


The internal appearance of the high throughput electrolyte search system developed by Senior Researcher 
Shoichi Matsuda. Each plastic electrochemical well has built-in cathode and anode sheets and a separator 
between them. The addition of an electrolyte to this well makes it a tiny rechargeable battery sample. This 
photo shows the electrode unit that is used to evaluate the battery properties of each sample (see the 
bottom of p. 8 for details).
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	 The popularity of electric cars has been growing and smartphones 

have become ubiquitous. These technologies are powered by lithium 

ion batteries, which were first released nearly 30 years ago. Increasing 

demand for further battery improvements (i.e., higher capacity, 

reduced size and reduced weight for use in drones) has necessitated  

a search for fundamentally different battery materials.

	 Assessing the vast number of candidate battery materials and their 

compatibility is very challenging. The use of artificial intelligence (AI) for 

this objective has become increasingly common in recent years. AI has 

rapidly gained a reputation for exceeding human capabilities in materials 

searches.

	 However, the use of AI in materials searches is still new and researchers 

are struggling to learn how they can use it effectively.

	 A new era of battery research has begun.

	 Researchers are integrating experimental research with theoretical and 

computational science, reexamining the role of human involvement in  

AI-based materials searches and attempting to optimize research efforts.

New trend in 
battery materials 
searches
Reshaping research in the AI era



Satoshi Itoh
Director of the Center for Materials Research 
by Information Integration
Research and Services Division of Materials Data 
and Integrated System (MaDIS)
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Battery research: 
past, present and future
Evolution of 
materials search techniques

	 Kazunori Takada researches 
and develops all-solid-state 
batteries. “About 30 years have 
passed s ince  the  advent  of 
lithium-ion batteries,” he said. 
“To significantly improve battery 
performance, the materials used 
in them need to fundamentally 
change.”
	 Next-generation batteries are 
expected to be more powerful, 
smal ler ,  durabler  and sub-
stantially l ighter.  Intensive 
efforts have been underway all 
over the world to develop new 
rechargeable battery materials 
to meet these expectations.
Although rechargeable batteries 
a r e  s t r u c t u r a l l y  s i m p l e ―
composed only of electrodes 
and electrolytes―the chemical 
reactions occurring within them 
are extremely complex. Finding 
high-performance materials is 
never an easy task.
	 Co n v e n t i o n a l l y ,  m a t e r i a l s 
r e s e a r c h e r s  u s e  t r i a l - a n d -
error based on intuition and 
experience aided by compu-
t a t i o n a l  s c i e n c e  i n  t h e i r 
materials searches. The first-
p r i n c i p l e s  c a l c u l a t i o n s ― a 
primary computational science 
technique used to describe 
nature at the smallest scales 
based on quantum mechanics―
are employed in materials R&D 

to estimate interatomic forces 
and the behavior of electrons. 
Supercomputers capable of 
h i g h - s p e e d  p r o c e s s i n g  o f 
large amounts of  data have 
been used to carry out first-
p r i n c i p l e s  c a l c u l a t i o n s  t o 
simulate chemical reactions 
occurring within rechargeable 
batteries. The results obtained 
via this approach have led to 
an in-depth understanding 
of new mechanisms and the 
identification of promising new 
battery materials.
	 However, accurate estimation 
o f  c h e m i c a l  r e a c t i o n s  i n 
r e c h a r g e a b l e  b a t t e r i e s  i s 
e x t r e m e l y  t i m e  c o n s u m i n g 
and costly even with the aid 
of supercomputers. Materials 
informatics (MI) is a new trend 
in materials science capable 
of expediting the process of 
discovering desirable materials.

Data-driven approach 
to discovering new materials

	 MI is an approach to analyzing 
physical data using information 
science techniques,  such as 
machine learning and deep 
learning. It is the objectives 
o f  i d e n t i f y i n g  c o r r e l a t i v e 
relationships between materials 
and their  performance and 
discovering new materials . 
Satoshi Itoh has played a central 
role in advancing MI research at 

NIMS.
	 “MI has already proven to be a 
valuable tool in battery materials 
R&D globally,” Itoh said. “For 
example,  Gerbrand Ceder,  a 
professor at  the University 
of California, Berkeley, (see 
p.  12) has demonstrated its 
effectiveness. Professor Ceder 
carried out  f irst-principles 
calculations to produce large 
amounts of simulation data. He 
then processed the data using 
machine learning to identify 
promising candidate materials 
and actually synthesized them. 
In the end, he discovered an 
outstanding battery material and 
demonstrated the ways in which 
MI can be used effectively in 
materials development.”
	 NIMS recognized Professor 
Ceder’s achievements with a 
NIMS Award in 2019—given to 
researchers to reward significant 
accomplishments in materials 
science.
	 NIMS has also been engaged 
in a serious effort to promote 
MI-based searches for  pro-
mising rechargeable battery 
materials. NIMS is constructing 
a  computational ly  ef f ic ient 
machine learning model (see 
the box of p. 7) and developing 
an automated machine capable 
of preparing electrolytes based 
on predict ions made by MI 
methods and evaluating their 
performance (see the box of p. 8). 

