

Nano Superconductivity as a Novel Source of Terahertz Electromagnetic Wave

S.-Z. Lin and X. Hu Nano-System Theoretical Physics Group WPI Center for Materials Nanoarchitectonics National Institute for Materials Science

S.Z. Lin and XH, PRL **100**, 247006 (2008) XH and S.-Z. Lin, PRB **78**, 134510 (2008)

Introduction

- THz electromagnetic wave
- Josephson effect
- recent experimental breakthrough
- theoretical model
- new dynamic state in Josephson junctions: π kink state

Summary

□ Spectrum of electromagnetic wave

Important applications range from DNA diagnosis to security check
 vibration modes of proteins and DNA molecules in the THz range.

Introduction M. Tonouchi, Nature Photonics, vol. 1, 97 (2007) III-V lase MARAT 104 10³ Gunn Optics 10² Quantum cascade laser Power (mW) 10¹ Electronics photomixing Photonics 10⁰ 10-1 quantum cascade 10-2 laser

Superconductivity: a macro quantum state

Bloch theorem: hoping on uniform 1D lattice

$$\psi_k = \sum_{\nu} \psi_{\nu} e^{ik\nu} \qquad E(k) = E + 2J_0 \cos k$$

Superconductivity: broken gauge symmetry ⇔fixed phase of w.f. ⇔coherent condensate of many states with different number of Cooper pairs

Josephson effect

□ dc Josephson relation:

 $I = I_c \sin \gamma$

□ ac Josephson relation:

$$V = \frac{\hbar}{2e} \frac{d\gamma}{dt}$$

THz oscillation

 $f = 0.483 \left[\frac{\text{THz}}{\text{mV}} \right] \times V[\text{mV}]$

Group velocity

$$\frac{\hbar d\langle n\rangle}{dt} = \frac{\partial E(k)}{\partial k} \sim \sin k$$

Force equation: voltage V

$$E_{_{V+1}}-E_{_V}=2eV$$

$$\frac{d\left\langle \hbar k \right\rangle}{dt} = 2eV$$

Continuous radiation possible in principle

BSCCO as Intrinsic Josephson Junctions

Discovery of BSCCO-2212

H. Maeda et al. Jpn. J. Appl. Phys. 27, L209 (1988)

Evidences of Josephson effect

R. Kleiner et al. PRL 68, 2394 (1992)

weak screening ← superconductivity in the nano scale

Introduction

New breakthrough: L. Ozyuzer et al., Science **318**, 1291 (2007)

○ EM radiation at 0.6THz ○ energy enhancement of 3 orders

□ Key experimental results:

(I) frequency and voltage obey the ac Josephson relation (II) frequency of radiation follows the cavity relation: $\lambda_{EM} = 2w$ (III) coherent state along the c-axis \leftarrow radiation power $\sim N^2$ (IV) radiation in narrow regime of voltage \rightarrow cavity resonance

Basic equations for multi junctions

Coupled sine-Gordon equations

$$\Delta P_{l} = \left(1 - \zeta \Delta^{(2)}\right) \left(\sin P_{l} + \partial_{t}^{2} P_{l} + \beta \partial_{t} P_{l} - J_{ext}\right)$$

•
$$\Delta^{(2)}Q_l = Q_{l+1} + Q_{l-1} - 2Q_l$$

ac Josephson relation:

$$\partial_t P_l = E_l^z$$

GL relation for junction:

$$\partial_x P_l = \zeta s \left(J_{l+1}^x - J_l^x \right) + B_l^y$$

Total current:

$$J_l^z = \sin P_l + \beta E_l^z + \partial_t E_l^z$$

□ Maxwell equation □ Current conservation $\nabla \times \mathbf{B} = \mathbf{J}$ div $\mathbf{J} = 0$ Sakai et al. (1993); Kleiner et al. (1994) Koyama et al. (1996); Bulaevskii et al. (2006)

P_I: gauge invariant phase difference

Mesa sample as a cavity

→ tangential magnetic field is vanishingly small → establish a cavity Refs. Bulaevskii & Koshelev: PRL (2007)

New solution: Kink state

Form of solution:

$$P_l(x,t) = \omega t + A\cos\frac{\pi x}{L}\sin(\omega t + \varphi) + f_l P^s(x) \qquad f_l = (-1)^l$$
$$f_l = (-1)^{[l/2]}$$

○ ac Josephson term ○ Josephson plasma term ○ coupling term

□ Why cos(kx) ?

eigen function of Laplace equation satisfying b.c. $\partial_x P|_{edge} = 0$

$$\circ \qquad E^{z} = \partial_{t} \tilde{P}, \qquad B^{y} = \partial_{x} \tilde{P}$$

Expansion of sine of sine in terms of Bessel function

$$\exp(iz\sin\omega t) = \sum_{n=-\infty}^{\infty} J_n(z)\exp(in\omega t)$$
$$\sin[\omega t + f_l P^s + z\sin(\omega t + \varphi)] = \sum_{n=-\infty}^{\infty} J_n(z)\sin[(n+1)\omega t + n\varphi + f_l P^s]$$

