May 165540408Nano sheet coating
327	2014 Feb 21 5477445 Method of producing silicon carbide	349	2014 May 165543850Powdery medicine inhalation device
328	2014 Feb 21 5477702	350	2014 May 235544621Electrochemical transistor
320	method for producing the boron nitride nanotube derivative	351	2014 May 30 5549971 <i>Molecular electronic device, and method of manufacturing</i>
220	Solar cell 540744	352	2014 Jun 6 5553344
330	Recording medium, and recording device and information recording/erasure method using the same		<i>Electroae catalyst for fuel cell and manufacturing method</i> <i>thereof</i>
331	2014 Mar 14 5493215 Fiber fragment manufacturing method	353	2014 Jun 13 5557084 Tissue regeneration method 5557084
332	2014 Mar 14 5493232 Fulloreng structure, method for manufacturing the same	354	2014 Jun 13 5557229 Photodegradable hetero-bivalent crosslinking agent
222	and application using the same	355	2014 Jun 27 5565694 Boron nitride nanotube derivative, its dispersion, and method for producing the boron nitrid superstated derivative
333	Fluorescence emitting silicon nanoparticle and method for producing the same	356	2014 Jun 27 5565721 Porous caramic material and method of producing the
334	2014 Mar 20 5500543 Zinc sulfide nanobelt, UV light detection sensor and method for producing the same		same

No.	Date of RegistrationRegistration NumberName of Invention	No.	Date of RegistrationRegistration NumberName of Invention
357	2014 Jul 4 5569826 <i>Polymer fiber, production method for same, and production</i> <i>device</i>	371	2014 Nov 7 5641385 <i>Metal nanoparticle having dendritic portion and method</i> <i>for producing the same</i>
358	2014 Aug 15 5594633 Two-component tissue adhesive and method for producing same	372	2014 Nov 7 5641454 <i>Bio-hybrid material, production method therefor, and stent</i>
359	2014 Aug 22 5598805	373	2014 Nov 21 5649138 Surface stress sensor
	Organic polymer nanowire and manufacturing method thereof	374	2014 Nov 28 5652602 Electrolyte material for solid fuel cell and manufacturing
360	2014 Aug 225598809Light-emitting element	275	method thereof
361	2014 Aug 22 5598901 Resin coated member and method of resin coating	. 373	Method for producing mesoporous silica
362	2014 Aug 22 5598916 Gate electrode and method of manufacturing the same	. 376	2014 Dec 12 5659371 Organic solvent dispersion containing flaky titanium oxide, method for production of the dispersion titanium oxide
363	2014 Aug 22 5598920		film using the dispersion, and method for production of the titanium oxide film
	Method of producing dense material of electrolyte for solid oxide fuel cell	377	2014 Dec 12 5660419
364	2014 Sep 12 5610348 Dielectric film, dielectric element, and process for		compound oxide semiconductor, yellow pigment using the same, and photocatalyst
265	producing the dielectric element	378	2014 Dec 12 5660452 Composite material comprising high-molecular-weight
505	Film which is formed of hemispherical particles, method for producing same, and use of same		matrix and low-molecular-weight organic compound and process for producing same
366	2014 Sep 19 5614689 Method for producing cobalt (II) hydroxide-iron (III) hexagonal plate-like lamellar crystal	379	2014 Dec 12 5660470 <i>Liquid organic material at ambient temperature and use</i> <i>thereof</i>
367	2014 Oct 3 5622188 Phenylboronic acid-based monomer and phenylboronic acid-based polymer	380	2014 Dec 12 5660478 <i>Recording device and recording/deletion method for</i> <i>information</i>
368	2014 Oct 10 5626649 Electromagnetic wave absorbent material	381	2014 Dec 195665043Chiral shift reagent for NMR and method for determining
369	2014 Oct 10 5626947	382	optical purity and absolute configuration using the same 2014 Dec 19 5665051
	Alloy particle and wire rod which are used in air plasma spraying and wire arc spraying		Layered rare-earth hydroxide, method for producing the same and application thereof
370	2014 Oct 10 5626959 Contact structure of organic semiconductor device, organic semiconductor device, and method of fabricating the same	383	2014 Dec 265669248Porous scaffold material
		384	2014 Dec 26 5669265 Porous copper sulfide, method for manufacturing the same, and use of the same

3. List of International Patent Applications (January 2013 – December 2014):

Between October 2007 and December 2012, MANA has made 198 International Patent Applications. They are listed in Appendix 8.9 of the report *Facts and Achievements 2012*.

Note: PCT: Patent Cooperation Treaty

EPC: European Patent Convention

No.	Date of ApplicationApplication NumberCountry Name of Invention	No.	Date of ApplicationApplication NumberCountry Name of Invention
199	2013 Apr 17 PCT/JP2013/061404 PCT Double-sided coated surface stress sensor	203	2013 Jul 26PCT/JP2013/070299PCT Highly proton-conductive polymer film, method for producing same, and humidity sensor2013 Oct 21PCT/JP2013/078486
200	2013 Apr 19PCT/JP2013/061666PCT Biomaterial coated with HAp/Col composite		
201	2013 Jun 132014-7012459Korea Thin-film transistor, method for producing a thin- film transistor, and semiconductor device		PCT Adhesive body between conductive polymer-metal complex and substrate and method for forming adhesive body, conductive polymer-metal complex dispersion liquid, method for manufacturing and applying same and method
202	2013 Jun 13PCT/JP2013/066384PCT Thin-film transistor, method for producing a thin-film transistor, and semiconductor device		for filling hole using conductive material

