The last version is ver. ver. 2006-04-17

1 Overview

The system is made of semi-infinite left lead, a molecule, and semi-infinite right lead. L and R are in the
equilibrium. The chemical potential at L is ur, and pugr at R. It is separated to L(semi-infinite left lead),
C(molecule+lead=extended molecule) and R(semi-infinite right lead). Effects of L and R are taken into
account of through the self-energy at C. It can be calculated via Green function at L or R connecting to

C.
1. Green function at L or R. (surface Green function)
2. Green function at C
3. charge density at C

4. transfer matrix and conductance.

2 tight binding Hamiltonian

eigenfunction [¢,) is made of LCAO at (site,orbital) i, |¢;).

H =T + V:external + ‘/ion + VCoulomb + ‘/exchange—correlation (1)
H|¢v> = Eu|¢v> (2)
W) = > cuildi) (3)
Hi; = (dilH|d;) (4)
Sy = (6ilés) (5)

Not necessary that ¢; is orthogonal. Vixternal comes from, e.g., bias voltage.

E,s are calculated by solving
H=ES (6)

3 surface Green function, orthogonal basis

3.1 normal
Green function
(w—H)G=1 (7)

consider periodic layers with an edge. There exist transfer integrals only between neighboring layers.
The layer 0 has the edge.

Hoy Hor 0 0 0
Hy Hyi Hi2 O 0

0 H. H H 0
- o1 Hap Hog (8)
0 0 Hsy Hsz

0 0 0

By definition, Hy1 = H; ;11 = HLLZ-,HOO =Hj; = Hip1,541.
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Green function

Goo Go1 Go2 Gis

Gio Gu G
G=| Gy G2 Ga 9)

Gso Ga3

Use G4 column,

(w—Hpo)Goo — Ho1Gio = (10)
—Hi0Goo + (w— H11)G1o — Hi12G2o = 0 (11)
—H31G10 + (w — Ha2)G29 — Ha3G3o (12)
(13)
eq.(10) to eq.(12) is generalized as
(w - Hnn)GnO = Hn,n—lGn—l,O + Hn,n+lGn+1,0 (14)

eq.(10) and eq.(14) describes relation between the neighboring layer. rewrite eq.(10) and eq.(14) as

(w—=€)Goo = I+ aoGio (15)
(w—€)Gno = PoGn-1,0+a0Gniip (16)

The relationship between the second neighboring layer corresponding to eq.(15) is

(w—€)Goo = I+ ag(w—e€) " (BoGoo+ aGay)
{w — (68 + Oéo(w — 60)_1ﬂ0)}G00 = I+ Oéo(w — 60)_1()&0G2,0
(w—¢€7)Goo = I+a1Ga (17)

The relationship between the second neighboring layer corresponding to eq.(16) is

(w=€0)Gno = Bolw—e€0) " (BoGn-2,0+ aGno)
+ag(w — 60)71(60Gn,0 + aoGry2,0)
{w = (€0 + Bo(w — €0) tao + ap(w — €0) 1Bo}Gno = Bo(w —€0)  BoGno2,0 + ao(w — €0) anGribl®)
(w—€1)Gno = [1Gn-20+ a1Gni2p0 (19)
From eq.(15), eq.(16), eq.(17), eq.(19), the relation between 2¢th neighboring layer is

(w — Ef)GQO = I+ OéiGQi’O (20)
(w—=¢€)Gno = BiGp_2io+ aiGpryioig (21)

€7, €, 0y, B; can be evaluated iteratively

i = & Failw—a)p; (22)
eir1 = e+Bilw—e) o tow—e)'B (23)
a1 = oy(w— 61’)71041' (24)
Bix1i = Bilw—e) B (25)

The initial values are

e = Hoo (26)
€0 = Hpo (27)
ay = Hn (28)
Bo = Hio (29)
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if |o;;] — 0 for i — oo, ! and also use eq.(22),
Goo = (w—€) Mimoo

3.2 use transfer matrix

Rewrite eq.(16)

Gno = toGn-1,0+t0Gni1,0
to = (w — H00)71H31
to = (w—Hoo) "Hn

Then the relation between the next nearest neighbor is

Gno = to(toGn-2,0+t0Gno) + to(toGn.o + toGni2.0)
Gno = (I —toto—toto) *(totoGn_2,0 + totoGri2.0)
rewrite it
Gno = t1Gn_20+t1Gni20
tp, = (I — totNO — foto)il(t0)2
t1 = (I —toto—toto) ' (fo)?
generally
GnO = tiGn—Qi,O + {iGn+2i,O
ti = (I—ti1tiq —tioati1) H(tio1)?
t; (I —tiqtiy —tiati 1) (ti1)?
at eq.(39), set n = 2° )
Gzi)o = tiGO,O + tiGziJrl,o
use eq.(42) iteratively
Gio = toGoo + t0Ga0