• Physics of Shapiro steps: appearance of dc component

□ CSG equation for the solution

$$-(\pi/L)^{2} A g_{10}^{m} \sin(\omega t + \varphi) + f_{l} \partial_{x}^{2} P^{s} =$$

$$\beta \omega - J_{\text{ext}} - A \omega^{2} g_{10}^{m} \sin(\omega t + \varphi) + A \beta \omega g_{10}^{m} \cos(\omega t + \varphi)$$

$$+ (1 - \zeta \Delta^{(2)}) \sum_{n=-2,-1,0} J_{n} (A g_{10}^{m}) \sin[(n+1)\omega t + n\varphi + f_{l} P^{s}]$$

 πX

m()

up to fundamental frequency: $sin(\omega t) \& cos(\omega t)$

difference operator $\Delta^{(2)}$

$$\Delta^{(2)}Q_l = Q_{l+1} + Q_{l-1} - 2Q_l$$

For the two states the CSG eqs are decoupled $(\Box \Delta^{(2)} \cos(f_l P^s)) = 0$ They are stable, and observed in simulations frequently.

differential equation for Ps

$$g_{10}^{m}(x) = \cos\frac{\pi x}{L}$$

$$\partial_x^2 P^s = q \varsigma \cos \varphi J_{-1}(Ag_{10}^m) \sin P^s \tag{1}$$

• boundary condition: $\partial_x P^s |_{edge} = 0$ • width of kink: $1/\sqrt{\varsigma}$

Texture of superconductivity phase along c axis

- Phase difference evolves with time linearly in accordance with the ac Josephson relation.
- **Static part** P_l^s : π phase kink

dc supercurrent

IV characteristics

$$g_{10}^{m}(x) = \cos\frac{\pi x}{L}$$

$$J_{\text{ext}} = \beta \omega - \frac{\sin \varphi}{L} \int_0^L J_{-1}(Ag_{10}^m) \cos P^s dx = \beta \omega \left(1 + A^2/4\right)$$
(2)

• the kink P^s permits pumping large current and energy

Coupling between dc driving and transverse plasma

○ cf. Koshelev and Bualevskii

The new kink state builds up strong coupling automatically.

IV characteristics: current step at cavity voltage

Cavity mode
$$c' = c/\sqrt{\varepsilon_c}$$

 $\omega_{cavity} = \frac{\pi}{L_x} = 7.854 \Leftrightarrow \sim 0.6 \text{THz}$
 $V = \phi_0/2\sqrt{\varepsilon_c}L_x = 1.225 \text{[mV]}$
O ac Josephson relation holds
O negative differential resistance

cf. ZFS in single junction

Small A approximation: take linear terms in (3) & (4)

$$J_{\text{ext}} = \beta \omega \left[1 + \frac{\left(I_{10}^{m}\right)^{2}}{\left(\omega^{2} - \left(\pi/L\right)^{2}\right)^{2} + \left(\beta\omega\right)^{2}} \right]$$

A. Koshelev, PRB **78**, 174509 (2008) $I_{10}^{m} = \frac{1}{L_{x}} \int_{0}^{L_{x}} g_{10}^{m} \cos P^{s} dx \approx 2/\pi$

Radiated energy: taking the mesa in the experiments

 $P=2000 \text{ x } L_z \text{ x } L_y = 6 \text{ mW}$

optimal value upon Z variation

Zigzag Staircase

Wedged Blocks

Kink state: (1,1) mode of rectangular mesa

Solution:

$$P_l(x, y, t) = \omega t + A \cos \frac{\pi x}{L_x} \cos \frac{\pi y}{L_y} \sin(\omega t + \varphi) + f_l P^s(x, y)$$

] 2D phase kink:
$$(\partial_x^2 + \partial_y^2)P^s = q \varsigma \cos \varphi J_{-1}(Ag_{11}^m) \sin P^s$$

$$g_{11}^{m}(x, y) = \cos(\pi x/L_{x})\cos(\pi y/L_{y})$$

$$\omega_{11} = \sqrt{(\pi/L_x)^2 + (\pi/L_y)^2}$$

K. Kadowaki et al.Physica C 468,634 (2008); andpreprints

Cylindrical geometry

XH and S.-Z. Lin, PRB **78**, 134510 (2008) Kadowaki group: conf. talks; preprint; poster XH and S.-Z. Lin, in preparation

$$P_l(\boldsymbol{r},t) = \omega t + A J_1\left(\frac{v_{11}^c}{a}\rho\right) \cos\phi \sin(\omega t + \varphi) + f_l P^s(\boldsymbol{r})$$

Summary Thank you !

□ We found a new dynamic state in Josephson junctions

• π kink in superconductivity phase

- the basic principle is the Josephson effect.
- feeding grass to get milk, pumping water to get oil
- efficiency<10%, dissipations inevitable, no free lunch !</p>
- Our theory explains all the important features of experiments so far.
- The theoretical picture is based on large-scale computer simulations
 intuition very limited for highly nonlinear sine-Gordon systems