Kazunori Takada
Director of the Center for Green Research on 
Energy and Environmental Materials

Through these and other efforts, 
NIMS is striving to significantly 
accelerate a series of battery 
development processes.
	 The use of MI in materials sear-
ches has become commonplace 
globally, but NIMS has an advan-
tage in this field.
	 “Results produced using MI 
techniques are greatly influenced 
by the quality and quantity of 
data used,” Itoh said. “Inadequate 
databases sometimes cause MI 
techniques to select materials 
that do not exist in nature or that 
are impossible to synthesize. 
NIMS has constructed AtomWork 
Adv.—one of the world’s largest 
inorganic materials databases—
in collaboration with Dr. Pierre 
Villars (see p. 14),  who was 
honored alongside Professor 
Ceder with a NIMS Award in 
2019. This database gives NIMS 
a huge edge because it  only 
contains data collected from 
existing materials, forcing MI-
based searches to  focus on 
synthesizable materials.”
	 Takada added that NIMS also 
has another advantage.
	 “Some of the MI-based materi-
als searches carried out else-
where rely on data culled from 
published research papers to 
compensate for a shortage of 
experimental data. However, 
care must be exercised in the 
use of this type of data because 
many published research articles 

describe processes by which 
low-performance materials can 
be enhanced. If a significant 
proportion of data used for 
MI-based materials searches 
originates from publications, 
searches may focus primarily 
on low-performance materials. 
In addition to AtomWork Adv., 
NIMS has access to a vast amount 
of accumulated experimental 
data—including unpublished 
data—related to rechargeable 
batteries. I believe that the use 
of this type of data will facilitate 
more eff ic ient  searches for 
desirable materials.”

Optimizing collaboration 
between information scientists 
and rechargeable battery experts

	 MI-based searches can cover 
a wider range of materials and 
use a less biased methodology 
t h a n  c o n v e n t i o n a l ,  m a n u a l 
approaches. However, Takada 
and Itoh agree that MI-based 
searches for ideal rechargeable 
b a t t e r y  m a t e r i a l s  w i l l  f a i l 
without close collaboration 
between information scientists 
a n d  m a t e r i a l s  r e s e a r c h e r s 
with expertise in rechargeable 
batteries.
	 “Even if  MI techniques can  
identify materials with desi-
rable physical properties, they 
may be unusable unless they 
a r e  c o m p a t i b l e  w i t h  m a s s 

production and integration 
into devices,” Takada said. “We 
actually assemble rechargeable 
batteries. Materials that are 
too labor-intensive or costly to 
synthesize are considered to be 
impractical. In order to prevent 
MI techniques from selecting 
these undesirable materials, 
it is vital that we as materials 
researchers provide feedback 
on requirements for materials 
searches and on the analysis and 
interpretation of search results.”
	 Itoh said, “We plan to request 
t h a t  m a t e r i a l s  r e s e a r c h e r s 
provide us with ‘manufacturing 
process data’ describing the 
methods they use to synthesize 
materials. We will then integrate 
this data into a database in 
order to achieve more realistic 
materials searches.”
	 I n  f a c t ,  N I M S  h a s  a l r e a d y 
been constructing a “Materials 
Data  Plat form,”  a  database 
that  contains various types 
of  materia l  data ,  inc luding 
manufacturing process data. 
N I M S ’  e f f o r t s  t o  d e v e l o p 
i n n o v a t i v e  r e c h a r g e a b l e 
batteries are making steady 
progress by offering an R&D 
e n v i r o n m e n t  c o n d u c i v e  t o 
close collaboration between 
i n f o r m a t i o n  s c i e n t i s t s  a n d 
materials researchers.
(by Kumi Yamada)

In t r o du c t i o n
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Key reserchers of next-generation 
rechargeable batteries: 
discussion on materials searches
Approaches to rechargeable battery R&D have evolved significantly. Experiment-based R&D has been integrated 

with computational science and materials informatics (MI)―techniques used to identify desirable materials by using 

artificial intelligence to process large amounts of data. As a result, the efficiency of materials searches has dramatically 

increased. We asked four next-generation researchers about the latest trends in rechargeable battery development.