(G20 = t1Go0 + 11Gap)
= (to + tot1)Goo + tot1Gao
(Ga0 = t2Go o +12Gs )
(to + tot1 + tot1ta)Go,0 + tot1t2Gs o
=...= (to+toty +totrta+ ... +loty ... t;_1t;)Goo + toty ...t 11;Gait1g
= T;Goo + toti ... ti—1t;Gaitrg
T; = to + toty + totita + ... +toly ...t 1ty

If|£0£1...f¢_1"'|—>0f01‘?:—>00,2

Gio = TGoo
where T = T}]i— o0
from eq.(15) using T
(w—=Hoo)Goo — Ho1Gio = 1
Goo = (w— Hoo— HnT)™*

"Gy o will be 0 when 4 — co” is wrong.
27 @yi will be 0 when 4 — 00” is wrong.

(30)
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3.3 Gholnose — 07

This is not true. Consider the case where there exists a single site in the unit cel and Hoy = 0 (energy
level) and Hqg = t (transfer integral to the nn site).

Gon.oln—oo(w) ~ t2"71 /Det (wI — H) (54)
If w =0, or w is equal to the energy level,
Det (wl — H) = (—1)t*" (55)
Then,
Gano(w =0)[nooc ~ 1/t (56)
4 Green function of the extended molecule, orthogonal basis

4.1 Dblock matrix

(w—H)G=1I
consider L,C and R region and rewrite it
w — HL _HLC 0
(w—H)=| —Hcr w-—Hc —Hcr (57)
0 _HRC w — HR

Gc, the Green function at the C region, can be calculates as®

Go = {w—Hg—Hor(w—Hr) 'Hre — Hop(w — Hy) *Hpo) ™! (58)
= {w—Hc-Sg—¥r}" (59)
Yr = Hep(w—Hg) 'Hre = HorGrHRe (60)
Y, = Heplw—Hp) 'Hpe = HorGrHrc (61)
Gr and G, corresponds to the surface Green function, Gg, in the previous section.
Note that G¢(w) is caleulated for GE(w) = Go(w +i6) and GA(w) = Ge(w — i6).
define for the later convenience
T = iR -5f) (62)
I, = i(Sf-%7) (63)
(64)
In the equilibrium condition, *
G = Af(E—p) (65)
A = i(GE-aH (66)
G = —(GF-GYf(E-p) (67)
while
G< =GhEx<g4 (68)
s ai;n a2 O L
- —41 __ a11a3¢
for A= 0(2)1 Z;z Z;z » Agp = a11a22a33—a11a233;32—a33a12a21

4corrected May 12, 2005
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therefore

E<

—GRTHGR -GN (B - et
(G =GR H(E - )
— (2R — S F(E - p)

How are X i and X7 They are defined in non-equilibrium region, C. but near the region L or R, they
approximately satisfy equilibrium condition.

5 total charge

5.1 in the equilibrium

Sk o= —(EE-SR)f(E—pr)
S5 = —(EF-SHf(E - pr)

5.1.1 total charge from the retarded Green function

total charge, niot, is calculated from the retarded Green function

where G¥(w) = G(w + i)

1
n
pij = / dwAij(w)
1 1
= ——Im / dwG (w)
™
nit = Trlp]

5.1.2 total charge from contour integration

usually eq.(76) is unstable. employ contour integration

Pij =

where the path C = (1,0) — (1,i") — (Epin, i) — (Emin,
half of C and C is the upper half of C. i.e. C1 = (Epin,0) — (Emin, —iI') — (u,—il') — (1,0),

1
1
| @Gy + —

d2Gi
2ri o, 2 Jo, G

1
—Im dZGZJ(Z)

v C1

FEpin is smaller than the minimum of the eigenvalues.

5.1.3 total charge from contour integration 2

TRANSIESTA uses a different approach. eq.(75) can be written as

Pij

— / h dwAj(w) flw — )

— 00

—%Im /_OO dwG(w) f(w — )

(72)
(73)

(78)
(79)

(80)

—iI') — (p,—iI") — (1,0), and C is the lower
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where f(w — u) is the Fermi distribution function. using the thermal Green function and the pole of f(w)

is at iwn,
1
( / + / + [ YwGR@) flw—p) = —2mi~ 3 Gliwn) (83)
L Jr, Ji3 g o
where the path L is (Epmin,0) — (00,0), La is (00,iQ) — (u,iQ) and Lg is (14,iQ) — (Emin,0). Emin is

smaller than the minimum of the eigenvalues. @ is a small value enough to stabilize the integration. Then

