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1 Introduction

The program calculates the transmission in the L-C or C-R interface. The system the program can calculate
is written in the top part of Fig.1. The effects of semi-infinite electrodes, L or R, is calculated using the
surface Green function, GL or GR. Then, the program takes into account of The effects electrode to the
C region via self-energy ΣL and ΣR. In this way, the program solves the system shown in the bottom
of Fig.1 which is equivalent to the top of the figure. The program can also apply the source-drain bias
between L and R.
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Figure 1:

2 Surface Green functions

What is necessary to calculate is Hamiltonian and overlap matrixes of electrodes, L and R. They are
H00 e[side], S00 e[side] , H01 e[side] and S01 e[side] , side=0 for L and side=1 for R.

For L, H01 e[side] and S01 e[side] are transfer matrix to the left of the unit cell. For R, H01 e[side]
and S01 e[side] are transfer matrix to the right of the unit cell. See also Fig.2.

The calculated Green functions are GL and GR.
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3 Green function in the central region

What is necessary to calculate is Hamiltonian and overlap matrixes of the central region and to the
electrodes, L and R. They are HCC, SCC, HCL, SCL and HCR and SCR. And the surface Green functions
of the electrodes, GL and GR are necessary, of course.

The Green function of the central region, G, is

G(ω) = {ωSCC − HCC − ΣR(ω) − ΣL(ω)}−1 (1)
ΣL(ω) = HCLGL(ω)HLC (2)
ΣR(ω) = HCRGR(ω)HRC (3)

The Lesser Green function of the central region is

G< = GRΣ<GA ' GR(−(ΣR
L − ΣA

L)f(ω − µL) − (ΣR
R − ΣA

R)f(ω − µR))GA

where GR(ω) = G(ω + iδ) and GA(ω) = G(ω − iδ).
The Density matrix is evaluated as

ρij = Im
∫ E1

∞
dω(

−1
π

)GR(ω) +
∫ ∞

E1

dω
1

2πi
(G<

ij(ω))

Analytic continuation is possible for the former integral.

Im
∫ E1

∞
dω(

−1
π

)GR(ω) = Im
∫ E1

C

dω(
−1
π

)G(ω)

The final expression is

ρij = Im
∫ E1

C

dω(
−1
π

)G(ω) +
∫ ∞

E1

dω
1

2πi
(G<

ij(ω))
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Figure 3:

4 Transmission

Once the Hamiltonian and overlap matirxes are solved. You can calculate transmission for any ω.

J = − e

h

∫
dωTr[(f(ω − µL) − f(ω − µR))(ΓLGR

CΓRGA
C)]

where ΓL = i(ΣR
L − ΣA

L) and ΓR = i(ΣR
R − ΣA

R)
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5 Overlapping region

5.1 ρij → ρ(r)

ρ(r) =
∑

ij

φi(r)ρijφj(r)

The secular equation is solved only in the C region. It means the indexes i and j for ρij that you can solve
is in the C region. There exists ovelap between L and C region, however you can not include such effects.
Thus you can not calculate ρ(r) near the L region. Therefore the program employs the charge density ρ(r)
of the L region for such parts.

5.2 φi → H

The program define the potential, or the charge density, only in the C region. Thus, if the wavefunction φi

or φj spans outside the C region, the program can not define the Hamiltonian matrix 〈φi|H|φj〉. Therefore
the program use the Hamiltonian or overlap matrix of the L region for such parts.
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Figure 4: To evaluate ρ(r) near the L region, the wavefunction φ2 and the density matrix ρ2i are necessary.
Thus the program can not evaluate ρ(r) whose r is left of the boundary. To evaluate 〈φ3|H|φ3〉, the
potential in the L region is necessay.

6 Poisson equation

The program solves
4VH(r) = −4πρ(r)

It is solved in this way.

4(VC(r) + VB(r)) = −4π(ρ(r) + 0) (4)
4VC(r) = −4πρ(r) (5)
4VB(r) = 0 (6)

4VC(r) = −4πρ(r) is solved via FFT as a periodic system. 4VB(r) = 0 is solved with the boundary
condition.