a few—in addition to performing well in 
the lab. Developing practical batteries is 
challenging because it is a long process 
that is subject to various restrictions.
Randy: I believe that all-solid-state batteries―
my research subject―are currently the 
most promising candidate for a practical 
next-generation battery. All-solid-state 
batteries are similar in structure to 
lithium-ion batteries―the most widely 
used batteries today―except that the 
latter contains a liquid electrolyte while 
the former contains a non-flammable, 
safe solid electrolyte. However, the ionic 
conductivity of solid electrolytes is much 
lower than those of liquid electrolytes, 
preventing all-solid-state batteries from 
producing as much power as lithium-
ion-batteries. If we can discover solid 
electrolytes with ionic conductivity 
equivalent or superior to those of liquid 
electrolytes, all-solid-state batteries 
would become much more practical.
Mandai: Lithium air battery has confirmed 
that its energy density potentially exceeds 
that of current lithium-ion batteries. 
I understand that Dr. Matsuda is now 
attempting to improve the electrolytes 
in order to address the biggest issue 
with lithium air batteries: short cycle 
life. In the magnesium batteries I’ve 
been researching, abundant and cheap 
magnesium is used as an anode material. 
The use of magnesium has the potential 
to substantially increase battery capacity. 
However, appropriate cathode and 
electrolyte materials have yet to be 

discovered. Magnesium battery R&D is 
still in the early stage as these materials 
need to be developed from scratch.
Randy: A battery is an inherently unstable 
system. For example, electrolytes decom-
pose on the surfaces of electrodes after 
repeated charge/discharge cycles, causing 
gradual degradation. It is therefore impor-
tant to take this inherent instability into 
account to achieve an optimum overall 
balance between different battery 
materials and to control durability. This is 
a very exciting challenge.

Strengthening battery development 
by integrating experiments and MI

―What are some current global trends in the techniques 

being used to develop next-generation rechargeable 

batteries?

Sodeyama: In the past, materials searches 
relied heavily on the intuition of experi-
enced experimental researchers, as trial-
and-error was the only method available. 
As the performance of supercomputers has 
increased, the accuracy of computational 
science simulations has also increased, 
making it possible to determine the 
direction in which existing materials can 
be modified to improve their performance. 
More recently, the use of information 
science techniques (i.e., MI) to analyze 
the large amounts of accumulated 
data generated by experiments and 
calculations has become common. As a 
theoretical and computational scientist,  

I have been simulating chemical reactions 
using supercomputers. I have also started 
to discuss experimental researchers on 
the directions materials searches should 
take. I have done this using machine 
learning techniques, an information 
science method.
Matsuda: In fact, Dr. Sodeyama’s advice has 
been helping me improve the efficiency 
of my experiments. My current project 
is to develop a machine capable of auto-
matically preparing electrolytes and 
evaluating their performance in an effort 
to identify promising lithium air battery 
electrolytes. Researchers were  previously 
able to evaluate only 10 electrolytes a day 
using manual methods. However, I can 
now speedily evaluate 1,000 electrolytes 
a day. Computational techniques and 
MI techniques are able to improve the 
searching efficiency. Metaphorically 
speaking, these techniques can suggest 
whether a search space should be wide 
and shallow or narrow and deep, thereby 
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	 Development of solid electrolytes with high ionic conductivity 

is vital in increasing the power output of all-solid-state batteries. 

Although theoretical calculations and data-driven approaches 

have been actively used in materials searches, high-precision 

prediction models have yet to be developed. Randy has constructed 

a prediction model with increased computational efficiency by 

combining conventional first-principles calculations with Bayesian 

optimization and various other machine learning algorithms. 

He actually used this model to predict the ionic conductivity of 

materials with a tavorite crystalline structure and succeeded in 

producing highly accurate results approximately two to three times 

faster than conventional models. Because Randy’s prediction model 

will increase its search efficiency as it processes more data, it has 

potential to become a powerful MI-based materials search tool.

Development of a solid electrolyte prediction model: accelerating calculations using machine learning
Randy Jalem

Toshihiko Mandai
Senior Researcher
Rechargeable Battery Materials Group
Center for Green Research 
on Energy and Environmental Materials

Randy Jalem
Senior Researcher
Interface Computational Science Group
Center for Green Research 
on Energy and Environmental Materials

Shoichi Matsuda
Senior Researcher
Rechargeable Battery Materials Group
Center for Green Research 
on Energy and Environmental Materials

Keitaro Sodeyama
Group Leader
Energy Materials Design Group
Research and Services Division of Materials Data 
and Integrated System (MaDIS)

Battery research as 
an exciting challenge

―You have all been researching and developing next-

generation rechargeable batteries. Is your research focused 

on different subjects? Are your methods different?

Sodeyama: Yes, our research focuses on 
different things. Dr. Matsuda and Dr. 

Mandai carry out experimental research 
while Dr. Jalem and I specialize in compu-
tations and simulations. As for the subjects 
of our research, Dr. Matsuda has been 
focusing on lithium air batteries, while Dr. 
Mandai looks at magnesium batteries and 
Dr. Jalem pursues all-solid-state batteries. 
I have been researching various types of 
batteries.