No.	Date of ApplicationApplication NumberCountry Name of Invention	No.	Date of ApplicationApplication NumberCountry Name of Invention
205	2013 Nov 22PCT/JP2013/081559PCT Tissue adhesive film and method for producing same	212	2014 Apr 25PCT/JP2014/061803PCT Molecular weight measurement device and molecular
206	2014 Jan 10 PCT/JP2014/050306 PCT Nanofiber having self-heating properties and biologically active substance release properties, production method for same, and nonwoven fabric having self-heating	213	weight measurement method 2014 May 2 PCT Thin-film transistor and method for manufacturing same
	properties and biologically active substance release capabilities	214	2014 Jun 5 PCT/JP2014/064997 PCT Membrane-type surface stress sensor having antibody
207	2014 Jan 21 201410025118.2 China Nanoporous Alkali-Metal/Alkaline-Earth-Metal		or antigen immobilized thereon, method for producing same, and immunoassay method using same
208	2014 Jan 21 2014-0007407 Korea Manufacturing methods of recombinant proteins using the protein-free, lipid-free medium conditioned cell	215	2014 Aug 25 PCT/JP2014/072131 PCT Blood purification membrane, method for manufacturing blood purification membrane, and dialysis device
209	lines 2014 Feb 21 14/186881 USA Manufacturing methods of recombinant proteins	216	2014 Sep 25PCT/JP2014/075422PCT Highly sensitive multilayer resist film and method for improving photosensitivity of resist film
	using the protein-free, lipid-free medium conditioned cell lines	217	2014 Oct 31 PCT/JP2014/079047 PCT Electrical conduction element, electronic device, and
210	2014 Mar 11 PCT/JP2014/056368 PCT Adhesive bone filler and adhesive bone filler kit		method for operating electrical conduction element
211	2014 Mar 28 PCT/JP2014/059190 PCT Organic EL element and Method for manufacturing	218	PCT/JP2014/080477 PCT Tissue adhesive porous film, its production method and tissue adhesive porous film tape
	same	219	2014 Nov 21 PCT/JP2014/080923 PCT Oxygen reduction electrode catalyst and the oxygen electrode

4. List of International Patent Registrations (January 2013 – December 2014):

Between October 2007 and December 2012, MANA has made 72 International Patent registrations. They are listed in Appendix 8.9 of the report *Facts and Achievements 2012*.

Note: PCT: Patent Cooperation Treaty

EPC: European Patent Convention

No.	Date of RegistrationRegistration NumberCountry Name of Invention	No.	Date of RegistrationRegistration NumberCountry Name of Invention
73	2013 Jan 298361203US Carbon porous body and adsorbent using the same	82	2013 Jul 3ZL200580010769.0China Process for producing porous object comprising
74	2013 Feb 6 1825868 EPC, France, Germany, UK Process for producing porous object comprising apatite/collagen composite fiber	83	apatite/collagen composite fiber 2013 Jul 5 Hong Kong Resin composition
75	2013 Feb 27 2184793 EPC, Germany, UK Switching element and application of the same	84	2013 Jul 10 2423242 EPC, France, Germany Electrically conductive polyrotaxane
76	2013 Apr 9 8414855 US Spherical boron nitride nanoparticles and synthetic method thereof	85	2013 Aug 27 8518584 US Production method for electrode for battery, electrode produced by production method, and battery including
77	2013 May 1 I395360 Taiwan All-solid battery	86	electrode 2013 Sep 18 ZL201080005817.8
78	2013 May 7 8435910		China Mg-based structured member
	US <i>Preparation method for anion-exchangeable, layered double hydroxides</i>	87	2013 Sep 25ZL200980118276.7China Dielectric film, dielectric element, and process for
79	2013 May 28 2585577		producing the dielectric element
	apatite/collagen composite fiber	88	2013 Sep 25 1314031 Korea All-solid battery 1314031
80	2013 Jun 202485635Russia All-solid battery2485635	89	2013 Oct 228563975US Hetero pn junction semiconductor and process for
81	2013 Jul 1I400288Taiwan Resin composition		producing the same

No.	Date of RegistrationRegistration NumberCountry Name of Invention	No.	Date of RegistrationRegistration NumberCountry Name of Invention
90	2013 Nov 5 8575038 US Method for reducing thickness of interfacial layer, method for forming high dielectric constant gate insulating film, high dielectric constant gate insulating film, high dielectric constant gate oxide film, and transistor having high dielectric constant gate oxide film	106	2014 Apr 15 8698077 US Method for determining number of layers of two- dimensional thin film atomic structure and device for determining number of layers of two-dimensional thin film atomic structure
91	2013 Nov 5 8575674 US Ferromagnetic tunnel junction structure, and magneto- resistive element and spintronics device each using same	107	2014 Apr 29 8710730 US Luminescent nanosheets, and fluorescent illuminators, solar cells and color displays utilizing the same as well as nanosheet paints
92	2013 Nov 6140391France, Germany, UK Thin film device with a MnSintermediate layer and its fabrication method	108	2014 Jun 2 1405078 Korea Dielectric element and a method of manufacturing the same
93	2013 Nov 282009323792Australia All-solid battery	109	2014 Jun 248759925US Method for reducing thickness of interfacial layer,
94	2013 Dec 38601610US Optical electric field enhancement element and probe using the same		method for forming high dielectric constant gate insulating film, high dielectric constant gate insulating film, high dielectric constant gate oxide film, and transistor having high dielectric constant gate oxide film
95	2013 Dec 17 1345390 Korea Interface layer reduction method, method for forming high dielectric constant gate insulating film, high dielectric constant gate insulating film, high dielectric constant gate oxide film, and transistor having high	110	2014 Jul 2 ZL2000980134329.4 China Composites and a manufacturing method thereof comprising a polymer matrix and low-molecular organic compound
96	dielectric constant gate oxide film 2013 Dec 17 8609235	111	2014 Jul 8 8771872 US Negative-electrode material and lithium secondary battery using same
	US Porous ceramic material and method of producing the same	112	2014 Jul 16 1422315
97	2013 Dec 248613611US Electrically conductive polyrotaxane	113	2014 Aug 12 8802192
98	2013 Dec 24 8613811 US Graphene-coated member and process for producing same	114	2014 Aug 20 EPC, France, Germany Zinc oxide phosphor and process for producing the same
99	2014 Jan 15 Korea Lithium ion conductive sulfide-based crystallized glass, a solid electrolyte and said solid lithium secondary battery employing the manufacturing method and the crystallized glass	115	2014 Sep 9 8828488 US Methods for producing a thin film consisting of nanosheet monolayer film(s) by spin coat methods, and hyperhydrophilized materials, substrates for an oxide thin film and dialectric materials obtained thereform
100	2014 Jan 288637121US Resin coated member and method of resin coating	116	2014 Sep 10 ZL201180020787.2
101	2014 Feb 1 I425039 Taiwan <i>Thermosetting resin composite composition, resin</i>		China Orientation MAX phase ceramic and a method of manufacturing the same
102	molding and manufacturing method thereof 2014 Mar 5 1500405	117	2014 Sep 242172278EPC, France, Germany Method of resin coating
102	EPC, France, Germany, UK Method for preparing porous composite material	118	2014 Oct 101451697Korea Surface stress sensor
103	2014 Mar 18 8673640 US Porous scaffold, method of producing the same and method of using the porous scaffold	119	2014 Nov 10 1462125 Korea All-solid-state lithium battery 1462125
104	2014 Mar 19 2237320 EPC, Belgium, France Metal electrode and semiconductor	120	2014 Nov 25 8896033 US Electrochemical transistor 2014 Dec 24 ZL201310087447.2 2014 Dec 24
105	2014 Mar 26 1693703 France, Germany, UK Method of fixing organic molecule and micro/nano-article		China Production method of silicon carbide

