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4磁⽯化合物

Nd2Fe14B
Hirayama, Miyake and Hono, JOM 67, 1344 (2015)

NdFe12N
Sm(Fe,Co)12
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Y. Hirayama et al., Scripta Materialia 95, 70 (2015)

1-12系希⼟類化合物

異⽅性磁場 飽和磁化

薄膜合成
Nd2Fe14B を超える磁気特性を確認

計算による磁気特性の予⾔
T. Miyake et al., J. Phys. Soc. Jpn. 83, 043702 (2014)



6ベイズ最適化 と 仮想スクリーニング

化学組成

⽬
的
変
数

ベイズ最適化

# trials

Material {xi } (i =1, 2, 3, … , N )

Property {yi } (i =1, 2, 3, … , N )

Material {x´i } (i =1, 2, 3, … , N´ )

Property {y´i } (i =1, 2, 3, … , N´ )

First-principles calc.
Regression

Machine-learning model
y = f (x )

Prediction

Validation by first-principles calc.



7機械学習を用いた組成最適化
例：(R1-a R′a )(Fe(1-b)(1-g)Cob (1-g) Tig )12

R = Y, Nd, Sm
R’ = Zr, Dy
a = 0.0, 0.1, …, 1.0
b = 0.0, 0.1, …, 1.0
g = 0.0, 0.5, …, 2.0 

3,630 組成

T. Fukazawa et al., Phys. Rev. Mater. 3, 053807 (2019)
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8機械学習を用いた組成最適化
例：(R1-a R′a )(Fe(1-b)(1-g)Cob (1-g) Tig )12

0

20

40

60

80

100

RS BO #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 � � �, �
(without � nor �) (with � and �) (�, � only)

Su
cc
es
s
ra
te
[%
]

µ0M
TC
�E

成
功

確
率

記述⼦の種類

記述⼦の選択に強く依存
↓

Similarity-based information 
measure と相関︖

R = Y, Nd, Sm
R’ = Zr, Dy
a = 0.0, 0.1, …, 1.0
b = 0.0, 0.1, …, 1.0
g = 0.0, 0.5, …, 2.0 

3,630 組成

Nd�
Fe(8i)�

N�

Fe(8j)�(

Fe(8f)�

KKR-CPAで⾮化学量論組成を計算

N. Sato et al.



9物質から材料へ

Nd�
Fe(8i)�

N�

Fe(8j)�(

Fe(8f)�

副相の探索・決定

Nd, Fe, B, Dy, Co, Cu, Ga, …



10磁性体の仮想スクリーニング

Material {xi } (i =1, 2, 3, … , N )

Property {yi } (i =1, 2, 3, … , N )

Material {x´i } (i =1, 2, 3, … , N´ )

Property {y´i } (i =1, 2, 3, … , N´ )

First-principles calc.
Regression

Machine-learning model
y = f (x )

Prediction

Validation by first-principles calc.

ü 計算量と精度
ü 汎用第一原理計算DB
の信頼性

ü 記述子



11Orbital Field Matrix (OFM, 軌道場⾏列）

T.L. Pham et al., STAM 18, 756 (2017); JCP 148, 204106 (2018)

n ボロノイ分割と構成元素の電⼦配置を⽤いて⾏列表⽰
n ⾏列サイズは、組成や結晶構造に依らない
n matminer に収録。XenonPyで利⽤可

⽣成エネルギー 磁気モーメント

Hieu-Chi Dam
(JAIST)



12Nd-Fe-B の (準)安定相の探索

Tien-Lam Pham
(JAIST)



13

STAGE I
新物質創成
例：C60

STAGE II
物性極値化
Materials Genome

STAGE III
材料最適化

STAGE IV
適⽤研究開発

内容 従来の特性限界超
物質探索

結晶構造あり
元素置換 ドープ
極値を探す

材料化
プロセス・組織構造の
最適化

システム設計
試作実証
信頼性確保

ポイント コンセプトひらめき
実験発⾒

傾向予測と実験 実験検証
特性トレードオフ克服

Virtual
Prototype
シミュレーション

材料開発の４つのステージ

Akira Manabe (NIMS)

