MANA International Symposium 2025
Session 2-3
Abstract
To explore the nature of many-body electrons in quantum materials, numerical algorithms have been developed in parallel with advances in computational infrastructure. In recent years, machine learning has begun to engage with and augment these approaches. Notably, numerical simulations based on a generalized entangled wave function called resonating-valence-bond ansatz
By leveraging recent advances in numerical methods, we have extended the method of generator coordinates
We applied the present method to typical copper oxide superconductors. By simulating neutron scattering spectra of the cuprates, we clarified the material dependence of the energy scale of spin excitations and found that it does not correlate with the optimal superconducting critical temperatures. By combining with electron energy loss and photoemission spectroscopy spectra, we can elucidate entangled nature of the many-body electrons in the cuprates.
Reference
- P. W. Anderson, Mater. Res. Bull. 8, 153 (1973). DOI: 10.1016/0025-5408(73)90167-0
- P. Fazekas and P. W. Anderson, Philos. Mag. 30, 423 (1974). DOI: 10.1080/14786439808206568
- Y. Nomura, A. S. Darmawan, Y. Yamaji, and M. Imada, Phys. Rev. B 83, 205152 (2017). DOI: 10.1103/PhysRevB.96.205152
- D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953). DOI: 10.1103/PhysRev.89.1102
- J. J. Griffin and J. A. Wheeler, Phys. Rev. 108, 311 (1957). DOI: 10.1103/PhysRev.108.311
- T. Li and F. Yang, Phys. Rev. B 81, 214509 (2010). DOI: 10.1103/PhysRevB.81.214509
- K. Ido, M. Imada, and T. Misawa, Phys. Rev. B 101, 075124 (2020). DOI: 10.1103/PhysRevB.101.075124