Appendix 7.9: International Cooperation

List of MOU agreements of MANA with overseas institutions signed between October 2007 and March 2015:

No.	Organization, Country Signed (Expired, Replaced)	No.	Organization, Country Signed (Expired, Replaced)
1	Kent State University, Department of Chemistry, USA Signed: 2008 Jan 10 (Expired: 2013 Jan 10)	21	Friedrich-Alexander University, Erlangen-Nürnberg, Germany
2	Rensselaer Polytechnic Institute, Chemistry and Biological Engineering, USA Signed: 2008 Feb 28 (Expired: 2013 Feb 28)	22	Fudan University, Department of Materials Science, China Signed: 2010 Jul 23
3	University of California, Los Angeles (UCLA), USA Signed: 2008 Mar 24 (Expired: 2013 Mar 24)	23	EWHA Womans University Seoul, Department of Chemistry and Nanoscience, Korea
4	Georgia Institute of Technology (GIT), Center for Nanostructure Characterization, USA Signed: 2008 May 6 (Expired: 2013 May 6)	24	Signed: 2010 Aug 27 Karlsruhe Institute of Technology, Germany Signed: 2010 Sep 16
5	CNRS, Centre d'élaboration de matériaux et d'études structurales (CEMES), France	25	Univesité de la Méditerranée, Marseille, France Signed: 2010 Sep 20
6	University of Cambridge, Nanoscience Centre, UK Signed: 2008 Jun 20 (Expired: 2013 Jun 20)	26	Anhui Key Laboratory of Nanomaterials and Nanostructures, China Signed: 2010 Oct 6
7	Indian Institute of Chemical Technology (IICT), India Signed: 2008 Jul 3 (Expired: 2013 Jul 3)	27	Multidisciplinary Center for Development of Ceramic Materials, Brazil
8	University of Basel, Institute of Physics, National Center of Competence for Nanoscale Science, Switzerland Signed: 2008 Jul 20 (Expired: 2013 Jul 20)	28	Vietnam National University Ho Chi Minh City, Vietnam Signed: 2011 Jan 24
9	Yonsei University, Seoul, Korea Signed: 2008 Sep 1 (Expired: 2013 Sep 1)	29	King Saud University, Saudi Arabia Signed: 2011 Jan 25
10	Indian Institute of Science, Education and Research, India Signed: 2008 Dec 19 (Expired: 2013 Dec 19)	30	LMPG, Grenoble, France Signed: 2011 Feb 1
11	University of Karlsruhe, Institute for Inorganic Chemistry, Supramolecular Chemistry Group, Germany Signed: 2009 Jan 29 (Expired: 2014 Jan 29)	31	Université de Montréal (UdeM), Canada Signed: 2011 Jul 4
12	Fudan University, Department of Chemistry, New Energy	. 32	Flinders University, Australia Signed: 2011 Jul 19
	Signed: 2009 Mar 16 (Expired: 2014 Mar 16)	33	University of Melbourne, Australia Signed: 2011 Sep 21
13	Indian Institute of Technology Madras, National Centre for Catalysis Research (NCCR), India Signed: 2009 Apr 5 (Expired: 2014 Apr 5)	34	Shanghai Institute of Ceramics, China Signed: 2011 Dec 1
14	University of Cologne, Institute of Inorganic Chemistry, Inorganic and Materials Chemistry, Germany	35	Tsinghua University, China Signed: 2012 Jan 28
15	Signed: 2009 May 28 (Expired: 2014 May 28) École Polytechnique Fédérale de Lausanne (EPFL), Institute of Microangingering, Switzerland	36	Hanoi University of Science and Technology (HUST), Vietnam Signed: 2012 Feb 7
	Signed: 2009 Jul 20 (Expired: 2014 Jul 20)		University of Sao Paolo, Brazil Signed: 2012 Apr 25
16	University of Rome Tor Vergata, Center for Nanoscience & Nanotechnology & Innovative Instrumentation (NAST), Italy	38	University College London (UCL), UK Signed: 2012 Oct 8
17	Signed: 2009 Jul 30 (Expired: 2014 Jul 30) University of Heidelberg, Kirchhoff Institute of Physics,	39	Kyungpook National University, Korea Signed: 2013 Jan 18 (Replaced on 2014 Sep 27)
	Germany igned: 2009 Aug 31 (Expired: 2014 Aug 31)	40	Centre Interdisciplinaire de Nanoscience de Marseille (CINaM-CNRS), France
18	Loughborough University, UK Signed: 2009 Oct 28 (Expired: 2014 Oct 28)	41	Signed: 2013 May 2 National Center for Nanoscience and Technology
19	Lawrence Berkeley National Laboratory (LBNL), USA Signed: 2010 Feb 9 (Expired: 2015 Feb 9)		(NCNST), Beijing, China Signed: 2013 Jun 24
20	University of Valenciennes, France Signed: 2010 May 20	42	Huazhong University of Science and Technology (HUST), China Signed: 2013 Jul 29

No.	Organization, Country Signed (Expired, Replaced)	No.	Organization, Country Signed (Expired, Replaced)	
43	Georgia Institute of Technology (GIT), Center for Nanostructure Characterization, USA (Renewal) Signed: 2013 Nov 25	48	Donostia International Physics Center (DIPC), San Sebastian, Spain Signed: 2014 Sep 9	
44	CNRS, Centre d'élaboration de matériaux et d'études structurales (CEMES), France (Renewal) Signed: 2013 Dec 10	49	Kyungpook National University, Korea (Replacement of MOU signed on 2013 Jan 18) Signed: 2014 Sep 27	
45	St. Petersburg State Electrotechnical University (LETI), Russia Signed: 2014 Feb 28 University of Bristol, Bristol Centre for Nanoscience and Quantum Information (NSQI), UK Signed: 2014 Mar 7	50	University of Eastern Finland, Finland Signed: 2014 Dec 31	
46		51	Indian Institute of Science (IISc), Bangalore, India	
		52	University of Toronto, Canada Signed: 2015 Jan 21	
47	University of California Los Angeles (UCLA), The California NanoSystems Institute (CNSI), USA (Renewal) Signed: 2014 Sep 8			

