next up previous
次へ: derivation 2. time-independent 上へ: current 戻る: current

derivation 1. time-dependent


\begin{displaymath}
H = \sum \epsilon _\alpha ^0 c_\alpha ^\dag c_a + \sum \epsi...
...i\} ) +
\sum ( t_{i\alpha } d_i^\dag c_\alpha + {\rm h.c.} )
\end{displaymath} (107)

current from L region is

\begin{displaymath}
J_L = - (-e) \langle \dot{N}_L \rangle = i e \langle [ H, N_L ] \rangle
\end{displaymath} (108)


$\displaystyle [H,N_L]$ $\textstyle =$ $\displaystyle [ H, \sum d_k^\dag d_k]$ (109)
  $\textstyle =$ $\displaystyle [ t_{i\alpha } d_i^\dag c_\alpha + t_{\alpha i} c_\alpha ^\dag d_i ,\sum d_k^\dag d_k]$ (110)
  $\textstyle =$ $\displaystyle -t_{i\alpha } d_i^\dag c_\alpha + t_{\alpha i} c_\alpha ^\dag d_i$ (111)


\begin{displaymath}
J_L = i e \sum ( -t_{i\alpha } \langle d_i^\dag c_\alpha \rangle +
t_{\alpha i} \langle c_\alpha ^\dag d_i \rangle )
\end{displaymath} (112)

interesting that the prefactor of the current is imaginary!

Define Keldysh Green functions

$\displaystyle G^<_{j\alpha }(t,t')$ $\textstyle =$ $\displaystyle i \langle c_\alpha ^\dag (t') d_j(t) \rangle$ (113)
$\displaystyle G^<_{ji}(t,t')$ $\textstyle =$ $\displaystyle i \langle d_i^\dag (t') d_j(t) \rangle$ (114)
$\displaystyle g^<_{\alpha }(t,t')$ $\textstyle =$ $\displaystyle i \langle c_\alpha ^\dag (t') c_\alpha (t) \rangle$ (115)

Dyson equation, \( \Longleftarrow =
\longleftarrow + \longleftarrow \Sigma \Longleftarrow \), reads

$\displaystyle \left( \begin{array}{cc}
i\Longleftarrow i & i\Longleftarrow \alpha \\
\alpha \Longleftarrow i & \alpha \Longleftarrow \alpha
\end{array} \right)$ $\textstyle =$ $\displaystyle \left( \begin{array}{cc}
i\longleftarrow i & 0 \\
0 & \alpha \longleftarrow \alpha
\end{array} \right)$ (116)
    $\displaystyle +
\left( \begin{array}{cc}
i\longleftarrow i & 0 \\
0 & \alpha \...
... \\
\alpha \Longleftarrow i & \alpha \Longleftarrow \alpha
\end{array} \right)$ (117)

$\longleftarrow$ means non-interactiong Green function and is diagonal. $\Longleftarrow$ means interactiong Green function which includes self-energies. $i$ is indexes in the region C and $\alpha $ is in the region L, e.g.,
$\displaystyle i\longleftarrow i$ $\textstyle =$ $\displaystyle \left( \begin{array}{cccc}
1\longleftarrow 1 &0&0& \\
0& 2\longleftarrow 2 &0 & \\
0& 0& 3\longleftarrow 3 & \\
& & & \ddots \end{array} \right)$ (118)

and so on.

The second term reads

\begin{displaymath}
\left( \begin{array}{cc}
(i\longleftarrow i, \Sigma, \alpha ...
...a , t_{\alpha i}, i \Longleftarrow \alpha
\end{array} \right)
\end{displaymath} (119)

The (2,1) component of eq.(118) gives

\begin{displaymath}
(\alpha \Longleftarrow i) = (\alpha \longleftarrow \alpha , t_{\alpha i}, i \Longleftarrow i)
\end{displaymath} (120)

Thus for equilibrium Green functions,
\begin{displaymath}
G_{i\alpha }(t,t') = \int d t_1 \sum_j G_{ij}(t,t_1) t_{j\alpha }(t_1) g_\alpha (t_1,t)
\end{displaymath} (121)

For non equilibrium Green functions,

\begin{displaymath}
G_{i\alpha }^<(t,t') = \int d t_1 \left\{
\sum_j G_{ij}^R(t...
...{ij}^<(t,t_1) t_{j\alpha }(t_1) g_\alpha ^A(t_1,t)
\right\}
\end{displaymath} (122)

time dependence of $\epsilon _\alpha (t)$

\begin{displaymath}
\epsilon _\alpha (t) = \epsilon _a^0 + \Delta_\alpha (t)
\end{displaymath} (123)