1
pij = —;Im [/LngLg dwGP (W) f(w — p) — 2m— ZG iwn,) (84)

zwn

practical upper limit to calculate |, 1, w is ~ p+ 10T due to the presence of f(w — p)
Note that G has no pole in the upper half plane of w

5.1.4 total charge using modifed matsubara summaiton

7~ (14 Z/n)" (85)
then ) 1
f(2) f(2) (86)
1+ efZ—n 1+(1+5(z u))
f(Z) = f(Z) when M — oo
f(Z) has poles at
2M
B, = ut gD (87)
im(2p+1)
Zp = €Xp <T> (88)
total charge is
p [ dedw)f) (59)
From the counter integration of the upper-half plane,
[e%S) M-1
/ dwA()f(w) =271 Y A(E,)R, (90)
o =

where R, is residue and equals —z,/[.

5.2 in the non-equilibrium

G&(t) = ilcf (1)

One must calculate

pi; = (cfe;(0)) (91)
- 2G50 (92)

- / oGS (w (93)
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This can be evaluated only approximately.
Because GA~' —GRT = xR x4 = —il,

oA =i(GF — GA) = GEIGA = GR(Tr + I'p)GA (94)

A is the spectrum function.
At region C,
2mA = GETGA = GE(I'p +T1)GA (95)

where I' =T'r + I';, because > = YXp + Xp..
Assume that the region of C near the region L and R is close to the equilibrium. If not, the self-energy
defined in the region C can not be evaluated.

Gs = GEyx=aGid (96)
~ G of(w—pr) +Trf(w—pr))Go (97)
—GHEF =S f(w—pr) + (BF = SR) flw — pr))GE (98)

Note that the left side of eq.(98) is not analytical.
If w < min(ur, ur) — 107, f(w—p) = 1. then

G< =2miA (99)
then eq.(93) is
£ *dw o
i = | dwAij(w) + . 50701 (@) (100)

The first term can be calculated in the same manner as the case of the equilibrium condition. For w < p,
the electronic structure of the system will be close to the equilibrium. Fy (< min(ur, pr) — 107) is the
energy below which the electronic structure is close enough to the equilibrium state. Note G<(w) goes 0
for w > max(ur, pr) + 10T. the upper limit of the second term can be not an infinite.

5.3 in the non-equilibrium, TRANSIESTA’s approach
From egs.(93) and (98),

pi = [ o) — )+ [ dw i) - un) (101)
-/ T (p(@) + pB() flw— ) (102)
+ [ 7w o5 (@) (F — i) — F@ — ) (103)

Assuming py > pr, we can replace piLj (w) + pﬁ (w) with A(w) for w < pg.
pij = / dw A(w) f(w — pr) (104)
[ do o) (Flo = ) = £ = ) (105)

We evaluate the first term in eq.(84). p”(w) in the second term is not analytical.
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6 current

References in this section is ref.[1, 6, 7], which are rarely cited. I wonder why. Transmission is evaluated
as
T(w) = Tr [['1(w)GF (W) r(w)G* (w)] (106)

current is

1=¢ / QT (@) (f(w — ) — F(w - pr)) (107)

6.1 derivation 1. time-dependent

H=Y eclca+y edld + Hins({dl}, {di}) + D (tiad]ca +hoc.) (108)

current from L region is

Jp = —(—e)(Ny) = ie([H,Ny]) (109)
[H,Ny] = [HY_ dfd] (110)
= [tiadlca + taickdi, Y didy] (111)

= _tiad;‘rca + toziCLdi (112)

Jp =ie Z(_tia<djca> + tai<CLdi>) (113)

interesting that the prefactor of the current is imaginary!
Define Keldysh Green functions

G tt) = il (t)d; (1) (114)
Gsi(t,t") = ifdl(t))d; (1)) (115)
ga () = ek (t)eca(t) (116)
Dyson equation, <==«— + «— 3 <= reads
i<=1i i<=u« _ i1 0 (117)
a<=i a<=a o 0 a— «

T—1 0 X ot <=1 1<=«
+< 0 ou—a)(ﬂ 0><a<:i a<:a) (118)

«— means non-interactiong Green function and is diagonal. <= means interactiong Green function which
includes self-energies. i is indexes in the region C and « is in the region L, e.g.,

1——1 0 0
. . 0 2 2 0
e—i = 0 0 33 (119)

and so on.
The second term reads

(l— i, 2, a<=10)+ (i — i, tig,a<=1) (1,8 i<=qa)+ (i i,tin, 0 < Q) (120)
Q— Q,tyi,t <=1 Q— Ayt <= «

The (2,1) component of eq.(118) gives

(a <=1) = (@ = a,tai, i == 1) (121)
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Thus for equilibrium Green functions,
Gia(t,t) = / dt1 Y Gij(t,t1)tja(t1)ga(t1, 1) (122)
J

For non equilibrium Green functions,

G5 (1) = /dtl {ZGS (t,t1)tja (t1)gs (T, 1) + Z G5 (t,tl)tja(tl)gé(tl,t)} (123)

J J

time dependence of €, (t)

€al(t) = €2 + Ay(t) (124)
In the stochastic approrimation,
t
g5 (t.t) = if(ed)exp(—i [ dizea(t2)) (125)
t/
t
gAt,t) = bt —t) exp(—i/ dtaeq(t2)) (126)
t/
return to eq.(113), °
Ji(t) = e [taiGi(t,t) +he)] (127)
= 2 ReZtmG< (t,t) = 2¢ Re tr [tG<] (128)

See also the Appendix.
Use eq.(123), eq.(125) and eq.(126)

ZtmG< A Ztmz/dtl G (t,11)t50(1)gS (b1, 1) + G5 (1 1) ta(t)g (b, 1)) (129)

= zZ/dtltm (t1)tja(tr) [Gh(t, 1) f(€0) + G5 (t,11)0(t — t1)] x

aij

exp (—i /t ! dtgea(t2)> (130)

zZ/dtl/deZ<Se—e oi (D)t () exp(—i€ (1 — 1)) x

insert [ ded(e — €2)

ZtmG< t,t)

[e% %]
exp (—i dtgAa(t2)> (Gt 1) f(e0) + G5t 11)0(t — t1)] (131)
t1
Define .
Fﬂ(e, tl, t) =27 Z 5(6 — Gg)tai(t)tja (tl) exp (—Z/ dtQAa(tQ)) (132)
Then

ZtmG< (t,t) —ZZ/dtl/ Ui, b1, 1) [GR(t, 1) F(€) + G55 (£, 11)0(t — t1)] (133)

5The result, real or imaginary part, depends on the definition. Usually it is written as 2e Im tr[tG <], which may be more
comfortable.
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Taking into account of G (t,t1) = —if(t — t1)(d;(t1), di(t)'), upper limit of [ di; is ¢.

S G0 _ZZ / [ 5 0 et (e, 00,0) [GR (1) SO + GF (L 1)) (134)
Therefore
£ = 2 / " / ;—;Im T [T e, 11, )G (1, 12)7e) + G (1,11))] (135)

6.2 derivation 2. time-independent

from eq.(129)

d | d
D taiGr, (1) = Zth/dtl U %Gg(wl)e_wl(t_tl)tja/%gé( p)e 2ttt

+/d¢01 G<( —zwl (t— tl)t /dWQ A —iwg(t—t1):| (136)
= S tuitia [ G [ n)g 1) + G5 ()it w)] (137

time independent — €, = €2 (eigenvalue of the isolated L region)
Green functions become

Is(w) = i/dtei“’tf(ea)e_““t =27id(w — €4) (138)
) X 1
R _ s iwt—0t —deat _
oRw) = z/dte o(t)e — (139)
1
A _ iwt—0t *7/604 — 14
diw) = i [aestgpeion - L (140

Jr, becomes

27 Ww—€q — 10

J, = 2eReX:tomt,m/dw1 [GR(wl)Zmé(w—ea)f(wl)—i—ij(wl);.] (141)

= ZeIm/dw1 <Z tantmad(w — ea)> {Gf}(wl)f(wl) + %ij(u}l)}
+2¢Re / (Z tamtmaP—— ) G5 (wr) (142)

Here define
Lij(w) = QWZtmtjatS(w — €a) (143)
. 1 1
— z;tmtw <w_€a+i5—w_€a_i5> (144)
= i) taitia (95(W) - 98 (@) (145)

— i(ZRw) - W) (146)
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Use ImG# = L(GF — G4),

dw P <

If region described by {di},{dl} is non-interacting, then ij is pure imaginary.

J, = —ei/;l—::Tr [T(w) {(G" = G f(w) + G~}] (148)

Note that T'(w) and f(w) are defined for the equilibrium L region.
Let’s connect L-C-R. Use equations,

G = GPEx<g? (149)
$< = ifp(w)p +ifr(w)Tr (150)
IL+Tr = (G2 —GE™ (151)
GE-G4 = —iGR(I'p+Tr)GA (152)

fr(w) means f(w — pr) where py, is the chemical potential in the L region. fr(w) means f(w— ug). Note
again that eq.(150) is evaluated assuming the system is in the equilibrium.