Appendix 7.10: MANA History

MANA History between October 2007 and March 2015:

Fiscal Year 2007

Date	Event	Date	Event
2007 Sep 12	NIMS with the project called "International Center for Materials Nanoarchitectonics (MANA)" has been selected to participate as one of five institutions in the World Premier International	2008 Feb 7	The 1 st MANA Seminar entitled "Nanotechnology, a Key to Sustainability" was given by Dr. Heinrich Rohrer (Nobel Laureate in Physics 1986 and MANA Advisor)
	(WPI) Research Center Initiative, a program sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT)	2008 Feb 28	MANA signed a Memorandum of Understanding (MOU) with Rensselaer Polytechnic Institute, USA
2007 Oct 1	Official Inauguration of MANA	2008 Mar 10-13	The 1 st MANA International Symposium was held in Tsukuba
2007 Oct 18	The Launching Ceremony of MANA was held at Okura Frontier Hotel, Tsukuba	2008 Mar 12	1 st MANA Evaluation Committee Meeting
2008 Jan 10	MANA signed a Memorandum of Understanding (MOU) with Kent State University, USA	2008 Mar 24	MANA signed a Memorandum of Understanding (MOU) with University of California, Los Angeles (UCLA), USA
2008 Feb 1	Launch of the new MANA Website in English		

Fiscal Year 2008

Date	Event	Date	Event
2008 Apr 1	Start of ICYS-MANA Program	2008 May 30	MANA signed a Memorandum of Understanding (MOU) with CNRS, France
2008 Apr 16	1 st MANA Site Visit by the WPI Program Committee	2008 Jun 2	NIMS Overseas Operation Office opened at the University of Washington, USA
2008 May 6	MANA signed a Memorandum of Understanding (MOU) with Georgia Institute of Technology (GIT),	2008 Jun 20	MANA signed a Memorandum of Understanding (MOU) with University of Cambridge, UK
2008 May 7	USA 008 MANA Independent Scientist Ajayan Vinu received ay 7 the Asian Excellent Young researcher Lectureship		MANA signed a Memorandum of Understanding (MOU) with Indian Institute of Technology (IICT), Hyderabad, India
2008 May 20	Award 2008 by the Chemical Society of Japan 1 st Follow-up Meeting by the WPI Follow-Up Committee	2008 Jul 9	MANA Principal Investigator Kenji Kitamura received the "Inoue Harushige Prize" given by the Japan Science and Technology Agency

Date	Date Event		Event
2008 Jul 16	MANA Principal Investigator Takayoshi Sasaki and MANA Scientist Minoru Osada received the "2008 Tsukuba Prize"	2008 Nov 27-28	2 nd MANA Site Visit by the WPI Program Committee
2008		2008	MANA activities were introduced in the NHK
Jul 19	2008 Prof. Sir Harry W. Kroto visited MANA Jul 19 2008 2008 MANA signed a Memorandum of Understanding Jul 20 (MOU) with University of Basel, Switzerland		MANA Independent Scientist Alexei Belik and
2008 Jul 20			ICYS-MANA Researcher Pavuluri Srinivasu received the "Encouragement of Research in
2008 Jul 28 -	The 5 th NIMS-IRC-UCLA Nanotechnology		Materials Science Award" given by the Materials Research Society of Japan
Aug 1	Aug 1		MANA signed a Memorandum of Understanding
2008 Sep 1	MANA signed a Memorandum of Understanding (MOU) with Yonsei University, Seoul, Korea	Dec 19	(MOU) with Indian Institute of Science, Education and Research, India
2008 Sep 11	MANA Principal Investigator Kohei Uosaki was named "International Society of Electrochemistry	2009 Jan 29	MANA signed a Memorandum of Understanding (MOU) with University of Karlsruhe, Germany
	Fellow"		The 2 nd MANA International Symposium was held in Tsukuba
2008 Sep 25	2008 MANA Independent Scientist Masayoshi Higuchi Sep 25 received the "SPSJ Hitachi Chemical Award" given by the Society of Polymer Science, Japan (SPSJ)		MANA signed a Memorandum of Understanding (MOU) with Fudan University, China
2008 Oct 1	Celebration of 1 st Anniversary of MANA. Organizational Reform of MANA	2009 Mar 17	2 ^{ad} Follow-up Meeting by the WPI Follow-Up Committee
2008 Oct 6	MANA Chief Operating Officer Yoshio Bando was named "American Ceramic Society Fellow"	2009 Mar 28	MANA Independent Scientist Ajayan Vinu received the "CSJ Award for Young Chemists" given by the Chemical Society of Japan