V (r) are transformed to V (G‖, z). Now you have VC(G‖, zi) in the C region, i = 1, 2, ..., l. The
bounary condition is VB(G‖, z0) and VB(G‖, zl+1) The correction to the VC(G‖, zi), i = 0 and l + 1, is
dVH(G‖, zi) = VB(G‖, zi) − VC(G‖, zi).
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6.1 G‖ 6= 0

VB(r) =
∫

dG‖e
iG‖r‖

{
dVH(G‖, zl+1)

(
e−G‖(zl+1−z) − e−G(zl+1−2z0+z)

)

+dVH(G‖, z0)
(
e−G‖(z−z0) − e−G(2zl+1−z0−z)

)}
/

(
1 − e−2G‖(zl+1−z0)

)
(7)

6.2 G‖ = 0

Here G0 = 0.

4VB(G0, z) = 0 (8)
VB(G0, z) = a(z − z0) + b (9)

a and b is determined from

VB(G0, z0) = dVH(G0, z0) + b (10)
VB(G0, zl+1) = dVH(G0, zl+1) + a(zl+1 − z0) + b (11)

A Interpolation

ρ(r) and V (r) are evaluated on the FFT grid. However, the FFT grid of the C region is different from
that of the electrode, because the unit cell is different. The value must be interpolated.

An input data set
H((γ + n)/Nin)

where n = 0, Nin − 1 and assuming the periodic boundary bondition. The interpolated data set

H((α + βm)/Nout)

where m is integer and can be beyond the range of [0:Nout − 1]
Forward transformation

h(k) =
∑

n=0,Nin−1

H(n + γ) exp(−2πik(n + γ)/Nin) (12)

= exp(−2πikγ/Nin)
∑

n=0,Nin−1

H(n + γ) exp(−2πikn/Nin) (13)

= exp(−2πikγ/Nin)h0(k) (14)

where
h0(k) =

∑

n=0,Nin−1

H(n + γ) exp(−2πikn/Nin)

can be calculated via FFT.
Barkward transformation of H((α + βn)/Nout).
(α + βn)/Nout can be beyound the range of [0:1].

H ′(α + βn) =
∑

k=0,Nin−1

h(k) exp(2πik(α + βn)/Nout) (15)

=
∑

k=0,Nin−1

exp(−2πikγ/Nin)h0(k) exp(2πik(α + βn)/Nout) (16)

=
∑

k=0,Nin−1

h0(k) exp(2πik((α + βn)/Nout − γ/Nin)) (17)
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Note, the transformation bove can not give all of (α+βn)/Nout correctly. In order to interpolate data,
use the formula below

H(α + βn) =
∑

k=0,Nin/2

h0(k) exp(2πik((α + βn)/Nout − γ/Nin)) (18)

+
∑

k=−Nin/2,−1

h0(k) exp(−2πik((α + βn)/Nout − γ/Nin)) (19)

where h0(k − Nin) = h0(k).

A Structure of the program

Input_std
TRAN_Input_std

TRAN_Set_SurfOverlap (read data of electrode calculated previously)
TRAN_Input_std_Atoms

truncation
TRAN_adjust_Ngrid
TRAN_adjust_Grid_Origin

DFT
TRAN_Set_Electrode_Grid (interpolate griddata of electrodes)
TRAN_Allocate_Cregion
scf_loop {

Poisson | TRAN_Poisson (solve Poisson equation with the boundary condition)
Cluster_DFT | Band_DFT | TRAN_DFT (calculate CDM from H and S)
TRAN_Overwrite_Densitygrid (overwrite the griddata of electrodes)

}
TRAN_Output_Trans_HS (output H and S to calculate transmission later)
TRAN_Deallocate_Cregion

1212 3 13

Figure 5: Electrode region = [0:TRAN grid bound[0]] for left, [TRAN grid bound[0],Ngrid1-1]. They are
shown in blue. TRAN region[1:atomnum] = 12 (left, yellow), 2 (left, open), 1 (center), 3 (right, open), 13
(right, yellow).
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openmx
TRAN_Set_
Electrodegrid

TRAN_DFT

TRAN_Poisson

explicit
input/output 
variables

(Density_Grid)

ReV2, ImV2

H, OLP

CDM

variables

tran_variables.h

H00_e, H01_e,
HCL, HCC, HCR,...

TRAN_grid_bound,
ElectrodedVHart_Grid_c,
...

H00_e, HCL, HCR, HCC,...

Figure 6:


