MI²I 最終報告会, 一橋講堂, 2020年2月19日

磁石材料グループ

三宅 降

木野日織(SGL) 青木祐太(ポスドク, ~2018.5) DAM, Hieu-Chi(本務:JAIST) 三俣千春 小野寛太(本務:KEK) 小山敏幸(本務:名大) 溝口理一郎(本務:JAIST) 真鍋 明(副PL)

省エネ社会における高性能永久磁石

物質

 $Nd_2Fe_{14}B$

材料

Nd-Fe-B 磁石

(ネオジム磁石)

https://www.cyberdyne.jp/

International Energy Agency (2013)

	STAGE I 新物質創成 例:C ₆₀	STAGE II 物性極値化 Materials Genome	STAGE III 材料最適化 Integrated Computation	STAGE IV 適用研究開発 al Materials Engineering
内容	従来の特性限界超 物質探索	結晶構造あり 元素置換 ドープ 極値を探す	材料化 プロセス・組織構造の 最適化	システム設計 試作実証 信頼性確保
ポイント	コンセプトひらめき 実験発見	傾向予測と実験	実験検証 特性トレードオフ克服	Virtual Prototype シミュレーション 日

レシピ+支配方程式

Akira Manabe (NIMS)

磁石化合物

 $Nd_2Fe_{14}B$

Hirayama, Miyake and Hono, JOM 67, 1344 (2015)

1-12系希土類化合物

計算による磁気特性の予言

T. Miyake et al., J. Phys. Soc. Jpn. 83, 043702 (2014)

Nd₂Fe₁₄Bを超える磁気特性を確認

Y. Hirayama et al., Scripta Materialia 95, 70 (2015)

ベイズ最適化と仮想スクリーニング

Temperature [K]

化学組成

Material
$$\{x_i\}$$
 $(i = 1, 2, 3, ..., N)$
First-principles calc.
Property $\{y_i\}$ $(i = 1, 2, 3, ..., N)$

Machine-learning model y = f(x)

Validation by first-principles calc.

機械学習を用いた組成最適化

例: $(R_{1-\alpha} R'_{\alpha})$ (Fe_{(1-\beta)(1-\gamma)}Co_{\beta(1-\gamma)}Ti_{\gamma})₁₂

top10を50回以内に見つけ る成功確率

3,630 組成

 $\gamma = 0.0, 0.5, \dots, 2.0$

KKR-CPAで非化学量論組成を計算

T. Fukazawa et al., Phys. Rev. Mater. **3**, 053807 (2019)

機械学習を用いた組成最適化

例: $(R_{1-\alpha} R'_{\alpha})$ (Fe_{(1-\beta)(1-\gamma)} Co_{\beta(1-\gamma)} Ti_{\gamma})₁₂

物質から材料へ

Nd, Fe, B, Dy, Co, Cu, Ga, ...

副相の探索・決定

磁性体の仮想スクリーニング

✓ 計算量と精度 ✓ 汎用第一原理計算DB の信頼性

Material
$$\{x_i\}$$
 $(i = 1, 2, 3, ..., N)$
First-principles calc.
Property $\{y_i\}$ $(i = 1, 2, 3, ..., N)$
Regression

Machine-learning model y = f(x)

✓ 記述子

Validation by first-principles calc.

Orbital Field Matrix (OFM, 軌道場行列)

Orbital field matrix of center and local environment

- NaCl₄ -

0

0 0 0

0 0 0

0 0 0

0 0 0

.