Fiscal Year 2009

Date	Event	Date	Event	
2009 Apr 5	MANA signed a Memorandum of Understanding (MOU) with Indian Institute of Technology, Madras, India	2009 Sep 20-22	XJTU-NIMS/MANA Workshop on Materials Science 2009 was held at Xi'an Jiaotong University, China	
2009 Apr 14	MANA Scientist Minoru Osada received the "Young Scientists' Prize" given by the Minister of Education, Culture, Sports, Science and	2009 Sep 25	MANA Independent Scientist Jun Nakanishi received the "Japan Society for Analytical Chemistry Award for Younger Researchers"	
2009 May 8	MANA Principal Investigator Kazuhiro Hono received the "2009 Honda Frontier Award" given by the Honda Mamarial Foundation	2009 Sep 29	MANA Scientist Kohsaku Kawakami received the "JSCTA Award for Young Scientists" given by the Japan Society of Calorimetry and Thermal Analysis	
2009 May 19	MANA Satellite Principal Investigator James K. Gimzewski was elected as "Fellow of the Royal	2009 Oct 2	Prof. Svante Lindqvist, Nobel Museum Director and Chair at the Royal Institute of Technology, Stockholm, visited MANA	
2009 May 28	MANA signed a Memorandum of Understanding (MOU) with University of Cologne, Germany	2009 Oct 5	MANA Principal Investigator Kohei Uosaki received the "ECS Fellow Award" given by the Electrochemical Society	
2009 Jun 15-17	The 8 th Japan-France Workshop on Nanomaterials held at NIMS	2009 Oct 9	Prof. Sir Harry W. Kroto visited MANA for one- on-one meetings with young scientists	
2009 Jul 3	The 1 st MANA-NSC Joint Workshop on Fusion of Nanotechnology and Bioscience was held at the MANA Satellite at University of Cambridge, UK	2009 Oct 10-12	Tsukuba-Shinchu Bilateral Symposium on "Advanced Materials Science and Technology" was held at National Tsing Hua University, Taiwan	
2009 Jul 14	A delegation from U.S. Department of Energy (DOE) and U.S. Department of Defense (DOD) visited MANA	2009 Oct 13	MANA-URTV Joint Workshop on Nanostructured Materials for Sustainable Development was held at University Rome Tor Vergata, Italy	
2009 Jul 20	MANA signed a Memorandum of Understanding (MOU) with EPFL, Switzerland	2009 Oct 13-14	The 1 st MANA-CEMES Joint Workshop on Fusion of Theory and Experiment was held at the MANA Setallite in CNBS Taylorge, France	
2009 Jul 30	MANA signed a Memorandum of Understanding (MOU) with University of Rome Tor Vergata, Italy	2009 Oct 26	MANA Principal Investigator Naoki Ohashi received the "Richard M. Fulrath Award" given by the American Ceramics Society	
2009 Jul 27-31	The 6 th MANA-NSC-CNSI Nanotechnology Students' Summer School was held at the UCLA			
2009 Aug 31	MANA Satellite, Los Angeles, USA MANA signed a Memorandum of Understanding (MOU) with University of Heidelberg, Germany	2009 Oct 28	MANA signed a Memorandum of Understanding (MOU) with Loughborough University, UK	
Date	Event	Date	Event	
---	---	--	--	
2009 Nov 10	Nanjing University-Anhui Normal University- Hokkaido University-MANA Joint Symposium	2010 Feb 4	MANA Independent Scientist Yusuke Yamauchi received "Inoue Research Aid for Young Scientists"	
2009 Dec 2	was held at Nanjing University, China MANA Independent Scientist Ajayan Vinu received the "ICSB Award of Excellence" given by	2010 Feb 9	MANA signed a Memorandum of Understanding (MOU) with Lawrence Berkeley National Laboratory (LBNL), USA	
2009 Dec 10	the Indian Scociety of Chemists and Biologists The Osaka University-MANA/NIMS Joint Symposium on "Advanced Structural and Functional Materials Design" was held at Osaka	2010 Feb 16	MANA Principal Investigator Takayoshi Sasaki ranked as the 18 th most-prolific author in the high quality journal "Chemistry of Materials" (Impact Factor 5.046)	
2009	University Visit of the MANA Satellite at UCLA by WPI	2010 Mar 3	MANA Independent Scientist Masayoshi Higuchi received the "Marubun Academy Award"	
Dec 18 2010	Program Director, Prof. Toshio Kuroki 3 rd MANA Site Visit by the WPI Program	2010 Mar 3-5	The 3 rd MANA International Symposium was held in Tsukuba	
Jan 7-8 2010	Committee The 1 st Waseda University-MANA/NIMS Joint	2010 Mar 5	2 nd MANA Evaluation Committee Meeting	
Jan 14	Symposium on "Advanced Materials Designed at Nano- and Meso-scales toward Practical Chemical Wisdom" was held at Waseda University	2010 Mar 21	MANA Scientist Masanori Kohno received the "Young Scientist Award" given by the Physical Society of Japan (PSJ)	
2010 Jan 31	MANA Satellite Principal Investigator James Gimzewski was featured in the NHK's satellite TV program "The proposal for the future (mirai-e-no teigen)"	2010 Mar 24-26	The Workshop on "Materials Nanoarchitectonics for Sustainable Development" as a part of the "Invitation Program for Advanced Research Institutions in Japan" sponsored by the Japan	
2010 Feb 4	2010MANA Satellite Principal Investigator JamesFeb 4Gimzewski was featured in the NHK's satellite TV		Society for the Promotion of Science (JSPS), was held in Gora, Hakone, Japan	
program "The proposal for the future (mirai-e-no teigen)"	2010 Mar 27	MANA Principal Investigator Kohei Uosaki received the "Chemical Society of Japan Award"		

Date	Event	Date	Event
2010 Apr 1	MANA Principal Investigator Tsuyoshi Hasegawa and MANA Scientist Kazuya Terabe received the "NIMS President's Research Achievement Award"	2010 Aug 18	MANA received a high appraisal from the WPI program committee for the activity in Fiscal Year 2009
2010 Apr 1	MANA Independent Scientist Yusuke Yamauchi received the "Ceramic Society of Japan Award"	2010 Aug 25	Three research subjects proposed by MANA researchers were selected for funding from Core
2010 Apr 13	MANA Independent Scientist Katsunori Wakabayashi received the "Young Scientists' Prize" given by the Ministry of Education, Culture, Sports, Science and Technology (MEXT)		Research of Evolutional Science & Technology (CREST) and Precursory Research for Embryonic Science and Technology (PRESTO) by the Japan Science and Technology Agency
2010 May 20	MANA signed a Memorandum of Understanding (MOU) with University of Valenciennes, France	2010 Aug 27	MANA signed a Memorandum of Understanding (MOU) with EWHA Womans University Seoul, Korea
2010 May 25	ICYS-MANA Researcher Yoshihiro Tsujimoto received the "Research Progress Award" given by the Japan Society of Powder and Powder Metallurgy (JSPM)	2010 Aug 27	The 1 st NIMS-EWHA workshop on "Advanced Functional Materials" (NEWAM-10) was held in Tsukuba
2010 Jun 14-15	The joint IBM and NIMS/MANA symposium on "Characterization and manipulation at the atomic scale" was held in Tsukuba	2010 Sep 9	MANA Principal Investigator Kohei Uosaki received the "Japanese Photochemistry Association Lectureship Award 2010"
2010 Jun 21	MANA signed a Memorandum of Understanding (MOU) with Friedrich-Alexander University Erlangen-Nürnberg, Germany	2010 Sep 16	MANA signed a Memorandum of Understanding (MOU) with Karlsruhe Institute of Technology, Germany
2010 Jul 14	3 rd Follow-up Meeting by the WPI Follow-Up Committee	2010 Sep 20	MANA signed a Memorandum of Understanding (MOU) with Université de la Méditerrannée, Marseille, France
2010 Jul 23	MANA signed a Memorandum of Understanding (MOU) with Fudan University, China	2010 Oct 6	MANA signed a Memorandum of Understanding (MOU) with Anhui Key Laboratory of
2010	Research results of MANA Independent Scientist	Nanomaterials and Nanostructu	Nanomaterials and Nanostructures, China
Aug 9	Aug 9 Ajayan Vinu on "a new fabrication of gold nanoparticles by self-assembly of nanoporous materials" were reported in Nikkei Online	2010 Oct 11	Research results of the Traversa Group (MANA) on "Micro-Solid Oxide Fuel Cells" was introduced on Sankei News and Nikkei Online

