Dislocation & Deformation mechanism

[P01] The interaction between dislocations and precipitates in the AA2050 aluminium alloy: TsaiFu Chung¹, Yo-Lun Yang², Chien-Nan Hsiao³, Wei-Chih Li¹, Jer-Ren Yang1, Takahito Ohmura4; 1Department of Materials Science and Engineering National, Taiwan University, ²Department of Mechanical Engineering, Imperial College London, ³Instrument Technology Research Center, National Applied Research Lab, ⁴National Institute for Materials Science

[P02] Effect of Y addition on the deformation behaviour of Mg micro-pillars: Jing Wu¹, Shanshan Si¹, Kosuke Takagi², Tian Li¹, Yoji Mine², Kazuki Takashima², Yu Lung Chiu¹; ¹University of Birmingham, ²Kumamoto University

[P03] Micro-shear deformation behaviour of long-period stacking ordered phase single crystals in MgssZn₆Y₉ alloy: Kosuke Takagi¹, Kohei Kyuma¹, Yoji Mine¹, Jing Wu², Yu Lung Chiu², Kazuki Takashima¹; ¹Department of Materials Science and Engineering, Kumamoto University, ²School of Metallurgy and Materials, University of Birmingham

[P04] Interactions between dislocations and grain boundary investigated by TEM and nanoindentation in Si steel: Ya-Ling Chang, Seiichiro II, Takahito Ohmura; Research Center for Structural Materials, National Institute for Materials Science

[P05] X-ray topography of dislocations by indentation of protein crystals: Ryo Suzuki¹, Chi Chika Shigemoto¹, Hidenobu Murata¹, Masaru Tachibana¹, Kenichi Kojima²; ¹Graduate School of Nanobioscience, Yokohama City University, ²Department of Education, Yokohama Soei University

[P06] Effect of α/θ interface structure on the initiation of plasticity: Yanxu Wang^{1,2}, Yo Tomota², Takahito Ohmura^{1,2}; ¹Kyushu University, ²National Institute for Materials Science

[P07] Local deformation behavior of half-Heusler ZrNiSn and Heusler ZrNi2Sn: Yusuke Tsubono^{1,2}, Yoshisato Kimura¹, Takahito Ohmura³, ¹Department of Materials Science and Engineering, Tokyo Institute of Technology, ²Graduate student, ³ Research Center for Structural Materials, National Institute for Materials Science

[P08] Influence of Si content on nanoindentation behavior of Si added IF steel: Takuya Suzuki¹, Nozomu Adachi¹, Yoshikazu Todaka¹, Seiichiro II², Takahito Ohmura²; Department of Mechanical Engineering, Toyohashi University of Technology, ² Research Center for Structural Materials, National Institute for Materials Science

[P09] Evaluation of mechanical properties of MosSiB2 via micropillar compression and **nanoindentation**: Takuya Yoshida¹, Sojiro Uemura¹, **Kyosuke** Yoshimi², Sadahiro Tsurekawa³; ¹Department of Materials Science and Engineering, Graduate School of Science and Technology, Kumamoto University, ²Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, ³Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University

[P10] Identification of operative slip systems in brittle intermetallics by nanoindentation method: Nobuaki Sekido¹, Yusuke Wada¹, Takahito Ohmura², Seiji Miura³, Kyosuke Yoshimi¹; Department of Materials Science and Engineering, Tohoku University, ²Center for Structural Materials, National Institute for

Materials Science, ³Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University

(P11) The effect of grain size on plasticity initiation during nanoindentation in interstitial free steel: Hongxing Li¹, Si Gao², Ruzic Jovana¹, Nobuhiro Tsuji², Takahito Ohmura¹; ¹Research Center for Structural Materials, National Institute for Materials Science, ²Department of Materials Science and Engineering, Kyoto University

[P12] Real time analysis of dislocation motion and mechanical response in pure aluminum bicrystal using *in-situ* deformation in TEM: Takero Enami¹, Seiichiro II², Takahito Ohmura²; Sadahiro Tsurekawa³; ¹Department of Materials Science and Engineering, Graduate School of Science and Technology, Kumamoto University, ²Research Center for Structural Materials, National Institute for Materials Science, ³Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University