Matsuda: Although our objectives are 
different, we share a common challenge: 
we need to find the right combination 
of a cathode, anode and electrolyte 
to create a functional battery. The 
batteries we develop must also meet 
various requirements to achieve wide 
public use—reduced thickness, proper 
integration and adequate safety, to name 

Battery Research at NIMS

R a n d y  J a l e m

Roundtable discussion



increasing materials search efficiency.
Sodeyama: I once had a very interesting 
experience. Several kinds of additives are 
often combined in battery electrolytes 
to prevent the degradation caused 
by repeated charge/discharge cycles. 
To determine promising candidate 
additives, Dr. Matsuda prepared various 
combinations of different compounds 
and I evaluated them using the machine 
developed by him, which generated some 
10,000 to 20,000 data points. I then found 
promising compound combinations in an 
unexpected search space to which I had 
previously paid little attention. Based 
on this result, I carried out experimental 
evaluations using Dr. Matsuda’s machine 
again. As a result, I identified a compound 
combination previously unknown to be 
an effective additive. This combination 
proven to be as effective as vinylene 

carbonate, a well-known additive.
Matsuda: If we had tackled this task without 
specific direction, we would have been 
unable to discover the new combination. 
Researchers can only experimentally 
evaluate a limited number of compounds. 
More comprehensive evaluation would 
be very difficult even for experienced 
researchers. Narrowing the search 
space is crucial due to the multitude of 
potential materials. Computational and 
MI approaches are very helpful in doing 
this and I am integrating them into the 
machine under development.
Mandai: Narrowing the search space is 
also important in my research. My main 
research focus designing new electrolytes 
for magnesium batteries. As I said earlier, 
I am developing magnesium battery 
electrolytes without any direction. I 
first read as many previously published 
research papers relevant to my work as 
I can find and then transfer information 
gathered from them to computational 
scientists. Subjectivity always comes into 
play when we as experimental researchers 
analyze data ourselves. We therefore rely 
on computational scientists to provide the 
objective data analysis needed to identify 
the key factors that led to positive results 
in published research. We then apply 
this information to our experiments and 
transfer experimental results back to the 

computational scientists in a repeated 
back-and-forth process.
Randy: Expediting searches is important 
not only in experiments but also in 
the calculations used for materials 
searches. Because computer resources 
are finite, it is vital to develop methods 
of increasing the speed of computation-
based searches. I have been evaluating 
the ionic conductivity of ceramic 
materials―promising solid electrolytes―
using first-principles calculations. These 
calculations were previously extremely 
time-consuming using supercomputers. 
However, the integration of new machine 
learning models has enabled us to 
optimize computation size and steadily 
increase search speeds.
Mandai: The use of various new methods 
combined with interdisciplinary collabo-
ration has clearly created synergies. 
Because search efficiency and results 
vary depending on the methods used, I 
expect flexible and creative approaches 
to research will become more important. 
Researchers therefore need to develop 
“generosity” in the sense that they will 
need to be open minded in accepting new 
materials, techniques and collaborations.
Matsuda: I appreciate the open environ-
ment NIMS offers, which facilitates close 
communication between young researchers 
like us.

Sodeyama: Some researchers at NIMS 
allow me to analyze their unpublished 
experimental data because of the mutual 
trust we have built. As a computational 
scientist, I do my best to fulfill their 
analytical demands and hope to promote 
this form of collaboration.
Mandai: When I encounter an incompre-
hensible phenomenon in my research, I 
always consult with Dr. Sodeyama right 
away. I am making a conscious effort to 
integrate both computational science and 
experimental research into my approach 
to problem solving.

―Have you experienced any difficulties in using 

computational science techniques and MI techniques?

Sodeyama: I often hear machine learning 
experts say that MI is not a “silver bullet” 
that enables you to achieve anything. 
The application of machine learning 
techniques to battery research requires 
adequate knowledge of batteries and 
initial decision-making of the objectives 
of the calculations, calculation methods 
and machine learning models to be used. 
The techniques used will vary depending 
on the objective. For example, when 
the objective is to increase coulombic 
efficiency (charge/discharge efficiency), 
some machine learning models may be 
more suitable than others.

Matsuda: The initial decision-making is the 
most critical step; good judgement must 
be exercised there. Although off-target 
decisions may still enable models to 
identify individual battery materials with 
desirable characteristics, they are often 
impractical collectively when integrated 
into a battery.
Randy: My R&D activities are directly 
linked to the ultimate goal of our collective 
battery R&D efforts: developing practical 
battery materials. For this reason, my 
role is very challenging. Even if my 
simulation results indicate that candidate 
materials can be synthesized, this does 
not necessarily guarantee that they 
will actually be synthesizable and will 
function as predicted by the calculations 
and MI techniques. To construct accurate 
computational and MI models, critical 
issues need to be identified.

Pursuing scientific interests 
and addressing energy issues

―What direction do you plan to take with your research 

in the future?