Date	Event	Date	Event
2010 Oct 22	Research results on the "Development of an Exhaust Gas Catalyst" by MANA Principal Investigator Katsuhiko Ariga and Hideki Abe	2011 Jan 19	The satellite workshop "Dirac Electron Systems 2011" of the workshop "Graphene Workshop in Tsukuba 2011" was held at NIMS Namiki-site
	(NIMS Advanced Electronic Materials Center) were introduced in Nikkei Online	2011 Jan 24	MANA signed a Memorandum of Understanding (MOU) with Vietnam National University Ho Chi
2010 Oct 26	MANA signed a Memorandum of Understanding (MOU) with Multidisciplinary Center for	2011	Minh City, Vietnam
	Development of Ceramic Materials, Brazil	Jan 25	(MOU) with King Saud University, Saudi Arabia
2010 Oct 28	The 1 st MANA Science Café "Melting Pot Club" on "What is nanotechnology?" was held at Frontier Hotel Okura, Tsukuba	2011 Jan 27-28	The 1 st MANA Grand Challenge Meeting was held in Miura Peninsula, Kanagawa prefecture
2010 Nov 11	Outreach activities of MANA were featured in the NHK program "Ohayou Nippon (Good Morning	2011 Jan 29	Mr. Yoichiro Genba, Minister of State for Science and Technology Policy, visited MANA
2010	Japan)	2011 Feb 1	Launch of the new MANA Website in Japanese
Nov 11	been selected as the recipient of the prestigious "Friedrich Wilhelm Bessel Research Award 2010"	2011 Feb 1	MANA signed a Memorandum of Understanding (MOU) with LMPG, Grenoble, Fance
	given by the Alexander von Humboldt Foundation, and as recipient of the "Catalysis Society of India Award 2010"	2011 Feb 4	Research of MANA Principal Investigator Jinhua Ye was introduced in the NHK Eco Channel
2010 Nov 24-26	The 9 th Japan-French International Workshop was held in Toulouse, France	2011 Feb 6	MANA Principal Investigator Katsuhiko Ariga received the "ISCB Award for Excellence 2011" in the area of Chemical Sciences given by the Indian
2010 Dec 1	The 2 nd Waseda University-MANA/NIMS Joint Symposium was held at NIMS	2011	Society of Chemists and Biologists (ISCB)
2010	Ms. Kumiko Hayashi, Parliamentary Secretary	Feb 18	Science and Technology, Thailand, visited MANA
Dec 9	for Education, Culture, Sports, Science and Technology (MEXT) visited MANA	2011 Feb 18	MANA Independent Scientist Masayoshi Higuchi received the "Gottfried Wagener Prize 2010" given
2010 Dec 15	Mr. Lim Chuan Poh, Chairman, Agency for Science, Technology and Research (A*STAR),	2011	The workshop on "Advanced Functional
2010	Singapore, visited MANA	Feb 28	Nanomaterials" was held in Chennai, India
Dec 21	selected as a winner of the "2010 Feynman Prize in Nanotechnology" given by Foresight Institute, USA	2011 Feb 28	Research of MANA Principal Investigator Tsuyoshi Hasegawa was introduced in the NHK English radio program "Japan and World Update"
2011	The researchers MANA Principal Investigator	2011 Mar 2-4	The 4 th MANA International Symposium was held in Tsukuba
Jan I	Yusuke Yamauchi were featured in the NHK Special program "Can Japan Survive?"	2011 Mar 5	MANA hosted "Prof. Rohrer's Science Class" for junior high-school students
2011 Jan 17	MANA Principal Investigator Katsuhiko Ariga received the "2010 Nice-Step Scientist (NISTEP) Award" by the National Institute of Science and Technology Policy	2011 Mar 5	Prof. Heinrich Rohrer's Science Class 2011 was held at NIMS
		2011 Mar 11	MANA was hit by the Great Tohoku-Kanto earthquake

Date	Event	Date	Event
2011 Apr 1	Four MANA researchers, MANA Principal Investigator Katsuhiko Ariga, MANA Scientist Emiliana Fabbri, MANA Scientist Daniele	2011 Sep 5-8	The 7 th Japan-UK-USA Nanotechnology Students' Summer School was held at the MANA Satellite at University of Cambridge, UK
	Pergolesi and MANA Scientist Tetsushi Taguchi received NIMS President's Research Awards	2011 Sep 17	MANA hosted "Prof. Kroto's Science Class 2011" for preliminary school students and their parents
2011 Jun 28-29	4 th MANA Site Visit by the WPI Program Committee	2011 Sep 21	MANA signed a Memorandum of Understanding (MOU) with University of Melbourne, Australia
2011 Jul 4	MANA signed a Memorandum of Understanding (MOU) with Université de Montréal (UdeM), Canada	2011 Oct 7	The Osaka University-MANA/NIMS Joint Symposium on "Advanced Structural and Functional Materials Design" was held at Osaka
2011	MANA signed a Memorandum of Understanding		University
Jul 19	(MOU) with Flinders University, Australia	2011 Oct 19	4 th Follow-up Meeting by the WPI Follow-Up Committee