J =

J,=—Jr (153)
(Jo — Jr)/2 (154)
: ‘;—jTr [TL(GR — GA)fp + TLG< — Tr(GR — GA)fr — TrG<] (155)
e dw

% | 22 [(Cfe = Pafr) ()G (s + TR)G* +i(Tr = TL)GH(fLl + fal'R)G] (156)

g / ;’—‘;Tr [~ fiDLGET LG — fLT L GRTRGA + fRORGET LG + frTRGFT G4

+fiDLGRT LG — fiTRGET LG + fRTLGFTRG? — fRrI RGFT G4 (157)
—g / Z—:Tf [(fL = fR)TLGRTRG?) + (fL — fr)(TRGFTLG?)] (158)
o [T [ LG TRGH) (159)

Now % was 1. correct prefactor, e/(27) — e/(h2w) = ¢e/h
The prefactor in the definition of the current in the tight binding scheme (eq.(113)) is imaginary, but
the evaluated current is real.

7 surface Green function, non-orthogonal basis

7.1 normal

(WS — H)G =1 (160)

Hoo Ho 0 0 0
Hyy Huii Hi2 O 0

H H H
g 0 21 22 23 0 (161)

0 0 Hsy Hsg
0 0 0
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Soo So1 0 0 0
Swo S Sz 0
0 Sa1 Sao Sz O

o

S = (162)
0 0 S32 Ss3 -
0 0 0
Goo Go1 Go2 Gis
Gio Gu Gia
G=| Gaa Ga1 G (163)

Gs1 Gss

Use G4 column,

(wSoo — Hoo)Goo + (wSo1 — Ho1)Gho (164)
(wS10 — H10)Goo + (wS11 — H11)G10 + (wS12 — H12)G2o = (165)
(wWS21 — H21)G1o + (wS22 — Ha2)Gao + (wSe3 — Ha3)Gso = 0 (166)
(167)
The last two eqs are generalized as
(WSnn - Hnn)GnO = _(wsn,n—l - Hn,n—l)Gn—l,O - (WSn,n+1 - Hn,77,+1)G77,+1,0 (168)
rewrite the relation between the neighboring site.
950 Goo = I+ aGio (169)
90 Gro = BoGn-10+ Gni10 (170)
The relationship between the second neighboring is
9:0'Goo = I+ aggo(BoGoo + aoGay)
(950" — @09060))Goo = I+ apgoanGao
gs_llGoo = T+ oGy (171)
And
go_lGnO = B090(BoGn-2,0 + aoGny)
+090(BoGn,0 + a0Gni2.0)
{90! = Bogoo — a0goBo}Gno = B090LoGn—2,0 + goaoGni2,0 (172)
97 G0 = 01Gp_20+a1Gryiap (173)
the relation between 2'th neighboring layer is
9::'Goo = I+ a;Gyig (174)
glv_lGnO = 67;(;,”,21’70 + O[iGn+2i70 (175)
9si» 9i, 4, Bi can be evaluated iteratively
Jeit1 = Gui — Qigibi (176)
gih = 9" = Bigioi — cugiB; (177)
i1 = 03404 (178)
bir1 = BigiBi (179)

especially
Goo = 9s,ili—oco (180)
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7.2 use transfer matrix

Gno = t0Gn-1,0+tGni10 (181)
to = —(wSoo — Hoo) (WSt — H{y) (182)
to = —(w—Hoo) "(wSo1 — Ho1) (183)
G1o =TGoo (184)
where T = T;|i— oo
(wSo0 — Hoo)Goo + (wSo1 — Hor)TGoo = 1 (185)
Goo = {wSoo — Hoo + (wSo1 — Ho1)T} ™" (186)

8 block matrix, non-orthogonal basis

(wWS—H)G=1I
consider L,C and R region and rewrite it
wSL—HL WSLC_HLC 0
(U)S—H)Z WSCL_HCL w—Hc WSCR_HCR (187)
0 wSrc —Hre  wSgr— Hr
Ge = [wSc—He — (wScr — Her)(w — Hg) ™ (wSkre — Hre)
—(wSor — Hop)(w — Hy)  (wSpe — Hye)] ™ (188)
{wSe — He =Yg — S0}t (189)
Yr = (wSor—Her)(wSk — Hr) ' (wSre — Hre) (190)
Y = (wSCL—HCL)(wS’L—HL)_l(wSLc—HLc) (191)
9 p—Vu
From Hirose and Tsukada PRB. 51, 5278 (1995) and Hirose’s thesis[4, 5].
How to solve
V2V (r) = —4mp(r) (192)
when Vg (z,y,z = z0) and Vg (x,y,z = z,41) are given.
change the coordinate r = (z,y,z) — (G|, 2), where G| = (G, Gy).
Vi(r) = Z VH(G||72)6¢G\\T\| (193)
G
p(r) = D p(Gy,2)eCIm (194)
G

(dT - G|2> VH(GH,Z) = —47Tp(GH,Z) (195)
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Introduce a Green function

2
<% - Gﬁ) G(G),2,2") = =0(2, %) (196)

G(G),z) = / dkG(G, k)e'** (197)

9.1 the case of G # 0

Let’s solve G with the boundary conditon, G(z = zp,2’) = 0 and G(z = z;41, 2') = 0. First the solution in
the free condition is.