[P13] Indentation-induced intermittent plasticity associated with collective motion of dislocation in BCC metals: <u>Takahito Ohmura</u>^{1,2}, Takuya Suzuki¹; ¹Research Center for Structural Materials, National Institute for Materials Science, ²Kyushu University

[P14] Mechanical properties of ultra-fine grained Fe-Ni-Al-C alloy containing intermetallic compounds: Si Gao¹, Yu Bai¹, Wenqi Mao¹, Akinobu Shibata^{1,2}, Nobuhiro Tsuji^{1,2}; ¹Department of Materials Science and Engineering, Kyoto University, ²Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University

[P15] Application of modified optical indentation microscopy as new in situ indentation method: Takahiro Mineta¹, Seiji Miura², Kazuhiko Oka¹, Tatsuya Miyajima³; Department of Mechanical Science and Engineering, Graduate School of Science and Technology, Hirosaki University, ²Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, ³National Institute of Advanced Industrial Science and Technology (AIST)

Modeling & Simulation

【P16】 Understanding nanoindentation in composites - simulations and experiments for cemented carbide binders: David Linder¹, Jonas Faleskog², Martin Walbrühl¹, John Ågren¹, Annika Borgenstam¹; ¹Department of Materials Science, KTH Royal Institute of Technology, ²Department of Solid Mechanics, KTH Royal Institute of Technology

【P17】 Finite element simulation of nanoindentation using elastoplastic constitutive model base on dislocation density: <u>Ikumu</u> <u>Watanabe</u>, Research Center for Structural Materials, National Institute for Materials Science

(P18) Three-dimensional microstructural observa-tion around nano indent on dual phase steels: Reon Ando¹, Takashi Matsuno^{1,2,3}, Norio Yamashita², Hideo Yokota², Ikumu Watanabe³, Takahito Ohmura³; ¹Department of Mechanical and Aerospace Engineering, Tottori University, ²Center for Advanced Photonics, Riken, ³ Research Center for Structural Materials, National Institute for Materials Science

【P19】 Inverse estimation of elasto-plastic properties of alloys from single indentation test with finite element method: Kenta Goto, Ikumu Watanabe, Takahito Ohmura; Research Center for Structural Materials, National Institute for Materials Science

(P20) Effect of porosity on the mechanical properties of sintered porous Ag: microcompression experiments and simulations: Chuantong Chen¹, Chun Pei², Shijo Nagao¹, Katsuaki Suganuma¹; ¹The Institute of Scientific and Industrial Research, Osaka University, ²The School of Reliability and Systems Engineering, Beihang University

[P21] Effect of apex angle on the restitution coefficient of hammer with pyramidal indenter: Tomohiro Inoue, Daichi Urakawa, Ryo Ichikawa, Kenji Matsuda; Department of Mechanical and Control Engineering, Kyushu Institute of Technology

[P22] Application of continuum mechanicsbased modelling into nanoporous metal-based **lithium-ion batteries**: Hoon-Hwe Cho¹, Matthew P. B. Glazer², David C. Dunand³; ¹Department of Materials Science and Engineering, Hanbat National University, ²Materials and Corrosion Practice, Exponent, Engineering Inc., ³Department of Materials Science and Engineering, Northwestern University

【 P23 】 Micro-photoelastic evaluation of indentation-induced stress in glass: Keisuke Asai¹, S. Yoshida¹, A. Yamada¹, J. Matsuoka¹, A. Errapart², C.R. Kurkjian³; ¹University of Shiga Prefecture, ²Trenz Electronic GmbH, ³Rutgers University

【 P24 】 Molecular dynamics study on nanoindentation of iron with a planar defect: Masato Wakeda; Research Center for Structural Materials, National Institute for Materials Science

【P25】 A finite element method and neural networks comparison to determine material proprieties using berkovich indentation test:

Marcus V. L. Pazini, Oscar G. Suarez, María C.