Date	Event	Date	Event
2011 Oct 31	The NIMS/MANA-Flinders University Joint Symposium on "Nanoscience and Nanotechnology"	2012 Jan 28	MANA signed a Memorandum of Understanding (MOU) with Tsinghua University, China
2011 Nov 1	was held at NIMS The 3 rd Waseda University-MANA/NIMS Joint Symposium was held at Waseda University	2012 Feb 7	MANA signed a Memorandum of Understanding (MOU) with Hanoi University of Science and Technology, Vietnam
2011 Nov 19	MANA Visit of Minister Masaharu Nakagwa (MEXT)	2012 Feb 8	MANA Principal Investigator Takayoshi Sasaki received the "29 th CSJ Academic Prize" given by
2011 Dec 1	MANA signed a Memorandum of Understanding (MOU) with Shanghai Institute of Ceramics, China	2012	MANA Chief Operating Officer Yoshio Bando
2011 Dec 14	MANA was given the grade "A" in the WPI Program Interim Evaluation	Feb 14	and MANA Principal Investigator Dmitri Golberg received the "3rd Thomson Reuters Research Fron Award"
2011 Dec 17-18	MANA exhibited a booth at "Science Festa in Kyoto 2011"	2012 Feb 16-20	MANA participated in the WPI Joint Exhibition at the 2012 AAAS Annual Meeting in Vancouver
2012	MANA was featured in a special issue of the	100 10 20	Canada
Jan 10	by John Wiley & Sons, Inc.	2012 Feb 29 –	The 5 th MANA International Symposium was held in Tsukuba
2012	MANA Satellite Principal Investigator Françoise	Mar 2	
Jan 23	Winnik won the 2012 Macromolecular Science and Engineering Award of the Chemical Institute of Canada (CIC)	2012 Mar 2	3 rd MANA Evaluation Committee Meeting

Date	Event	Date	Event
2012 Apr 2	MANA Associate Principal Investigator Minoru Osada received the "7 th NIMS President's Research	2012 Oct 3	The MANA 5 th Anniversary Memorial Symposium was held at NIMS
2012 Apr 14	MANA Independent Scientist Satoshi Tominaka received the "Funai Research Incentive Award"	2012 Oct 8	MANA signed a Memorandum of Understanding (MOU) with University College London (UCL), UK
	Technology	2012 Oct 9	MANA Satellite Principal Investigator Zhong Lin Wang was awarded the ACerS Edward Orton, Jr. Memorial Lecture by the American Ceramic Society
2012 Apr 25	MANA signed a Memorandum of Understanding (MOU) with University of Sao Paolo, Brazil		
2012 Apr 26-27	The 2 nd MANA Grand Challenge Meeting was held in Nasu, Tochigi prefecture	2012 Oct 24	5 th Follow-up Meeting by the WPI Follow-Up Committee
2012 May 7	The MANA Second-term Kickoff Meeting was held at NIMS	2012 Nov 7	The NSQI-MANA Joint Symposium was held at NIMS
2012 May 10	The Australia/MANA joint workshop on "Nanoarchitectonics for Innovative Materials & Systems" was held at NIMS	2012 Nov 12-13	Young researcher's MANA Grand Challenge Meeting was held at Miura Peninsula, Kanagawa prefecture
2012 Jul 5	Commemorative Ceremony for the Completion of the new NanoGREEN/WPI-MANA Building	2012 Nov 24	The 2 nd WPI Joint Symposium: Inspiring Insights into Pioneering Scientific Research was held in
2012 Jul 19	The 1 st UdeM-MANA Workshop on "Nano-Life" was held in Montreal, Canada	2012	ANA Principal Investigator Kazuhito Tsukagosh received the 9 th JSPS Prize from the Japan Society for the Promotion of Science
2012 Jul 25	MANA Independent Scientist Yusuke Yamauchi received the "Tsukuba Encouragement Prize"	Dec 17	
2012 Aug 21-22	5 th MANA Site Visit by the WPI Program Committee	2013 Jan 18	MANA signed a Memorandum of Understanding (MOU) with Kyungpook National University, Korea
2012 Aug 27-31	The 8 th MANA-Cambridge/UCL-UCLA Nanotechnology Summer School was held at MANA	2013 Jan 29-30	The 2 nd Canada-Japan Nanotechnology Workshop was held at Tokyo Big Sight.
2012 Sep 5	Prof. Chung-Yuan Mou, Deputy Minister of the National Science Council, Taiwan, visited MANA	2013 Feb 14-18	MANA participated in the WPI Joint Exhibition at the 2013 AAAS Annual Meeting in Boston, USA
2012 Sep 28	MANA Principal Investigator Omar M. Yaghi was featured in Science, volume 337, in the column "Satellite Labs Extend Science".	2013 Feb 27 – Mar 1	The 6 th MANA International Symposium was held in Tsukuba
2012 Oct 1	The PCCP-MANA Symposium on "Nanotechnology, Materials and Physical Chemistry" was held at NIMS	2013 Mar 11	The 4 th NIMS/MANA-Waseda International Symposium was held at NIMS

Date	Event	Date	Event
2013 Mar 18	The Osaka University-NIMS/MANA Joint Symposium on "Advanced Structural and Functional Materials Design" was held at MANA	2013 Mar 19	The International Symposium MASA 2013 on "Material Architectonics for Sustainable Action" was held at MANA