Sodeyama: I am passionate about contri-
buting to the creation of new battery 
materials as well as other materials. 
I would like to try many different 
approaches to doing this. My goal is to 

build a material search model capable 
of analyzing various types of molecular 
data to determine the characteristics of 
different molecules. I hope to be able to 
make a variety of recommendations using 
this model, such as suggesting molecules 
that may serve as useful battery materials 
or molecules that may be potentially 
effective for other purposes. I believe this 
model also leads me to discover novel 
materials that are not found in existing 
databases and to develop search methods 
for them.
Randy: In addition to searching for pro-
mising all-solid-state battery materials 
using MI techniques, I would also like to 
use these techniques to solve the various 
issues associated with these batteries. 
For example, I want to investigate the 
movement of ions at grain boundaries in 
a solid electrolyte, identify the cause of 
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	 Computational approaches to materials searches are more 

compatible with solid materials than electrolyte materials. Although 

experimental approaches to electrolyte materials searches are 

effective, an enormous number of candidate materials need to 

be assessed. To address this issue, Matsuda has developed a 

machine capable of conducting materials searches much faster 

than manual methods. This machine can automatically perform a 

series of materials search steps: preparing electrolyte samples 

with numerous different compositions by combining more than 

50 different compounds in a variety of ways, adding them to 

wells in microplate (p. 3) and evaluating them for their battery 

performance. Sodeyama and his colleague Guillaume Lambard 

(Senior Researcher, Energy Materials Design Group) have 

been supporting Matsuda’s materials search efforts from a data 

science standpoint. Sodeyama and Lambard engage in frequent 

discussions with Matsuda to identify critical issues in materials 

searches and incorporate solutions into the development of an 

MI prediction model capable of estimating promising material 

compositions using large amounts of experimental data. When this 

model is ready for practical use, these three researchers plan to 

develop a smart materials search system, which will automate the 

cyclical MI-based prediction and experimental process.

High throughput electrolyte search system
Shoichi Matsuda and Keitaro Sodeyama

Battery Research at NIMS

Pipetting unit
Each well receives an electrolyte with a different 
composition. After the pipetting process is 
completed, the multi-well microplate is transferred 
to the electrode unit by the robot arm.

Electrode unit
A filled multi-well microplate is inserted between 
the upper and lower electrodes to measure the 
battery properties of electrolyte samples. After 
the measurements are complete, the plate is 
disposed by the robot arm.Robot arm
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NIMS Awards are bestowed annually on individuals 

and groups who have achieved breakthroughs 

in materials science and technology.

The 2019 awards were presented to two scientists 

who have made significant contributions to 

data-driven materials research―an approach to 

developing new materials by processing large amounts of data:

Dr. Gerbrand Ceder, a Professor at 

the University of California, Berkley; and

Dr. Pierre Villars, the Director and 

Owner of the Material Phases Data System.

We conducted a special interview 

with these two materials informatics (MI) pioneers.

Winner Interview

the resistivity between solid electrolytes 
and electrode materials and accurately 
understand other various phenomena 
occurring within all-solid-state batteries. 
I believe that this would facilitate my 
search for ideal materials.
Matsuda: I am eager to see the battery 
materials we are developing in practical 
use. We discussed the use of machines and 
MI to synthesize and evaluate materials. 
These are all methodological matters. 
They would be meaningless unless we 
deliver truly useful materials to the 
world. We have developed an MI-based 
prediction model capable of analyzing 
large amounts of experimental data to 
identify electrolyte compositions with the 
potential to increase battery performance. 
I plan to try this model, too.
Sodeyama: The machine Dr. Matsuda is 
developing is capable of collecting 
experimental data from similar materials 

with slightly different compositions 
while other parameters are maintained 
in a constant state. I expect this type 
of data to greatly improve our under-
standing of various battery phenomena. 
Although improving the performance 
of rechargeable batteries is certainly of 
prime importance, researchers tend to 
neglect efforts to investigate the reasons 
for improved performance. Data collected 
while experimental parameters are 
maintained in a constant state provides 
clues to the causes of various phenomena. 
We still do not understand much of what 
occurs within batteries. One of the main 
objectives of our simulations is to gain 
an understanding of these phenomena 
and we pay close attention to them. This 
aspect of battery research stimulates my 
scientific curiosity.

Mandai: I share Dr. Sodeyama’s sentiments. 
As a scientist, I want to pursue my own 
scientific interests and contribute to 
solving long-standing energy issues. I 
have a strong desire to complete the 
development of magnesium batteries 
and deliver materialize them during 
my lifetime rather than in 50 or 100 
years. When efforts to develop sodium 
batteries began, it was expected that 
bringing them into practical use would 
be a long, slow process. However, they 
are already commercially available in 
Europe. This example indeed encourages 
me. If batteries containing materials I 
have developed are put into practical 
use, I would be extremely thrilled as a 
researcher.
(by Takeshi Komori)

Development of original electrolytes through an innovative compositional design and synthesis process
Toshihiko Mandai

Battery Research at NIMS

	 An electrolyte is composed of a solvent and a salt―an assembly 

of cations and anions. The physicochemical properties of an 

electrolyte are determined by its composition. Mandai’s goal is to 

create “multivalent metal batteries” using magnesium (Mg) and 

aluminum metal as anode active materials. He has been developing 

original electrolytes by inventing new salt and solvent synthesis 

processes. He has succeeded in simplifying the process of 

synthesizing boron-based Mg electrolytes―promising candidates 

for use in Mg batteries—slashing Mg electrolyte production costs by 

approximately 89%. He has also succeeded in increasing synthesis 

reproducibility. Moreover, Mandai 

has been closely collaborating 

w i t h  K e i t a r o  S o d e y a m a ,  a 

theoretical and computational 

sc ient is t ,  to  invest igate  the 

dynamic and interfacial behavior 

of electrolytes in rechargeable 

batter ies and to design new 

fascinating electrolytes based on 

computational predictions.
Boron-based magnesium salt 
based by Mandai
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Thank you for joining us, and congratulations 
on your NIMS Award.