0 0 0 0 0 0 0

0 0

0 0 0 0 0 0

0 0

p3 p4 p5 p6 d1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0

0

0

0

0

s¹ s² p¹ p²

0 0 0

> 0 0 0 0

0

0

0 0

0

0

5² 0 0 0

11

Hieu-Chi Dam (JAIST)

Cl Voronoi polyhedra p ²	0	0	0
p ³	0	0	0
CI Na P ⁴	0	0	0
	0	0	0
CI P ⁶	0	0	0
Concatenated d ¹	0	0	0
central atom	1	:	:
CI U one-hot vector f ¹⁴	0	0	0

f14 0

Atomic local environment

one-hot vector

Cl: [Ne]3s²3p⁵

 $s^1 \ s^2 \ p^1 \ p^2 \ p^3 \ p^4 \ p^5 \ p^6 \ d^1$

0 0 0 6 0

Atomic

one-hot vector

Na: [Ne] 3s1

0

0 p1

 $p^2 = 0$ $p^3 = 0$ $p^4 = 0$ $p^5 = 0$ $p^6 = 0$ $d^1 = 0$ $f^{14} = 0$

 s^2

 \mathbf{p}^3

Central atom

生成エネルギー

磁気モーメント

Descriptor	CM ¹⁹	OFM	OFM1	Descriptor	CM ¹⁸	OFM	OFM1
RMSE	0.470	0.190	0.180	RMSE	0.21	0.18	0.12
MAE	0.390	0.112	0.098	MAE	0.11	0.05	0.03
<i>R</i> ²	0.87	0.98	0.99	R ²	0.90	0.93	0.97

- ボロノイ分割と構成元素の電子配置を用いて行列表示
- 行列サイズは、組成や結晶構造に依らない
- matminer に収録。XenonPyで利用可

T.L. Pham et al., STAM **18**, 756 (2017); JCP **148**, 204106 (2018)

Nd-Fe-Bの(準)安定相の探索

Tien-Lam Pham (JAIST)

材料開発の4つのステージ

NIMS Now, 2016 No.2

	STAGE I 新物質創成 例:C _{co}	STAGE II 物性極値化 Materials Genom	/	STAGE III 材料最適化 Integrated Computation	STAGE IV 適用研究開発 al Materials Engineering
内容	従来の特性限界超 物質探索	結晶構造あり 元素置換 ドーフ 極値を探す		材料化 プロセス・組織構造の 最適化	システム設計 試作実証 信頼性確保
ポイント	コンセプトひらめき 実験発見	傾向予測と実験		実験検証 特性トレードオフ克服	Virtual Prototype シミュレーション 出

レシピ+支配方程式

Akira Manabe (NIMS)

フェーズフィールド法

データ同化による熱力学パラメータの決定

■ アジョイント法を基礎とするデータ同化手法
 ■ フェーズフィールド(PF)法の計算結果と組織形態変化等の観察

データから熱力学パラメータを推定

15

材料開発の4つのステージ

NIMS Now, 2016 No.2

	STAGE I 新物質創成 例:C ₅₀	STAGE II 物性極値化 Materials Genome	STAGE III 材料最適化 Integrated Computation	STAGE IV 適用研究開発 nal Materials Engineering
内容	従来の特性限界超 物質探索	結晶構造あり 元素置換 ドープ 極値を探す	材料化 プロセス・組織構造の 最適化	システム設計 試作実証 信頼性確保
ポイント	コンセプトひらめき 実験発見	傾向予測と実験	実験検証 特性トレードオフ克服	Virtual Prototype シミュレーション

レシピ+支配方程式

Akira Manabe (NIMS)

ネオジム磁石の発明

 R_{2} Fe₁₇ (*R*=Nd, Sm, ...)

図1. R2Fe17 化合物の結晶構造

浜野正昭氏はこの構造のFe-Fe原子間距離 特に、赤色で示したダンベルサイトと呼ば れる原子位置でのFe-Fe原子間距離が小さ すぎることが、R2Fe17化合物の強磁性状態 が不安定な理由であると説明した。

図2. Nd-Fe-B 磁石を構成する Nd₂Fe₁₄B 化合物の 結晶構造

この化合物中でBが重要な役割を演じている。Bがその近傍のFeの電子状態をCoの 電子状態に似た状態に変える役割をしてい ることを金森順次郎氏が明らかにした。

キュリー温度の回帰

27個の記述子

101個の R-T 化合物の実験データ (AtomWork)

DAM, Hieu-Chi (JAIST) 木野日織 (NIMS)