Date	Event	Date	Event
2013 Apr 2	MANA Independent Scientist Yusuke Yamauchi received the 7 th PCCP Prize 2013	2013 Nov 7	MANA Director-General Masakazu Aono won the Nanoscience Prize 2013
2013 Apr 5	MANA Principal Investigator Katsuhiko Ariga has been admitted as a Fellow of the Royal Society of Chemistry	2013 Nov 9-10	MANA represented by MANA's Smart Biomaterials Group participated in the event "Science Agora 2013" held at Odaiba, Tokyo
2013 Apr 16	MEXT Commendations for Science and Technology for FY2013 have been awarded to 3 MANA researchers: Principal Investigator Takayoshi Sasaki (Science and Technology Prize for Research), Independent Scientist Alexei A.	2013 Nov 25	MANA Principal Investigator Katsuhiko Ariga presented a lecture at Takezono Higashi Junior High School in Tsukuba within the "Science Q lectures" sponsored by the Tsukuba-Science City Network
	Scientist Yusuke Yamauchi (Young Scientist's Prize)	2013 Dec 20	MANA Independent Scientist Yusuke Yamauchi received a Chemical Society of Japan (CSJ) Award for Young Chemists FY2013
2013 May 2	MANA signed a Memorandum of Understanding (MOU) with Centre Interdisciplinaire de Nanoscience de Marseille (CINaM-CNRS), France	2014 Jan 29-31	The first edition of the TNT Japan (Trends in Nanotechnology) conference was held at Tokyo Big Sight with a "MANA Day" on January 30
2013 May 16	MANA Advisor, Dr. Heinrich Rohrer (Nobel Laureate in Physics 1986) passed away	2014 Jan 29-31	An exhibition of research results obtained by MANA Scientist Mitsuhiro Ebara, was awarded
2013 May 29	MANA Satellite Principal Investigator Francoise M. Winnik received the Society of Polymer Science Japan (SPSJ)'s International Award 2013		the Project Prize at the 13 th nano tech Internationa Nanotechnology Exhibition & Conference (nano tech 2014)
2013 Jun 24	MANA signed a Memorandum of Understanding (MOU) with National Center for Nanoscience and Technology (NCNST), Beijing, China	2014 Feb 28	MANA signed a Memorandum of Understanding (MOU) with St. Petersburg State Electrotechnical University (LETI), Russia
2013 Jun 28	Research of MANA Scientist Mitsuhiro Ebara has been featured in Japanese television (Yajiuma TV, TV Asabi)	2014 Mar 3-4	The MANA/ICYS Reunion Workshop was held at MANA
2013	The International Workshop on "Thermoelectric	2014 Mar 5-7	The 7 th MANA International Symposium was held in Tsukuba
Jun 28-29	Research & Thermal Management Technology" was held at MANA	2014 Mar 7	MANA signed a Memorandum of Understanding (MOU) with University of Bristol, Bristol Centre
2013 Jul 16	Research of MANA Scientist Mitsuhiro Ebara has been featured in the program "Ohayo-Nippon" of Japanese NHK General TV		for Nanoscience and Quantum Information (NSQ UK
2013 Jul 29	MANA signed a Memorandum of Understanding (MOU) with Huazhong University of Science and	2014 Mar 11-12	The Japan-Taiwan Joint Workshop on "Nanospace Materials" was held at Fukuoka Institute of Technology
2013	MANA participated in the "Summer Science	2014 Mar 24	The 5 th NIMS/MANA-Waseda International Symposium was held at NIMS
Aug 6-8	Camp" for high school students	2014	The International Symposium on Smart
2013 Aug 19-20	6 th MANA Site Visit by the WPI Program Committee	Mar 24-25	Biomaterials was held at MANA
2013 Sep 3	Independent Scientist Genki Yoshikawa from MANA received a Tsukuba Encouragement Prize 2013	Mar 27	awarded the 8^{th} (2014) Young Scientist Award of the Physical Society of Japan
2013 Oct 9-11	The Swiss-Japanese Nanoscience Workshop on "Materials Phenomena at Small Scale" was held at MANA	2014 March 29	MANA Scientist Lok Kumar Shrestha received the Distinguished Lectureship Award of the Chemical Society of Japan (CSJ) Asian International Symposium
2013 Oct 29	6 th Follow-up Meeting by the WPI Follow-Up Committee		

Date	Event	Date	Event
2014 Apr 1-2	The International Workshop <i>Topology in the New</i> <i>Frontiers of Materials Science</i> was held at MANA	2014 Oct 24	A talk by MANA Principal Investigator Katsuhiko Ariga where he explained about <i>Nanoarchitectonics</i> has been broadcasted in Radio Tsukuba
2014 Apr 11	Cube" by two MANA Scientific art picture entitled Rainbow Cube" by two MANA Scientists, Lok Kumar Shrestha and Jonathan Hill, received the Award for Excellence at the 8 th "Beauty in Science Technology Panel exhibition" organized by the Japan Science	2014 Nov 26-28	The 2 nd International Symposium on the Functionality of Organized Nanostructures (FON'14) was held at the National Museum of Emerging Science and Innovation in Odaiba, Tokyo
2014	MANA Principal Investigator Dmitri Golberg was	2014 Dec 31	MANA signed a Memorandum of Understanding (MOU) with University of Eastern Finland, Finland
May 12	awarded the 59th JSM Seto Prize of the Japanese Society of Microscopy	2015 Jan 13	MANA signed a Memorandum of Understanding (MOU) with Indian Institute of Science (IISc), Bangalora, India
May 26	awarded the 18 th Surface Science Society of Japan Prize	2015 Jan 28-30	An exhibition of research results obtained by MANA Independent Scientist Genki Yoshikawa
2014 Jun 18	2014 Jun 18 Thomson Reuters announced the "ISI Highly cited researchers 2014," whose number of citations is in the top 1% of a certain research field. This elite group contains 5 Principal Investigators from MANA:: Katsuhiko Ariga, Yoshio Bando, Dmitri Golberg, Zhong-Lin Wang and Prof. Omar Yaghi		was awarded the Project Prize at the 14 th nano tech International Nanotechnology Exhibition & Conference (nano tech 2015)
		2015 Jan 21	MANA signed a Memorandum of Understanding (MOU) with University of Toronto, Canada
2014 Jun 22-26	The 12 th International Workshop on Beam Injection Assessment of Microstructures in Semiconductors (BIAMS 12) was held at MANA	2015 Jan 30	MANA Principal Investigator Guoping Chen has been admitted as a Fellow of the Royal Society of Chemistry
2014 Jul 18	The International Symposium on Material Architectonics for Sustainable Action (MASA 2014)	2015 Mar 9	MANA Scientist Satoshi Ishii received the Konica Minolta Imaging Science Encouragement Award for FY2014
2014	was held at MANA	2015 Mar 11-13	The 8 th MANA International Symposium was held in Tsukuba
Sep 1-2	Committee	2015 Mar 13	4 th MANA Evaluation Committee Meeting
2014 Sep 9	MANA signed a Memorandum of Understanding (MOU) with Donostia International Physics Center (DIPC), San Sebastian, Spain	2015 Mar 18	MANA Scientist Jin Kawakita received the Japan Institute of Metals and Materials Meritorious Award
2014 Sep 17	MANA Principal Investigator Kazuhito Tsujagoshi and MANA Research Associate Katsuyoshi Komatsu received the "Paper Award 2014" by the Japan Society for Applied Physics (JSAP)	2015 Mar 31	MANA Scientist Mitsuhiro Ebara received the Silver Award of the Tanaka Precious Metals' 2014 "Precious Metals Research Grants"

MANA is operating with the financial support of the World Premier International Research Center Initiative (WPI) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT)

International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS)

1-1 Namiki, Tsukuba, Ibaraki 305-0047, JAPAN Phone: +81-29-860-4709, Fax +81-29-860-4706 E-mail: mana@nims.go.jp URL: http://www.nims.go.jp/mana/