G(G.k) = 1/(GT+k?) (198)
_ ikz
G(G,2) = /dke e (199)
omi ¢ |CI1# _ P
= j_gu \QZi‘G”l L (2>0) (200)
G (z<0)

Next, G with the boundary conditon, G(z = z¢,2’) = 0 and G(z = 2;41,2’) = 0, G can be solved by
applying a method of images

e—G|z—z’| 4 e—G(2(2L+1—ZO)—‘Z—ZI‘) _ 6—G(221+1—z—z’) _ e—G(z+z’—2zo)

G(Gy,2,2) = PG — o) (201)
where G = |G)||.
Green’s theorem
/S dS'n - (uV — vVu) = /V AV (who — vAu) (202)
can be read in this case, when Vi (z9) and Vg (z141) are given,
[G(2,2")0. Vi (2") = Vi ()0 G(2,2)] 17 (203)
= /dz’ (G(2,2)02 Vi (2)) = Vi (2192, G(2, 7)) (204)

/ d (0(27 %) (GﬁvH(z’) - 47Tp(z/)) — V(2 (GﬁG(z, 2 —8(z — z))) (205)

. / Gl ) + Vi (2) (206)

20

Thus

20

Vu(z) = A4rm /Zl+1 dZ'G(z,2)p(2') + [G(2,2") 0. VE (2) — Vi (2')0.G(z, 2)] (207)

Z0

z'=z¢

- / T G, () — Vi ()0 Gz, 2 YE T (208)

Z0

Z14+1
Vu(G),z) = 477/ dZ'G(G), 2,2 )p(G), )

Z0

T )

+ Vi (G, 20) (efG(zfzo) _ efc(zszzofz))}/ (1 _ 672G(zl+17z0)) (209)
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PGLK) e
k"

A )
+ VH(GH ZO) (e—G(Z—ZQ) _ e—G(QzHl—zo—z))}/ (1 _ e—QG(Zl+1—Z0))
p(Gy,
VH(T) _ /dk H l(G”THJrkZ)
+/dG” elG”T” {VH(G”72l+1) (efa(ZH.le) _ e*G(ZH.172ZQ+Z))

+ Vi (Gy, 20) (efG(zfzo) _ efc(zszzofz))}/ (1 _ 672G(zl+17z0)) (210)

= 4rn | dk

Note that p(G, z9) = 0 and p(G, z;+1) = 0. Thus the Fourier transform of p(G, z) is executed in the region
from z1 to z.
V(G| #0,20) = 0 and Vi (G| # 0, z;5.1) = 0 when the left and right electrodes are jellium.
9.2 the case of G| =0
9.2.1 solve iteratively

L vie) = —amp(2) (211)

where Vjj(z) = Vg (G = 0,2) and p%(z) = p(G = 0, 2). The above equation is equivalent to
d 2 0 2170
(ﬁ -K ) Vi (2) = —4np°(2) — K?V(2) (212)

with arbitrary K. Using the Green function G(K, z,z") with the boundary condition G(K, z = zg,2") =0
and G(K, z = z141,2") = 0 (same as eq.(201))

Vi(z) = /ZHrl d2'G(K,z,2') (4mp’(2') + K*V{(2')) — Vu ()0 G(K, 2, z’)]j:'z“rl (213)

'=2q
Z0

It seems that eq.(213) is especially stable to solve V3 (z) iteratively. Nara-san says that a few of iterations
are enough to converge V3.

9.2.2 solve directly
An alternative way to solve eq. (211) (Kobayashi’s method)

%Vg(z) = —4r /Z dz' p°(¢) +a (214)
Vi(z) = —477/ dz"/ dz'p’(2') +a(z — z0) + b (215)
= NAo(2)+alz—20)+b (216)

where a and b are some constants. They can be determined from the he boundary conditions

V}}(ZO) = AQ(ZO) +b="> (217)
Vi(zien) = Da(zi) +alzipr —20) +0 (218)

Nara-san says that when the z-mesh is fine enough, the latter method with a simple integration scheme to
evaluate Ay gives almost the same precision as the former method.
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10 p — Vg, another (easier) derivation

10.1 add boundary condition without any charge

How to solve
V2V (r) = —4mp(r) (219)

when Vg (x,y,2 = z0) and Vg (x,y,z = z;41) are given.
split Vi (r) = ¢(r) + 1 (r),