Integrated Computational Materials Engineering

レシピ＋支配方程式

出
⼝

NIMS Now, 2016 No.2



14フェーズフィールド法

PF

Dy

20 nm

(a) t’=0 (b) t’=0.5 (c) t’=2.5 (d) t’=5 (e) t’=10

0 10
at%Dy

液相の初期組成 ： Fe-30Nd-10Dy (at%)

⼩⼭敏幸 (名⼤)



15データ同化による熱⼒学パラメータの決定

n アジョイント法を基礎とするデータ同化手法
n フェーズフィールド(PF)法の計算結果と組織形態変化等の観察
データから熱力学パラメータを推定
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ネオジム磁⽯の発明

佐川眞⼈，⽇本国際賞2012 受賞記念講演会

Nd2Fe14BR2Fe17 (R=Nd, Sm, …)



18キュリー温度の回帰

101個の R-T 化合物の実験データ (AtomWork)

DAM, Hieu-Chi (JAIST)
木野日織 (NIMS)

J. Phys. Soc. Jpn. LETTERS

Category Descriptors
Atomic properties of
transition metals (T)

ZT , rT , rcv
T , IPT , χT , S 3d , L3d , J3d

Atomic properties of
rare-earth metals (R)

ZR, rR, rcv
R , IPR, χR, S 4 f , L4 f , J4 f , gJ , J4 f gJ ,

J4 f (1 − gJ)
Structural information
(S)

CT , CR, dT−T , dT−R, dR−R, NT−R, NR−R,
NR−T

Table I. Transition metal, rare-earth and structural descriptors. See also the
supporting information.

binations in another way, such as indicator diagram to select
the best combinations depending on the purpose of the analy-
sis.6–8)

Yet, it isn’t easy to understand relationship and structures
among descriptors from a huge list of scores and descriptors.
Informatics treatment usually thinks little of the importance of
meaning of descriptors, though they are the physical param-
eters that physicists regards as important. But, we hope that
we can extract more information from the huge data. In the
present work, we introduce well-defined subgroup concept to
clarify the relationship among descriptors. Our method can
also elucidate the way how to choose the combination of the
descriptors systematically as well as the way to understand
the meaning of descriptors.

Our target variable is the experimental TC of the rare-earth
transition-metal binary stoichiometry alloys in this study.9)

We take descriptors from the element dependent categories
(R for rare-earth elements and T for transition metal ele-
ments). We utilize the knowledge of the conventional theory-
driven method. The key parameters of the effective theory-
driven models are related to the properties of constituent el-
ements and/or structural parameters. For example, the orbital
energy level increases (becomes deeper) as the atomic num-
ber Z increases. The electron interaction becomes stronger as
the atomic orbital is more localized. The magnetic exchange-
couplings are associated with the strength of electron interac-
tion and transfer integrals. Coupling strength between TM-3d
and RE-4f (through RE-5d) is crucial for discussing RE de-
pendence of the magnetism. The strength is proportional to
the 3d-4f effective exchange coupling and the 4f total spin
projected onto the 4f total angular moment J4 f . The latter
quantity is given by J4 f (1 − gJ) with gJ the Landé g-factor.
We also add the descriptors from the structure-related cate-
gory (S) to describe the ratio of the elements as well as real
volume or spatial dependent simple variables to distinguish,
e.g., Th2Zn17 and Th2Ni17 polytypes. We list the descriptors
in Table I and give their detailed explanations in the support-
ing information.

As a regression model, we employ the kernel ridge regres-
sion with the radial basis function kernel. The kernel ridge
regression can include the non-linear effects of the descrip-
tors and has much stronger power to fit target functions with
descriptors though there exist a demerit of taking much more
time to fit/predict the regression models than the linear re-
gression does. We used python scripts with mpi4py, scipy and
scikit-learn.10, 11) Our scores in the regression models are the
R2 values, which we evaluate in the leave-one-out cross vali-
dation.