M. Farias; Centro de Ciência Exatas e da Tecnologia, Universidade de Caxias do Sul

[P26] Determination of tensile-like elastoplastic properties in AA2198 using nanoinstrumented indentation test: Giovanni Maizza¹, Renato Pero², Frediano De Marco³, Roberto Montanari², Takahito Ohmura⁴; Department of Applied Science and Technology (DISAT), Politecnico di Torino, ²Department of Industrial Engineering, Università di Roma "Tor

Vergata", ³National Interuniversity Consortium of Materials Science and Technolog (INSTM), ⁴Research Center for Structural Materials, National Institute for Materials Science

[P27] Boundary layer structures in indentation studies of aluminium: Tatsuya Sugihara¹, Anirudh Udupa², Koushik Viswanathan²; ¹Department of Mechanical Engineering, Osaka University, ²School of Industrial Engineering, Purdue University

Characterization & Local property

【 P28 】 Nanostructure in quenched Fe-C martensite: Dehai Ping¹, Xuan Liu^{1,2}, Xing Lu², Takahito Ohmura¹, Masato Ohnuma³; ¹Research Center for Structural Materials, National Institute for Materials Science, ²School of Materials Science and Engineering, Dalian Jiaotong University, ³Faculty of Engineering, Hokkaido University

【P29】 Microstructural characterization of water-quenched high carbon Fe-C alloys: Xuan Liu^{1,2}, Xing Lu², Dehai Ping¹, Takahito Ohmura¹, Masato Ohnuma³; ¹Research Center for Structural Materials, National Institute for Materials Science, ²School of Materials Science and Engineering, Dalian Jiaotong University, ³Faculty of Engineering, Hokkaido University

(P30) The measurement of elastic modulus of high-elastic single crystals by nanoindentation: Yukimi Tanaka, Yutaka Seino¹, Koichiro Hattori; National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ-AIST)

(P31) Effect of heat and hydrogen flux on the nano-mechanical properties of tungsten: Yeonju Oh, Nojun Kwak, Heung Nam Han; Department of Materials Science and Engineering & Research Institute of Advanced Materials, Seoul National University

[P32] Size dependence of strength of single-crystal pure aluminum micropillars: Naoki Takata¹, Soichiro Takeyasu², Asuka Suzuki¹, Makoto Kobashi¹; ¹Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Graduate Student, Department of Materials Process Engineering, ²Graduate School of Engineering, Nagoya University

(P33) Multi-point nano-indentation analyses on multi-phase alloys for the characterization of mechanical properties of phases: Seiji Miura¹, Genki Fukagawa², Ken-ichi Ikeda¹; ¹Division of Material Science and Engineering, Hokkaido University, Graduate student, ²Graduate School of Materials Science and Engineering, Hokkaido University

Tinghui Man¹, Takahito Ohmura^{1,2}, Yo Tomota²; Department of Materials Physics and Chemistry, Kyushu University, ²Research Center for Structural Materials, National Institute for Materials Science

【P35】 Epsilon-martensite variant structure developed beneath nanoindentation on a Fe-Mn-Si shape memory alloy: <u>Takahiro Sawaguchi</u>, Kaoru Sekido, Takahito Ohmura; Research Center for Structural Materials, National Institute for Materials Science

[P36] Multi-scale study of A516 dual-phase steel elastoplastic behavior using nano- and micro-indentation: Cécile Escaich^{1,2}, Gabrielle Turcot^{1,2}, Daniel Paquet², Myriam Brochu¹, Sylvain Turenne¹, Martin Lévesque¹; Department of Mechanical Engineering, École Polytechnique de Montréal, ²Hydro-Quebec Research Institute

(P37) Experimental simulation of fracture and deformation of fine ceramic particles by in situ compression test for aerosol deposition process: Shota Kuroyanagi^{1,3}, Atsushi Yumoto², Jun Akedo³, Kentaro Shinoda³; ¹Department of Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, ²Department of Materials Science and Engineering, Shibaura Institute of Technology, ³Advanced Coating Technology

Research Center, National Institute of Advanced Industrial Science and Technology (AIST)

[P38] Evaluation of hydrogen influence on plastic deformation behavior of ferritic low alloy steels by the nano-indentation method: Nobuo Nagashima, Masao Hayakawa; Research Center for Structural Materials, National Institute for Materials Science

【P39 】 Nanoindentation characterization in interstitial-free steel: Ling Zhang^{1,2}, <u>Xiaojuan Jiang</u>¹, Guilin Wu¹, Xiaoxu Huang¹; ¹College of Materials Science and Engineering, Chongqing University, ²Electron Microscopy Center of Chongqing University, Chongqing University

[P40] distribution **Hardness** of heterogeneous-nano structured stainless steels fabricated by heavily cold-rolling: Shuhei Kobayashi¹, Watanabe¹, Chihiro Yoshiteru Todaka³, Aoyagi², Yoshikazu Masakazu Kobayashi³, Hiromi Miura³, Takahito Omura⁴; ¹Division of Mechanical Engineering, Kanazawa ²Department of Finemechanics, Tohoku University, ³Department of Mechanical Toyohashi Engineering, University Technology, ⁴National Institute for Materials Science

【P41】 Nano-indentation study of HCP martensite developed in a high-Mn ferrous alloy; <u>Ilya Nikulin</u>, Eri Nakagawa, Takahiro Sawaguchi, Takahito Ohmura; Research Center for Structural Materials, National Institute for Materials Science

【 P42 】 Study on hardness and thermal expansion properties with grain growth in electroformed nano-crystalline Fe-52wt%Ni alloy: Minsu Lee, Hyeonjin Eom, Tai Hong Yim; Surface R&D group, Korea Institute of Industrial Technology

[P43] Ductile to brittle temperature transition of individual phases in 1018 steel: Eric Hintsala, <u>Douglas Stauffer</u>; Bruker Nano, Inc.

[P44] Correlation between dispersion of VC interphase precipitation and local hardness of ferrite in low carbon steels: Yongjie Zhang¹, Goro Miyamoto¹, Takahito Ohmura², Tadashi Furuhara¹; ¹Institute for Materials Research, ²Research Center for Structural Materials, National Institute for Materials Science

[P45] Compression tests for submicrometer spherical particles by SEM indenter: Naoto Koshizaki¹, Mitsuhiko Kondo¹, Nobuyuki Shishido², Shoji Kamiya³, Yoshie Ishikawa⁴; ¹Graduate School of Engineering, Hokkaido University, ²Green Electronics Research Institute, Kitakyushu, ³Nagoya Institute of Technology, ⁴Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)

[P46] Elastic modulus evaluation of polymer materials at microscopic area with indentation method: Akihiro Koike; NC Project, Corporate R&D Dept., DIC Corporation

[P47] Dynamic viscoelastic response of Ag and In doped chalcogenide glasses: Abhishek Chaturvedi¹, G.Sreevidya Varma², Sundarrajan Asokan², Upadrasta Ramamurty¹; ¹Department of Materials Engineering, Indian Institute of Science, ²Department of Instrumentation and Applied Physics, Indian Institute of Science

[P48] Spatial heterogeneity of elastic behavior in amorphous alloys: <u>Koudai Takano</u>¹, Masato Ohnuma¹, Giselher Herzer², Takahito Ohmura³; ¹Fucluty of Engineering, Hokkaido University, ²Vacuumschmelze GmbH & Co. KG, ³Research Center for Structural Materials, National Institute for Materials Science

【 P49 】 Evaluation of surface oxide film property of nuclear structural materials for estimation of stress corrosion cracking initiation susceptibility: Min-Jae Choi, Dong-Jin Kim; Nuclear Materials Division, Kore Atomic Energy Research Institute

[P50] Evaluation of thin-film interfacial properties using single nanoindentation testing: Jinwoo Lee¹, Sungki Choi², Dongil Kwon¹; ¹Department of Materials Science and Engineering, Seoul National University, ²NanoIs

High-temperature & Applications

【P51】 Effect of interstitial oxygen on the Vickers and Rockwell hardness of pure titanium prepared by vacuum arc melting: Jung-Min Oh, Jae-Won Lim; Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University

(P52) Effect of oxygen on the micro-Vickers hardness of bulk titanium prepared by deoxidation process: Taeheon Kim, Jung-Min Oh, Jae-Won Lim; Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University

[P53] A quantitative measurement of interfacial adhesion for thermal barrier coatings by cross-sectional indentation method: Liberty T. Wu¹, Rudder T. Wu², Ping Xiao³, Toshio Osada¹, Xiaofeng Zhao⁴; ¹Research Center for Structural Materials, National Institute for Materials Science, ²International Center for Materials Nanoarchitectonics, National Institute for Materials Science, ³The School of Materials, The University of Manchester, ⁴School of Materials Science and Engineering, Shanghai Jiao Tong University

(P54) Effect of reduction oxygen on hardness of Ti and Ti-6Al-4V alloy prepared by hydrogen plasma arc melting: Nohwoun Rim, Jung-Min Oh, <u>Jae-Won Lim;</u> Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University

[P55] Analysis of deformation behavior of β titanium alloys by nanoindentation: <u>Takuya Kimura</u>¹, Yuki Shibayama¹, Kohei Onose¹, Shigeru Kuramoto² Eri Nakagawa³, Takahito Ohmura^{3,4}; ¹Graduate School, Ibaraki University, ²Ibaraki University, ³Research Center for Structural Materials, National Institute for Materials Science, ⁴Kyushu University

[P56] Influence of relative nano-hardness between primary α grains and transformed β areas on the mechanical properties of Ti-6Al-4V alloy with bimodal microstructures: Yan Chong¹, Tilak Bhattacharjee¹, Akinobu Shibata¹, Nobuhiro Tsuji¹, ¹Department of Materials Science and Engineering, Kyoto University, ²Element Strategy Initiative for Structural Materials (ESISM), Kyoto University

【P57】 Effect of metastable L12 Co₃Nb on precipitation of intermetallic phases from Nb-supersaturated Co₃ solid solution in Co-rich Co-Nb Binary Alloys: Konatsu Yamada¹, Toshiaki Horiuchi^{1,2}, Frank Stein³, Seiji Miura⁴; ¹Faculty of Engineering, Hokkaido University of Science, ²Laboratory of Advanced Materials for Cold Region (LAM), Hokkaido University of Science, ³Max-Planck-Institut für Eisenforschung GmbH, ⁴Faculty of Engineering, Hokkaido University

[P58] Influence of hydrogen nanomechanical behavior in a CoCrFeMnNi high-entropy alloy: Guanghui Yang¹, Yakai Zhao², Dong-Hyun Lee¹, Woo-Jin Kim¹, Jeong-Min Park¹, Jin-Yoo Suh³, Jae-il Jang¹; ¹Division of Materials Science and Engineering, Hanyang University, ²School of Materials Science and Engineering, Beijing Institute of Technology, ³High Temperature Energy Materials Research Center. Korea Institute of Science Technology

【 P59 】 Investigation of the effect of γ-irradiation on the mechanical properties of COP by nanoindentation method: Masaaki Takeda, Tsuyoshi Kato, Yuichi Muraji, Ryo Endoh, Yoshihiro Takai; Material characterization laboratories, Toray Research Center Inc.

[P60] The effect of interstitial C atom on local deformation behavior of Ni₃AlC_{1-x} and Co₃AlC_{1-x}: So Murasue^{1,2}, Taichi Okada^{1,2}, Ohmura³; Yoshisato Kimura¹, **Takahito** of ¹Department Materials Science and Engineering, School of Material and Chemical Technology, Tokyo Institute of Technology, ²Graduate Student, ³Research Center for Structural Materials, National Institute for Materials Science

【P61】 Automated ball indentation in the process of the evaluation of irradiated nuclear power plants components materials degradation: Radim Kopřiva, Miloš Kytka, Petra Petelová, Ivana Eliášová; ÚJVŘež, a. s., Integrity and Technical Engineering Division, Mechanical Testing Department

(P62) Evaluation of temperature dependent mechanical behavior of metals using high temperature nanoindentation: Jovana Ruzic, Ikumu Watanabe, Takahito Ohmura; Research Center for Structural Materials, National Institute for Materials Science

[P63] Estimating degradation of high-temperature-component materials in gas turbine using instrumented indentation test: Jongho Won, Kyungyul Lee, Ohmin Kwon, Woojoo Kim, Seunghun Choi, Dongil Kwon; Department of Materials Science and Engineering, Seoul National University

[P64] Toward a design of Ni-Co base superalloy: quantitative analysis of contributing factors to strength: Toshio Osada, Yuefeng Gu, Nobuo Nagashima, Yong Yuan, Yokokawa Tadaharu, Hiroshi Harada; National Institute for Materials Science

[P65] Unique nanoscale lamellar structure formation and its effect on nanoindentation hardness in γ' precipitated Ni-base ODS superalloy: Mai Yamashita¹, Shigeharu Ukai², Naoko. H. Oono², Shigenari Hayashi²; Azusa Konno¹, Kouki Nakamura¹, S.M.S. Aghamiri²; ¹Graduate School of Engineering, Division of Material Science and Engineering, Hokkaido University, ²Faculty of Engineering, Division of Material Science and Engineering, Hokkaido University