Category	Descriptors
Atomic properties of	$Z_T, r_T, r_T^{cv}, IP_T, \chi_T, S_{3d}, L_{3d}, J_{3d}$
transition metals (T)	
Atomic properties of	$Z_R, r_R, r_R^{cv}, IP_R, \chi_R, S_{4f}, L_{4f}, J_{4f}, g_J, J_{4f}g_J,$
rare-earth metals (R)	$J_{4f}(1-g_J)$
Structural information	$C_T, C_R, d_{T-T}, d_{T-R}, d_{R-R}, N_{T-R}, N_{R-R},$
(S)	N _{R-T}

Subgroup relevance analysis

Dam et al., JPSJ 87, 113801 (2018)

n

Dissimilarity

Bagging-based dissimilarity voting machine

KRR + Ensemble learning

Nguyen et al., J. Phys. Mater. **2**, 034009 (2019); (Corrigendum) ibid, **3**, 019501(2019)

Materials discovery based on EA

T. Ishikawa et al., Phys. Rev. B 100, 174506 (2019)

22

Data collection (First-principles data)

в

AI

31

С

Si

P

He

Ne

F

CI

0

s

Binary with 62 elements 497

	Т _с (К)	<i>P</i> (GPa)
YH ₁₀	265	250
MgH_6	263	300
LaH ₁₀	238	210
CaH ₁₂	206	150
AcH ₁₀	204	200

Met.

RNM

NG

AM

AEM

Lan.

н

Li

Na

2

3

Be

Mg

Act.

TM

PTM

GP training

Details of function:

 $f = \div \times + \mu^* - - \div 9 - - - 8 + + \mu^* - - \div 9 - + \div \div$ $10\ 10\ 2 \div - - \div \div + \times 10 + 6\ 9\ S - + + 6\ h\ h\ M$ - $\mu^* M + \mu^* 10 10 10 \times \div 824 + 6 h \times 4410 \div - + M7 + + -9 \div - - - + - \div 9 - \div P6 + 6h \times \times +$ $\mu^* + \mu^* \times \mu^*$ h 9 9 + 3 h \times 10 + 6 h 10 10 P - 9 + + S 7 M \div \div \times 8 7 - - \div P - + h 10 - - M 7 1 - 8 + + + 8 1 × μ^* h ÷ - - + M 7 + ÷ ÷ ÷ + M 8 h - - + $M + + - \mu^* \times 9 h \div - \div \times - + - 3 \times M M 10 4 10 4$ $-+69 \times 1 \text{ M P} + \mu^* \times - \times -6 \text{ M } \mu^* + 1 \mu^* \div 99$ $1 - + M 7 7 6 + + 8 \div 7 5 - 9 + \div 7 h S \times 1 M 6 10$ $6 \times 1 M 6 - \div 4 - - \div P + - 5 4 1 - 8 + + 3 h - - - \div$ $8 - + \div \div 6 10 2 \div - - \times \times 4 h 1 \times 10 + 6 h M +$ $M 7 \times \div 824 \times 10 \times \times 9 h M 10 10 \div \times \times + \mu^*$ $- \div \times + h 10 10 4 \times M \times + 69 \div 2h9 \times \div 1010$ $5 \times 4 \text{ M } 10 + 6 \text{ h} \times 9 \text{ h} 10 9 - - - 9 \div - - - \div \times \times +$ μ^* 10 9 × ÷ - - ÷ 9 + × ÷ M P 6 1 × × + μ^* + $\mu^* \times \mu^*$ h 9 9 10 10 5 × 4 M × 10 × ÷ ÷ 9 10 2 M 10 10 P 9 - \times h 9 9

First-principles validation

T. Ishikawa et al., Phys. Rev. B **100**, 174506 (2019)

GA structure search $\Rightarrow C2/m$ (No. 12)

Modulated H-cage structure

	S	<i>P</i> (GPa)	λ	ω _{ln}	Τ _c (K) μ* = 0.10	<i>T</i> _c (K) from predictor
CaH ₆	Im-3m	300	1.66	1388	174	155
KScH ₁₂	C2/m	300	1.54	1139	133	81