V3(r) = —dmp(r) (220)
V3(r) = 0 (221)
V2(o(r) +4(r)) = —dmp(r) (222)

where ¢(r) is the solution of the Poission equation with charge p(r) without any boundary condition in

the region from z = 21 to z = 2. ¥(r) is the solution of the Poission equation without charge and with

the boundary condition Vg (z,y,z = 29) and Vg (z,y,z = z141) in the region from z = zp to z = z;41.
#(G), the Fourier transform of ¢(r), can be solved in the usual way for periodic boundary condition as

9(G) = 4mp(G) /G (223)

¥(G), z) can be solved analytically using the formula of the previous chapter with the condition p = 0.
Surely eq.(210) has such a form. (G| = 0, 2) can be also solved using the formula of the previous chapter
with the condition p® = 0. The solution, eq(221), is simply,

V(1) = (ur — pr)/ (2141 — 20) (224)

10.2 meanings of the excess charge

How to solve
V2V (r) = —4mp(r) (225)
when Vi (x,y,z = z0) and Vg (x,y,z = z,41) are given.
Define a parameter, which means the excess charge,

ps = p(r) = 3 p(G) (226)
G#0
Then
VAV (r)+V(r) = —4n(p(r) +ps) (227)
VQV(T') = —dup(r) (228)
V2Vg(r) = —4mpp (229)
(230)

Eq.(228) is solved via FFT, while Eq.(229) is solved analytically,
Vp(2) = —4mpp(z — 20)* + a(z — 20) + b (231)

parameter a and b is determined via boundary condition. The sign of pp determines how Vi (z) drops.
(See figure.1.)
Note that the condition of no s-d bias voltage is satisfied, even if there exists some excess charge,

11 some examples

11.1 an 1D chain

Consider a tight binding model,
H = tCiCj (232)
(i)
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v Vu
B
— ps>0
ps>0 \
‘ pe<0
ps<0 z .
Figure 1: relationship between pp and V(2)
11.1.1 If site O is in the central region
Assume that
ER(w*) :wO/2+iFQ/2 (233)
where w* = w 4 id.
GC = (W—ER—EL) (234)
Yr(w™) = ReXp+ilm¥p =wy/2+ily/2 (235)
Yr(wt) = ReXp —ilmYg = wy/2 —il/2 (236)
I' = Im(Zp(w”)—Zgrwh))=To (237)
Then
Go(w™) =1/(w—wy —ily) (238)
conductance is
T = TGe(wIGe(w™) (239)
= I§/((w—wo)® +T%) (240)
where wgy and I'y are functions of w and must be calculated. wy = w in the range from —2t to 2t also from
numerical calculations. Therefore T' =1 from w = —2¢ to w = 2¢, and G¢ = 1/(—il).
11.1.2 If site0 and sitel are in the central region
Matrixes for site0 and sitel are
H - ( 0 1 ) (241)
EL(wf) _ ( WQ/2+’LFQ/2 8 ) (242)
Sew) = (0 (243)
0 (.UQ/2 + ZFO/2
_ 'y 0
r, = ( 0 0 ) (244)
0 o0
o= (00 i
Gow') = (w—H—=Spw") =S (246)
Then
T = T[[LGo(whHTrGe(w)) (247)
161°3t>

(T2 4+ (2t +w)?)(T3 + (2t — w)?)
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Figure 2: Self-energy of surface Green function of the simple tight binding model of eq.(232) at t = 1. A

figure shows a result of numerical calculation of ¥(w + id) where § = 0.01.

where wg = w is used. 17" =1 also in this case. Then

F() =V 4t2 — U)2

A numerical calculation supprots this result.
In summary, self-energy of the surface Green function of the simple tight-binding model is

w N4t — w2
ERorL(Wi) = 5 :Flf

for -2t < w < 2t.

11.2 an 1D chain with an impurity — a dip structure
11.2.1 an impurity interacting with a atom
H = Ztcicj‘ + fdardo + (Scardo +h.c)
)
If site 0 is in the central region, matrixes for the site of ¢y and dy are

Gowh) = (w—ERW_)S—zL(w) w__sf )‘1
— <W—w_08+zl“0 w__sf >1
Gew™) = <W—w_08—zI‘0 w__sf >1
o (50)
e (W)
I T OGele et )
I2(w— )2
— {(ul:z(f)(“})zwz()szf}?2+rg(wf)2
2w —

(249)

(250)

(251)

(252)
(253)
(254)
(255)

(256)
(257)

(258)

(259)

where wy = w is used at the last equality. It is important to notice that T'= 0 at w = f, i.e. at the energy

level of the impurity and the maximum is less than 1. The half-width of the minimum is s2/T.
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11.2.2 an impurity interacting with two atoms

H = teiej + fdfdo + (scfdo + sci do +h.c.) (260)
(i5)
The conductance of this model is calculated as
16I3(s? — ft + tw)?

r= (T2 + (2t + w)?) (f2T2 + (452 — 2ft + fw — Tow + 2tw — w?)?)