	 Thank you. It's wonderful to be recog-
nized by NIMS, which is a respected name 
in materials science, and to share the 
award with Pierre Villars, who has done 
so much for experimental data collection 
and dissemination. 

What led you to start exploring 
new materials using high-throughput computing? 

	 That goes back a long way. In the 1980s 
and 1990s, people were developing compu-
tational methods to predict materials' 
properties, and then in the mid-2000s 
we started doing this in a massive way to 
generate huge amounts of data in what 
we called high-throughput computing. We 
spent a lot of effort building computational 
methods and models and realized we 
could scale them. Once the methods were 

developed, scaling computational things 
was actually quite easy.

What was your role 
in the Materials Genome Initiative(MGI*)?

	 Back in 2011, when the MGI began, 
nobody talked about data-driven 
materials science. The original impetus 
was that high-throughput computing 
could generate massive amounts of 
quantitative information, which could 
then be used by materials designers. 
	 It started as a purely computational 
initiative, but it led people to think that 
if we collect information in a rigorous 
manner, we can make the field more 
quantitative and do materials design in a 
less heuristic way. 
	 We had done this  kind of high-
throughput computing with private 
companies and it was helpful that we 
knew people in the White House Office 

of Science and Technology Policy. They 
saw it as a new, exciting way to stimulate 
materials development and ultimately 
manufacturing. It became a large funding 
initiative in the U.S., and other countries 
followed. 

What were some 
of the challenges you overcame?

	 To make massive amounts of data, you 
have to automate processes. We were 
making this transition from doing one 
calculation at a time where a single person 
could oversee it and deal with it when 
something goes wrong. But when we were 
using thousands of calculations at a time, 
we suddenly had to fully automate things, 
make sure error corrections were done, 
and things that failed were restarted. 
So there was a lot of nuts and bolts 
work to make things actually work in an 
automated way. They weren't necessarily 

deep science, but they were still quite 
challenging. 
	 And then, as I like to say, “It’s easier to be 
right than to be relevant,” meaning that, 
even though we were good at computing 
and theory of materials, we still had to 
learn a lot about the application areas 
we were working in. Because in enginee-
ring there’s usually not just one property 
one cares about — there are a lot of 
constraints, such as materials having 
to be stable, non-toxic and “makeable.” 
Sometimes we thought we understood 
a problem, then discovered other issues 
that we had to take into account. 

How has the balance changed between experiment 
and theoretical calculation in research? 

	 First of all, collecting data and making 
it accessible is important, whether it's 
experimental or theoretical. But data has 
been locked up in research papers, in 
people's heads and in their computers. 
Science is based on facts, and facts are 
based on data. And with data, accessibility 
is crucial. 
	 You have to balance experiment and 
theory. Experimental data will always be 
important because it's a relevance check. 
But much of the computation data is easy 
to achieve, so people can focus on other 
things that are harder to do with theory. 
Things you can do by computation and by 
experiment are not the same. I often say 
to people, “This is so easy to compute; 
why are you even doing a complicated 
experiment?” 

With all these materials databases being built, 
what is the future of database linkages?

	 It would be great to have more of 
them but a problem is to link them in a 
precise manner so that each compound is 
identified with proper metadata. Imagine 
you could identify every database with 
information on a material or an experiment 

— it would be wonderful. Materials often 
do not have unique descriptors — data 
that indicates how other data is stored — 
as chemical compounds do, and labs may 
have different methods and descriptors 
that make exact links difficult. And of 
course there are copyright and intellectual 
property challenges. 

What are your thoughts on 
industry-government collaboration?

	 Collaboration with industry is very 
important. We were fortunate to stumble 
on a few companies willing to take more 
risks than the government at the time. 
Businesses understand that high rewards 
come with high risks, and when you try 
new things the results are by no means 
certain.
	 Materials is a high price game. A lot of 
the investment goes nowhere, and often 
it’s winner-take-all. So anything you can 
do to make the process more efficient is 
welcome.
	 New materials take a long time to 
commercialize, mostly because of a general 
lack of knowledge of how materials behave 
when you start scaling them up and putting 
them in devices. Take high temperature 
superconductors, invented in 1986. Now, 
some 30 years later, they’re finally starting 
to hit the market. 
	 But of course government is also 
important, for long-term support. Many 
governments are happy to support brick-
and-mortar facilities, beam lines and 
microscopes. But they have to understand 
that databases and data collection are 
just as valuable as hardware.  This is not 
generally accepted yet by government 
agencies.

Could you tell us about your current research?

	 The most exciting thing is doing for 
synthesis and processing what we did for 
materials design. First, we have to build a 

theory of synthesis, how materials form 
and how they're made so we can use a 
rational approach, the classic scientific 
approach of deductive logic. 
	 The second approach is machine 
learning, getting a computer to learn 
synthesis the way scientists do —  by 
seeing a lot of it. A lot of synthesis is 
apprenticeship, learning all the tricks and 
techniques, and maybe a computer can do 
it faster. 
	 The third approach is to use robots, 
which are many times faster. Robotic labs 
could do synthesis, interpret the results 
and decide on the next experiment -- it 
would be AI-driven synthesis. That is the 
next Holy Grail.

What are your expectations 
for materials development and NIMS?

	 I expect it to become a lot more quanti-
tative. Materials science is an interesting 
mix — this strange integration of physics 
and chemistry, and a lot of empirical 
engineering. NIMS has put enormous 
effort into collecting data. So I think from 
that perspective, NIMS will play a very 
important role. 
	 There is always the worry that robots 
will replace people. But I don’t think 
that's true. People working in laboratories 
today do a lot of trivial work — mixing 
and moving and cleaning things. With 
automation they could spend more of 
their time thinking about what they do, 
and interpreting it.
	 It was the same in computing. Twenty 
years ago, all of us in computing were 
spending a lot of time with input files and 
conversions of algorithms, and not that 
much doing science. As the algorithms got 
better and got automated, we worried less 
about the details of the computing. It will 
be the same with experimental materials 
researchers.

Prof. Gerbrand Ceder has been a driving force in the field 

of high-throughput computation in materials design, which 

allows prediction of functional, thermodynamic and kinetic 

properties and their integration with experimental results. 

His work has led to the development of computer data 

infrastructures dedicated to materials design, as well as to 

the development of novel battery cathode materials, solid 

electrolytes and thermoelectric conversion materials. 

After receiving the NIMS Award for outstanding research 

achievements in data-driven materials research, he spoke 

with NIMS NOW about his work and career. 

A pioneer in 
computationally guided 
materials design 
- Prof. Gerbrand Ceder

Prof. Gerbrand Ceder earned a Ph.D. from the University of California, Berkeley in 
1991. He started his faculty career at the Massachusetts Institute of Technology 
where he remained for nearly 25 years before becoming a professor at UC Berkeley 
in 2015. He has worked on computational materials design, high-throughput 
computing, energy storage materials, and machine learning, and helped develop the 
Materials Genome Initiative.
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*Materials Genome Initiative(MGI) :  The Materials Genome Initiative is a multi-agency initiative designed to create a new era of policy, resources, 
and infrastructure that support U.S. institutions in the effort to discover, manufacture, and deploy advanced materials twice as fast, at a fraction of the cost.
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First of all, congratulations on your NIMS Award.

	 Thank you. I’m honored to be recognized 
as a world-class researcher in materials 
science. It’s wonderful, especially because 
it was so unexpected. And of course 
because NIMS has such an excellent 
reputation. 

Could you tell us about the Pauling File?

	 The Pauling File is the world's largest 
database of inorganic materials, with 
information from more than 180,000 
documents published in over 1,000 
scientific journals since 1900. It’s high 
quality and comprehensive, and it now 
includes about 335,000 crystal structures, 
44,000 state diagrams and 400,000 

physical properties. We update the 
database continually. 
	 We currently have data for a variety of 
different needs. We have eight database 
products, including AtomWork and 
AtomWork Adv. provided by NIMS, as 
well as eight handbooks that are widely 
used throughout the world.
	 Our user base is growing. We get a 
million accesses per month, which is 
crucial — it has to have lots of users or 
it will die. That was also the idea behind 
the multiple-use concept, having different 
users for different parts of the database. 
	 I named it after Linus Pauling, the 
famous chemist, chemical engineer and 
peace activist, who is widely regarded as 
one of the greatest scientists of all time. 
I met him while working in Prof. Bill 

Pearson’s lab. I told Dr. Pauling about the 
project, and he very kindly agreed to lend 
his name to it. 

How did you originally decide to work in this field?

	 I was always fascinated by patterns in 
nature — if you look at it in the right way, 
nature is full of regularities. I call this “the 
beauty of nature through the beauty of 
data.”
	 After receiving my PhD at ETH Zurich, 
on the topic of regularities within 
intermetallic compounds, I went to 
Canada to work for Prof. Pearson as my 
postdoc. That was a crucial step that set 
me on my life’s path. 
	 He was famous in the field, and known 
for his handbooks*4, which were very 

popular at that time — every lab in the 
world used them in their research into 
metallurgy, crystallography and other 
aspects of materials science. He had 
produced two, and hired me to write a 
third one.  
	 Dr. Pearson was already quite old by 
that time, the 1980s, but he understood 
the directions science was taking. He 
gave me a PC and told me to produce 
the handbook with it. It was a very small 
portable computer, and bulky like a 
sewing machine, with a tiny screen. Hard 
drives didn't exist at that time; we used 
floppies. He saw the internet coming as 
well, and realized it would spark huge 
changes in how research is done.  

Developing the Pauling File must have been 
a huge undertaking.
 
	 It was. When I started the project, in 
1995, there were about 2,000 papers per 
year in the field. I thought, “I can do this 
myself, no problem.” But then there was 
an explosion of data; by 2005 the number 
had grown to 8,000 — impossible for one 
person to process. Now there are 16,000, 
and that is sure to increase, because 10 
years ago we had almost nothing from 
China; now 35% of papers come from 
there. 
	 We cover three areas: crystallographic 
data, phase diagrams and physical 
properties. The physical properties are 
extremely complex — we have over 500 
that we publish in an open constructed 
database. That means we need a lot 
of specialists who can understand the 
different kinds of data.
	 This was a significant problem at first, 
finding qualified people to do the work, 
long-term. We finally built our team of 
chemists, physicists, materials scientists 
and crystallographers, as well as software 
people, but it took a lot of time. My way 
was always to collaborate with qualified 
people for example PhDs.

	 I knew we’d have to emphasize that 
we were offering critically evaluated 
data. So we paid particular attention to 
data checking, since unrecognized errors 
confuse the correlation tools. Much of the 
data was very low quality — some was 
simply wrong, or not published properly, 
and there were value-added comments 
that had to be incorporated, so at least a 
third of the data needed changing. It was 
an enormous amount of work.

Has the demand for data changed over the years? 
Do people need different kinds of 
data now than they did when you began?

	 Yes, there have been big changes. 
Twenty-five years ago, people used very 
little data, at least not in a comprehensive 
way. But in the last few years there has 
been a huge increase in demand, thanks 
to the U.S. Materials Genome Initiative. At 
first, it was mainly simulations, but then 
people got the idea of using databases, and 
because we were the only large reference 
database, we saw a big jump in users. 
	 This has made a huge difference in 
research, and has speeded up discoveries 
of new materials. Before, you might 
process thousands of samples, and you 
could easily miss many valuable results. 
Now, with databases, the approach is 
completely different, in how you set up 
an experiment and how you assess the 
results. 

What has been the impact on materials development?

	 As I mentioned, my interest was always 
patterns within the data. In the last 
five-10 years, it has become especially 
important, with machine learning, pattern 
recognition, data mining and artificial 
intelligence. So suddenly it’s fashionable. 
At first, I was afraid the fashion would 
last only a year, like women’s clothes. But 
it has become established, and it’s used 
everywhere now. 

And finally, what does the future hold?
	
	 For one thing, I want to integrate 
simulated data from independent 
researchers and universities. This 
will require a lot of manpower — data 
from about 200,000 datasets has to be 
calibrated before being integrated, or else 
the distinction between simulated and 
real experiments might be lost.
	 As the literature increases, we’ll need 
more people and financing. Major projects 
at NIMS rely on data, so it makes sense 
that NIMS and other scientific research 
institutions are supporting it. 
	 Support from industry is also important. 
Collecting the data would be too expensive 
for companies to do themselves, so it's 
much better if it's done through NIMS, 
and then companies pay for access. That 
way, everyone contributes something and 
everyone gets the benefits. 
	 But the first priority is to make sure 
the Pauling File project continues. At the 
moment it depends on a few key persons, 
but we have to hand over the reins to a 
new generation so the project can go on 
without us. 
	 Moving forward, the main thing this 
new generation should understand is that, 
with any scientific endeavor, you have to 
have vision. It's important to look ahead, 
and work to realize your vision, because if 
you wait too long you’ll lose out. 

Finding 
‘the beauty of nature through
the beauty of data’ 
- Dr. Pierre Villars
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We interviewed Dr. Villars about his work and 
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Dr. Villars received his Ph.D. from ETH Zurich*1 in 1981. He served as 
CRYSTMET*2 editor from 1986-1995 for CISTI*3 under the mentorship of 
Prof. Bill Pearson. During that period he compiled 23 handbook volumes which 
covered crystallographic data and phase diagrams of numerous metals and 
alloys. He began to construct the Pauling File in 1995 and has continued to 
update it ever since.

*1 Swiss Federal Institute of Technology, Zurich
*2 Crystallographic Database for Metals and Alloys
*3 Canadian Institute for Scientific Information

*4 Handbook example : 
Pearson's Handbook of  Crysta l lographic Data for 
Intermetallic Phases (first, second, desk edition), Atlas of 
Crystal Structure Types for Intermetallic Phases Handbooks 
of Ternary Alloy Phase Diagrams, Landolt-Börnstein 
Handbooks - Crystal Structures of Inorganic Compounds, 
Handbooks of Inorganic Substances,  and Handbooks of 
Inorganic Substances Bibliography,etc.