First, we analyze the descriptors. We take Pearson’s corre-

all

leave-CR-out

Fig. 1. Top panel: The blue line shows the best score for each number of
descriptors. The orange dotted line shows the score when CR is removed.
Bottom panel: CR (Å−3) vs TC (◦ C).

lation coefficient between descriptors. The absolute values of
Pearson’s correlation coefficient among three descriptors, ZT ,
rT and S 3d, among the T categories are the same, 1, which
means that their contributions are the same in the regression
model after the normalization procedure. Therefore, the num-
ber of the independent descriptors is reduced from 27 to 25.
Then, we execute exhaustive search for 225 − 1 = 3.3 × 107

regression models where the combinations of descriptors are
different and evaluate their accuracy values (scores).

We usually evaluate the score of the regression model.
However, we want to evaluate the importance of the descrip-
tors. We change a viewpoint from the regression model to
the descriptor to discuss the importance of the latter. We use
the relevance analysis,12, 13) which roughly corresponds to the
linear response theory as to the descriptors. (See also the
supporting information.) It originally utilizes the change of
values when we remove/add a descriptor. The former corre-
sponds to the leave-one-out experiment, while the latter the
add-one-in experiment. The descriptor is strongly or weakly
relevant when their accuracy score changes meaningfully in
the leave-one-out or in the add-one-in experiment, respec-
tively.

Our first relevance analysis is that on the strong relevance.
We found that it is only the descriptor, CR, which is strongly
relevant. We can verify the importance of CR when we plot
CR vs TC . Almost all the points are placed in the bottom-left
side of the right panel of Fig. 1. It is no doubt that CR has
dominant dependence to TC . We note that we can’t find such
relationship if we simply execute regressions.

The second relevance analysis is that on the weak rele-

2

27個の記述⼦

J. Phys. Soc. Jpn. LETTERS

Category Descriptors
Atomic properties of
transition metals (T)

ZT , rT , rcv
T , IPT , χT , S 3d , L3d , J3d

Atomic properties of
rare-earth metals (R)

ZR, rR, rcv
R , IPR, χR, S 4 f , L4 f , J4 f , gJ , J4 f gJ ,

J4 f (1 − gJ)
Structural information
(S)

CT , CR, dT−T , dT−R, dR−R, NT−R, NR−R,
NR−T

Table I. Transition metal, rare-earth and structural descriptors. See also the
supporting information.

binations in another way, such as indicator diagram to select
the best combinations depending on the purpose of the analy-
sis.6–8)

Yet, it isn’t easy to understand relationship and structures
among descriptors from a huge list of scores and descriptors.
Informatics treatment usually thinks little of the importance of
meaning of descriptors, though they are the physical param-
eters that physicists regards as important. But, we hope that
we can extract more information from the huge data. In the
present work, we introduce well-defined subgroup concept to
clarify the relationship among descriptors. Our method can
also elucidate the way how to choose the combination of the
descriptors systematically as well as the way to understand
the meaning of descriptors.

Our target variable is the experimental TC of the rare-earth
transition-metal binary stoichiometry alloys in this study.9)

We take descriptors from the element dependent categories
(R for rare-earth elements and T for transition metal ele-
ments). We utilize the knowledge of the conventional theory-
driven method. The key parameters of the effective theory-
driven models are related to the properties of constituent el-
ements and/or structural parameters. For example, the orbital
energy level increases (becomes deeper) as the atomic num-
ber Z increases. The electron interaction becomes stronger as
the atomic orbital is more localized. The magnetic exchange-
couplings are associated with the strength of electron interac-
tion and transfer integrals. Coupling strength between TM-3d
and RE-4f (through RE-5d) is crucial for discussing RE de-
pendence of the magnetism. The strength is proportional to
the 3d-4f effective exchange coupling and the 4f total spin
projected onto the 4f total angular moment J4 f . The latter
quantity is given by J4 f (1 − gJ) with gJ the Landé g-factor.
We also add the descriptors from the structure-related cate-
gory (S) to describe the ratio of the elements as well as real
volume or spatial dependent simple variables to distinguish,
e.g., Th2Zn17 and Th2Ni17 polytypes. We list the descriptors
in Table I and give their detailed explanations in the support-
ing information.