(261)
A position of a dip structure is not necessarily at w = f. The dip appears at w = f — s2/t in this case.

11.3 junction — a resonance peak

H= Z tefej + fegeo + (scf co + sctieo + hee.) (262)
(i5)#0
Only site0 is in the central region. Because ¥ g(w) = HorGr(w)Hge and s enters only through Heog and
Hgc,
Sr(w) = (5/1)*Sro(w) (263)
where Y gg is the value of ¥ g when s =¢. Then
-1

G = (w—(s/t)’wo —i(s/t)’To — f) (264)
_ (s/t)'Tg
r = (w—(s/t)%wo — )2+ (s/t)*T3 (265)
(s/t)*I'3
_ 1—(/0)” (266)

2 s 4172
(v~ =)+ o
T =1 at the center of the peak, ﬁ, and the half-width of the maximum is E((SS//?)Z Smaller s, and
smaller I'g, which means smaller ¢ or the energy is near the edge of the band, give a shaper resonance peak
on the conductance.
T takes some value, I'2/(I'2 + f?) for s = t. (g is a function of w.) The broad peak locates not at
w = f, but at w = 0, which is the center of the band.

A H!

E-H H -

_ —Haq —Hasp

o - ( o s ) (267)
1 __1 g 1

B < E—Ha—Hap gy Hoa E-H, 'ABE_Hp—Hga =y HaB ) (268)

= 1 1 1
— o HBAE—HA—HAB B T E—Hp—HpaptHan

B phase between the neibouring site

The formula (128) can be used to calculate the current of the link ij , Jr(¢)s5,

Jot) = > Jr(t)i (269)
JL (t)ij = 2eRe [tijGﬁ‘ (t, t)} (270)

The wavefunction, ¥, is solved in the time-independent non-equilibrium state. The charge at (r, E) is
calculated as
n(r, E) = U*(r, E)¥(r, E) (271)
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while 1
n(r,E) = —G<(r, E) (272)
2mi

The total chargeis n(r) = [ dE n(r, E). Thesereads that U(r, E)*¥(r, E) is associated with 1/(2mi) G=<(r, E).[9]
Then Jy, ;5 is [8]

JL,ij = 2eRe %/dEGK(r,E) (273)
— 2 Re %/dE [t:, (20) (G| ) (E])] (274)
— 2etm (B 1, IE)ED) (275)
— 2etm [aB((Eli); (1) (276)

When \I/(E) = El ag; i, Jrij = 2e det¢j|aEi||an| sin(@Ei — 0Ej)7 with the phase factor 6g; of ag;. This
means that no current flows if the phase difference between the site 4, j is 0 or 7.
Compare it with another definition of the current density

j(r) = (1/m*) Im [ (r)

(E|i) in eq.(276) is weight at site i of the wavefunction ¢ (E), while ¢(r) is weight at r of the wavefunction.
So eq.(276) is similar to eq.(277). (Of course!) if ¥(r) = exp(ikr), j(r) = k/m™*. In this case, ¥(r + dr) =
exp(ikr) exp(ik dr). Then 0 = k dr.

(277)

C charge density in the non-orthogonal basis set

In this section, we consider the dual basis representation.
Eigen value and eigen state safisfy the equation,

H|a) = E,|a)

|a) is constructed using atomic basis set |i) (LCAO),
o) = Z Caili)
The eigen energy is calculated by solving generalized eigenvalue problem,

(i|H|j) = E(ilj) (278)
Hij = ESi (279)

with the normalization condition («|a) = 1. The Green function is defined as
_\ o) {al
"Lk
Here we define the dual basis set in the atomic basis set,
- a1
i) =" 15)S;
J

where S;; = (i|7). Then B
(ilj) = 04
The trace of A is expressed as

Tr[A] = (A) = (il A]i)
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The Green function is

Then the charge density is

()

Consider the simple case,

(ilG1)

i

> (iloli)

= D (el il

2]

= ya{- [etmen)mo

(]

-/

™

/dz Z caicszjié(z —

1
/dzﬂlmz (|G (2)]5){j7)

1
dz—Im Z Gijsji

.3

——Im/dzz cmc

z— FE, —|—25 S

«,1])

a,ij

Eo<Er

- ¥

Eo<Er

E: }: *
Caicaiji

j

E,)

21

(280)

(281)

(282)

(283)

(284)

(285)

(286)

(287)

(288)

(289)

(290)

>_ij CaiCh;Sji = 1 because of the normalization of |o). The left hand side of {afa) =1 can be written as

{aa)

Z(CZi<i|)(Caj|j>)
D chicajSij

The total band energy can be calculated similarly
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