In the stochastic approximation,

$\displaystyle g_\alpha ^<(t,t')$ $\textstyle =$ $\displaystyle i f(\epsilon _\alpha ^0) \exp( -i \int_{t'}^{t} d t_2 \epsilon _\alpha (t_2) )$ (124)
$\displaystyle g_\alpha ^A(t,t')$ $\textstyle =$ $\displaystyle i \theta(t'-t) \exp( -i \int_{t'}^{t} d t_2 \epsilon _\alpha (t_2) )$ (125)

return to eq.(113), 5

$\displaystyle J_L(t)$ $\textstyle =$ $\displaystyle e \sum\left[ t_{\alpha i} G_{i \alpha }^<(t,t) + {\rm h.c.} \right]$ (126)
  $\textstyle =$ $\displaystyle 2e \; {\rm Re} \sum_{\alpha i} t_{\alpha i} G_{i \alpha }^<(t,t)
= 2e \; {\rm Re} \; {\rm tr} \left[ t G^< \right]$ (127)

See also the Appendix.

Use eq.(123), eq.(125) and eq.(126)

$\displaystyle \sum_{\alpha i} t_{\alpha i} G_{i \alpha }^<(t,t)$ $\textstyle =$ $\displaystyle \sum_{\alpha i} t_{\alpha i} \sum_j \int d t_1 \left[
G_{ij}^R(t,...
..._\alpha ^<(t_1,t)
+ G_{ij}^<(t,t_1) t_{\alpha }(t_1) g_\alpha ^A(t_1,t)
\right]$ (128)
  $\textstyle =$ $\displaystyle i \sum_{\alpha ij} \int d t_1 t_{\alpha i}(t_1) t_{j \alpha }(t_1...
...^R(t,t_1) f(\epsilon _\alpha ^0) + G_{ij}^<(t,t_1) \theta(t-t_1) \right]
\times$  
    $\displaystyle \exp\left( -i \int_t^{t_1} d t_2 \epsilon _\alpha (t_2) \right)$ (129)

insert \( \int d\epsilon \delta (\epsilon -\epsilon _\alpha ^0) \)
$\displaystyle \sum_{\alpha i} t_{\alpha i} G_{i \alpha }^<(t,t)$ $\textstyle =$ $\displaystyle i \sum_{\alpha ij} \int d t_1 \int d\epsilon \sum_\alpha \delta (...
...0)
t_{\alpha i}(t) t_{j \alpha }(t)
\exp( -i\epsilon _\alpha ^0(t_1-t) )
\times$  
    $\displaystyle \exp \left( -i \int_{t_1}^{t} d t_2 \Delta_\alpha (t_2) \right)
\...
...
G_{ij}^R(t,t_1) f(\epsilon _\alpha ^0) + G_{ij}^<(t,t_1) \theta(t-t_1) \right]$ (130)

Define
\begin{displaymath}
\Gamma_{ji}(\epsilon ,t_1,t) = 2\pi \sum_\alpha \delta (\eps...
...
\exp\left( -i \int_t^{t_1} d t_2 \Delta_\alpha (t_2) \right)
\end{displaymath} (131)

Then
\begin{displaymath}
\sum_{\alpha i} t_{\alpha i} G_{i \alpha }^<(t,t) =
i \sum_...
...f(\epsilon _\alpha ^0) + G_{ij}^<(t,t_1) \theta(t-t_1) \right]
\end{displaymath} (132)

Taking into account of \( G_{ij}^R(t,t_1) = -i \theta(t-t_1) \langle { d_j(t_1), d_i(t)^\dag } \rangle \), upper limit of $\int d t_1$ is $t$.
\begin{displaymath}
\sum_{\alpha i} t_{\alpha i} G_{i \alpha }^<(t,t) =
i \sum_...
...
\left[ G_{ij}^R(t,t_1) f(\epsilon ) + G_{ij}^<(t,t_1) \right]
\end{displaymath} (133)

Therefore

\begin{displaymath}
J_L(t) = 2 e \int_{-\infty}^{t} d t_1 \int \frac{d\epsilon }...
...amma(e,t_1,t) ( G^R(t,t_1) f(\epsilon ) + G^<(t,t_1))
\right]
\end{displaymath} (134)


next up previous
次へ: derivation 2. time-independent 上へ: current 戻る: current
kino 平成18年4月17日