As a regression model, we employ the kernel ridge regres-
sion with the radial basis function kernel. The kernel ridge
regression can include the non-linear effects of the descrip-
tors and has much stronger power to fit target functions with
descriptors though there exist a demerit of taking much more
time to fit/predict the regression models than the linear re-
gression does. We used python scripts with mpi4py, scipy and
scikit-learn.10, 11) Our scores in the regression models are the
R2 values, which we evaluate in the leave-one-out cross vali-
dation.

First, we analyze the descriptors. We take Pearson’s corre-

all

leave-CR-out

Fig. 1. Top panel: The blue line shows the best score for each number of
descriptors. The orange dotted line shows the score when CR is removed.
Bottom panel: CR (Å−3) vs TC (◦ C).

lation coefficient between descriptors. The absolute values of
Pearson’s correlation coefficient among three descriptors, ZT ,
rT and S 3d, among the T categories are the same, 1, which
means that their contributions are the same in the regression
model after the normalization procedure. Therefore, the num-
ber of the independent descriptors is reduced from 27 to 25.
Then, we execute exhaustive search for 225 − 1 = 3.3 × 107

regression models where the combinations of descriptors are
different and evaluate their accuracy values (scores).

We usually evaluate the score of the regression model.
However, we want to evaluate the importance of the descrip-
tors. We change a viewpoint from the regression model to
the descriptor to discuss the importance of the latter. We use
the relevance analysis,12, 13) which roughly corresponds to the
linear response theory as to the descriptors. (See also the
supporting information.) It originally utilizes the change of
values when we remove/add a descriptor. The former corre-
sponds to the leave-one-out experiment, while the latter the
add-one-in experiment. The descriptor is strongly or weakly
relevant when their accuracy score changes meaningfully in
the leave-one-out or in the add-one-in experiment, respec-
tively.

Our first relevance analysis is that on the strong relevance.
We found that it is only the descriptor, CR, which is strongly
relevant. We can verify the importance of CR when we plot
CR vs TC . Almost all the points are placed in the bottom-left
side of the right panel of Fig. 1. It is no doubt that CR has
dominant dependence to TC . We note that we can’t find such
relationship if we simply execute regressions.

The second relevance analysis is that on the weak rele-

2

Number of descriptors

Kernel-ridge 回帰



19Subgroup relevance analysis

J. Phys. Soc. Jpn. LETTERS

vance, where, in the original prescription, we add another de-
scriptor to the set of descriptors, which we must define. We
define groups and subgroups here and make use of them in the
relevance analysis. We utilize hierarchal clustering analysis,
where the distance between descriptors is one minus absolute
values of Pearson’s correlation coefficient. We can define the
groups or subgroups that are made of tree nodes containing
below the distance, d, of the clustering. For example, we can
define four groups at d = 0.5. Two of them have the same de-
scriptors as those of the T and R categories, while we have two
groups for the original S category. (We call the original cluster
category and the cluster by the hierarchical analysis group.)
The dTR constitutes a group, while the other S category de-
scriptors do the other. It isn’t surprising that the grouping at
d = 0.5 is almost the same as the categories defined a priori as
T, R and S when we remember the definition of the descrip-
tors of materials. Here we successfully defined the groups and
subgroups, where the groups are almost the same as the orig-
inal category but are clustered from the data themselves. (We
redefine the group S as the result of this clustering. The group
S that doesn’t include dTR is different from the category S.)

We can further make advances in this grouping. We notice
that the definition of the value of d is unnecessary, but we
only have to define the vertical line of the decomposition tree
to define subgroups because the child nodes below the vertical
line is the same. Thus, we are able to define many subgroups
of descriptors as sets of the child nodes of the dendrogram.

We also notice that the relevance analysis can be done not
only for a descriptor, but also for a subgroup of descriptors.
We apply the relevance analysis not to a descriptor but to
a subgroup/group. We call this method subgroup relevance
analysis. We plotted the result in Fig. 2. The horizontal score
is evaluated in the leave-one-out experiment and related to
the strong relevance and the vertical scores in the add-one-in
experiment and to the weak relevance. Note that we evaluate
score of a subgroup belonging to the group under the condi-
tion that we must use at least one descriptor in the subgroup
and we can add any descriptors belonging to the other group
in the weak relevance analysis.

We explain how to read Fig. 2. The weak relevance val-
ues, or leave-one-out values are written as vertical values. The
subgroup containing only rR has the score, 0.894670, which is
the highest score in the condition that we must take the sub-
group rR in the group R and we can take any descriptors in
the other groups. (A subgroup which has a descriptor is also
a subgroup.) The subgroup containing rR, ZR and rcv

R has the
score, 0.954451, which is the highest score in the condition
that we must take at least one descriptor in the subgroup rR,
ZR and rcv

R of the group R and we can take any descriptors in
the other groups as explained in the previous paragraph.

The sole descriptor ZR in the group R has the highest score
(0.954451). It means that ZR can solely represent the group R.
It is also the case for the CR subgroup in the group S. But, the
structure of the group T is different from those of the group
R and of the group S. The subgroup made of J3d, χT , rcv

T ,
ZT (and rT and S 3d) has the highest score (0.948763), but its
child subgroup descriptors has smaller scores (0.924265 and
0.946501). It means that there exists no single descriptor that
can represent the whole nature of the group T. When we ex-
amine all the combinations made of J3d, χT , rcv

T , ZT , we find
that ZT takes the best score (0.954501) if we choose descrip-

Table II. The best R2 score and descriptors as a function of the number of
descriptors n.

n score descriptor(s)
2 0.870153 CR,ZT
3 0.942222 CR,ZR,ZT
4 0.953386 J3d ,CR,ZR,ZT
5 0.954294 L3d ,J3d ,CR,ZR,ZT
6 0.954391 L3d ,J3d ,χT ,CR,ZR,ZT
7 0.954452 L3d ,J3d ,χT ,CR,ZR,ZT ,rcv

T
8 0.954448 L3d ,J3d ,χT ,IPT ,CR,ZR,ZT ,rcv

T

tors among them, a set of ZT and J3d is the best (0.953386)
for two descriptors and a set of ZT , J3d and L3d is the best
(0.954451) for three descriptors. We note that the descriptor
ZT has the same effect as S 3d. We discuss the the interpreta-
tion of the result later.

We can also know the importance of the groups by the hor-
izontal values above the yellow solid line in Fig. 2. They are
the strong relevance, or leave-one-out values as to the groups,
T, R and S. For example, the group R has the value, 0.875866,
which is the best score when we remove all the descriptors of
the group R. The better the score is, the less important the
group is. The value, 0.506824, is the smallest among them,
which means that the group S is the most important among
the groups. On the other hand, the least important group is R,
the value of which is 0.875866. It means that the score still
holds a high value even if we exclude all the descriptors in the
group R. Therefore, the importance of group R is the lowest
among T, S and R.

We add additional explanation in Fig. 2. The descriptor
J4 f (1−gJ) can represent the subgroup containing gJ ,...,J4 f gJ ,
but the score is 0.932963, which is lower than the score
0.954451 of ZR. We also add comment on the group of dTR.
The strong relevance value is 0.954451 and the weak rele-
vance value is 0.953824. The facts that their difference is
small and that the weak relevance value is smaller than the
strong relevance value mean that the existence of the group
dTR makes the regression model worse.

Here, we compare the result of the subgroup relevance
analysis in Fig. 2 with the best score having n descriptors
without the subgroup relevance analysis in table II. The set
of CR, ZR and ZT is the best score (0.94222) for n = 3. The set
of CR, ZR, ZT and JR is the best score (0.953386) for n = 4.
The set of CR, ZR, ZT , JR and L3d is the best score (0.954294)
for n = 5. The descriptor sets are made of the most important
descriptor in the group R (ZR) and that in the group S (CR)
and those in the group T (ZT when we choose a descriptor.
J3d and ZT when we choose two descriptors and J3d, L3d and
ZT when we choose three.) These combinations are the same
as the analysis in the previous paragraph. Thus, the subgroup
relevance analysis successfully illustrates the structure among
descriptors and their importance.

