Diamond Power MOSFETs using 2D Hole Gas with >1600V Breakdown

Department of Nanoscience and Nanoengineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
*kwara@waseda.waseda.jp

Stabilizing 2 dimensional hole gas (2DHG) on H-terminated (C-H) diamond surface opens a way to high power and high frequency device application of diamond. We have realized the thermal stability (up to 800K) of 2DHG at the interface between Al_2O_3 and H-terminated diamond (C-H) diamond by high temperature atomic layer (ALD) deposition of Al_2O_3 [1,2]. Using the ALD Al_2O_3 as gate insulator and The C-H diamond lateral MOSFETs shows very wide temperature (10K-673K) and high voltage operation (~1600V) [3,4].

At off-state, breakdown voltage \(V_B \) as a function of gate-drain length \(L_{GD} \) shows high-voltage durability in planar FET. In recent power FETs like AlGaN/GaN FETs, their properties are often evaluated by \(V_B/L_{GD} \). In wide bandgap semiconductors, the \(V_B/L_{GD} \) with 1 MV/cm is a critical value for lateral power devices. The \(V_B / L_{GD} \) relationship of C-H diamond MOSFETs is shown in Fig.1. The \(L_{GD} \) of 2-10 \(\mu \)m, the \(V_B/L_{GD} \) is on the line of 1 MV/cm up to \(V_B \sim 1000 \) V. At \(L_{GD} \) >10 \(\mu \)m, \(V_B \) exceeds 1000 V and reached 1646 V at \(L_{GD} \) of 22 \(\mu \)m (Fig.1 and 2). It shows the best performance in diamond FETs and is equivalent to those of SiC or AlGaN/GaN planar FETs. In diamond FETs, equivalent \(V_B \) of 1500 V was only reported in a MESFET composed of boron doped channel and drift layer with \(L_{GD} \) of 30 \(\mu \)m [5]. The \(V_B/L_{GD} \) is 0.5 MV/cm for diamond MESFET [5], 0.8 MV/cm for SiC planar MOSFETs [6], 1.0 MV/cm for AlGaN/GaN FETs [7], and 1.6 MV/cm for an AlGaN/AlGaN FET [7], respectively. 1.6 MV/cm is the highest for planar FETs at present. In the C-H MOSFET, the \(V_B/L_{GD} \) is above 2 MV/cm up to 2 \(\mu \)m \(L_{GD} \), 1.0 MV/cm in 2-10 \(\mu \)m, 0.75 MV/cm above 10-22 \(\mu \)m. The values of C-H MOSFETs without field plate structure now become comparable to SiC, GaN or AlGaN planar FETs with field plate. Diamond has a potential to exceed 3 MV/cm as indicated at 365 V at \(L_{GD} \) of 1 \(\mu \)m (Fig.1). Field plate or super junction will realize \(V_B/L_{GD} > 3 \) MV/cm up to \(V_B \sim 2000 \) V.

At on-state, current density is an important parameter. Drain current density normalized by gate width reaches 100mA/mm in the C-H MOSFET with \(V_B \) of ~1500V. This value is higher than those of diamond MESFET (1mA/mm) [5] using boron-doping, SiC planar MOSFETs (90mA/mm) [6] and comparable to those of AlGaN/GaN (~300mA/mm) [7] and AlGaN/AlGaN (~200mA/mm) [7]. Between 100K-600K C-H diamond MOSFETs can preserve almost the same FET performance indicating a wide temperature power device application. High current density at wide temperature can be achieved by 2DHG, not by boron-doping layer.

Fig. 1 Maximum breakdown voltages \(V_B \) of C-H diamond MOSFETs as a function of gate to drain length \(L_{GD} \).
