next up previous
次へ: current 上へ: total charge 戻る: in the non-equilibrium

in the non-equilibrium, TRANSIESTA's approach

From eqs.(90) and (95),

$\displaystyle \rho_{ij}$ $\textstyle =$ $\displaystyle \int_{-\infty}^{\infty} d\omega \; \rho^L_{ij}(\omega ) f(\omega -\mu_L) +
\int_{-\infty}^{\infty} d\omega \; \rho^R_{ij}(\omega ) f(\omega -\mu_R)$ (97)
  $\textstyle =$ $\displaystyle \int_{-\infty}^{\infty} d\omega \; \left( \rho^L_{ij}(\omega ) + \rho^R_{ij}(\omega ) \right) f(\omega -\mu_R)$ (98)
    $\displaystyle + \int_{-\infty}^{\infty} d\omega \; \rho^L_{ij}(\omega ) \left( f(\omega -\mu_L) - f(\omega -\mu_R) \right)$ (99)

Assuming $\mu_L > \mu_R$, we can replace $ \rho^L_{ij}(\omega ) + \rho^R_{ij}(\omega ) $ with $A(\omega )$ for $\omega \le \mu_R$.
$\displaystyle \rho_{ij}$ $\textstyle =$ $\displaystyle \int_{-\infty}^{\infty} d\omega \; A(\omega ) f(\omega -\mu_R)$ (100)
    $\displaystyle + \int_{-\infty}^{\infty} d\omega \; \rho^L_{ij}(\omega ) \left( f(\omega -\mu_L) - f(\omega -\mu_R) \right)$ (101)

We evaluate the first term in eq.(81). $\rho^L(\omega )$ in the second term is not analytical.



kino 平成17年12月15日