We can get the conclusion that the descriptor CR is strongly
relevant when we define subgroups at d ∼ 0 and execute the
leave-one-out experiment. The original relevance analysis is
the special case of the subgroup relevance analysis. Therefore,
the subgroup relevance analysis is the natural extension from
the original relevance analysis.

We explain the advantage of the expression with the den-
drogram. For example, we can easily choose rcv

R if we don’t

3

Result by 
exhaustive search

1 
-|
r 

|
Dam et al., JPSJ 87, 113801 (2018)

• 重要な記述⼦群を抽出
• Strong relevance と weak relevance
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21Bagging-based dissimilarity voting machine

KRR + Ensemble learning
Nguyen et al., J. Phys. Mater. 2, 034009 (2019); 
(Corrigendum) ibid, 3, 019501(2019)



22Materials discovery based on EA 
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Evolutionary algorithms
GP: genetic programming
GA: genetic algorithm

T. Ishikawa et al., Phys. Rev. B 100, 174506 (2019)
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H3S 204 200

SiH3 153 275

Binary with 62
elements 497 

datasets

Hydrogen 
cage

Covalent 
bond

Tc (K) P (GPa)

YH10 265 250

MgH6 263 300

LaH10 238 210

CaH12 206 150

AcH10 204 200

Data collection (First-principles data)
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R = 0.81

GP training

f = ÷ × + μ* - - ÷ 9 - - - 8 + + μ* - - ÷ 9 - + ÷ ÷
10 10 2 ÷ - - - ÷ ÷ + × 10 + 6 9 S - + + 6 h h M -
μ* M + μ* 10 10 10 × ÷ 8 2 4 + 6 h × 4 4 10 ÷ - -
+ M 7 + + - 9 ÷ - - - + - ÷ 9 - ÷ P 6 + 6 h × × +
μ* + μ* × μ* h 9 9 + 3 h × 10 + 6 h 10 10 P - 9 +
+ S 7 M ÷ ÷ × 8 7 - - ÷ P - + h 10 - - M 7 1 - 8 +
+ + 8 1 × μ* h ÷ - - + M 7 + ÷ ÷ ÷ + M 8 h - - +
M + + - μ* × 9 h ÷ - ÷ × - + - 3 × M M 10 4 10 4
- + 6 9 × 1 M P + μ* × - × - 6 M μ* + 1 μ* ÷ 9 9
1 - + M 7 7 6 + + 8 ÷ 7 5 - 9 + ÷ 7 h S × 1 M 6 10
6 × 1 M 6 - ÷ 4 - - ÷ P + - 5 4 1 - 8 + + 3 h - - - ÷
8 - + ÷ ÷ 6 10 2 ÷ - - × × 4 h 1 × 10 + 6 h M +
M 7 × ÷ 8 2 4 × 10 × × 9 h M 10 10 ÷ × × + μ*

- ÷ × + h 10 10 4 × M × + 6 9 ÷ 2 h 9 × ÷ 10 10
5 × 4 M 10 + 6 h × 9 h 10 9 - - - 9 ÷ - - - ÷ × × +
μ* 10 9 × ÷ - - ÷ 9 + × ÷ M P 6 1 × × + μ* +
μ* × μ* h 9 9 10 10 5 × 4 M × 10 × ÷ ÷ 9 10 2
M 10 10 P 9 - × h 9 9

Polish notation: 
F = + × 2 ‒ X 1 ÷ 3 cos Y

⇒ 2 × (X - 1) + 3 ÷ cos(Y)

Details of function: 
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S P (GPa) λ ωln Tc (K)
μ* = 0.10

Tc (K) from
predictor

CaH6 Im-3m 300 1.66 1388 174 155
KScH12 C2/m 300 1.54 1139 133 81

GA structure search 
⇒ C2/m (No. 12)

Modulated H-cage structure

KScH12

First-principles validation
T. Ishikawa et al., Phys. Rev. B 100, 174506 (2019)


