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Recent development of big data core technologies including analysis algorithms and high performance data 

management and analysis platform technologies, together with the development of automatic measurement 

instruments and/or large-scale high-performance computer simulation technologies, are currently strongly 

promoting the paradigm shift from mission-driven research to data-driven research in varieties of domain 

sciences, which is gradually allowing us to conduct scientific research studies completely in cyber worlds 

after having obtained all the required data sets, or through the real-time receiving of data streams. This 

trend which is sometimes called in-silico science has been motivating “X” informatics for varieties of “X” 

sciences such as bio, biomedical, chemical, geo, brain, cosmological, meteorological, pharmaceutical, and 

material sciences, where the typical approach is to apply brute force analysis power to both experimental 

and simulation big data for the large-scale exploration to discover new objects or rules, and/or for the 

precise prediction of the complex dynamic phenomenea. In-silico sciences will further allow us to easily 

share and exchange not only data sets but also analysis and visualization tools and services, analysis 

scenarios, and meta knowledge about them, and will definitely lead us to what we call open science, or 

further to what we call citizen science. 

Bioinformatics has made the first big success among data-driven sciences to encourage other sciences to 

follow. Personalized medicine and material informatics are example followers. However, their researchers 

are gradually recognizing the difficulties to fill in the gap between varieties of available data analysis 

methods and the goals to find out new meaningful personalized treatments or new functional materials.  

This gap has three major causes. The first one is the mismatch between the issues and the methods in 

interdisciplinary research collaborations. Big data analysis research in CS focuses on the cutting-edge new 

algorithms; currently they are, for example, deep learning and Bayesian optimization. For computer 

scientists to publish their research collaboration results in CS community, they are often biased to pick up 

such cutting-edge methods, instead of applying legacy methods such as SVR and item-set and association-

rule mining. Each method has its own prerequisites which may often mismatch with the characteristics of 

our current issues to solve. 

In these data-driven sciences, most of the target systems are complex systems of systems in which more 

than one subsystem with different mechanisms interact with each other, and each of them is also a 

heterogeneous system, i.e., a mixture of more than one subsystem following either different mathematical 

models or the same model with different parameter values. In the machine learning of such a system, the 

learning data set inherently consists of more than one subset that follow different mathematical models or 

the same model with different parameter values. It is necessary to appropriately segment the learning data 

set into homogeneous subsets before applying the machine learning separately to each subset. Such 

segmentation is generally not an easy task. Furthermore, the size of each homogeneous data subset may 

often become too small for statistically meaningful analysis. Exploratory visual analytics may be one of the 

solutions to this issue [1]. 

Each existing large-scale database of inorganic natural materials is also a mixture of different types of 

materials consisting of different atoms arranged in different structures. The total number of the learning 



data for a certain type of inorganic natural materials for which we can assume the same physical model for 

simulation and/or the same regression model for analysis may be in the order of 103, or 104
 at most, which 

is definitely too small for machine learning, and definitely not sufficient for the deep learning that typically 

requires more than 106 data. 

Besides the first cause of the gap, i.e., the heterogeneity of the learning data set and the comparatively small 

size of each homogeneous data subset, it is often difficult to define a sufficiently large number of 

appropriate explanatory variables, i.e., descriptors, in providing the learning data set through measurement 

and/or simulation. In bioinformatics, “genome” constitutes substantial portion of explanatory variables. In 

material informatics, we also need its counterpart, i.e., “materials genome”. For proteins and peptides, a 

web server called PROFEAT computes structural and physicochemical features from amino acid sequence 

to systematically define a sufficient number of explanatory variables. It is a challenge, especially in 

inorganic material informatics, to systematically define a sufficiently large number of appropriate 

explanatory variables, i.e., inorganic materials genome [2, 3]. 

In order to increase the size of each homogeneous subset of the learning data set, we may focus more 

attention on specific families of artificially designed inorganic materials than on natural ones, where a 

family means a category of materials sharing the same type of structures. Examples may include those with 

amorphous structures, those with higher-order crystal structures, and organometallic materials with 

varieties of modifications. Such higher-order nanostructures and/or mesoscopic structures may increase not 

only the design parameters but also the value space spanned by these design parameter variables. These 

design parameters may work as explanatory variables of the learning data set, which also has some objective 

variables whose values are either calculated by the simulation based on the first-principle-calculation 

modeling of the artificial materials, or provided by material databases showing the relations among related 

physical properties of the involving atoms, crystal structures, and the functional properties. We can compute 

only a sufficiently large finite number of simulations to calculate some functional properties of our concern. 

These functional properties of the materials may include conductivity, magnetic property, optical property, 

interfacial activity, catalytic activity, and bulk modulus. The machine learning for the regression using the 

simulation result as the learning data set will estimate the values of such physicochemical properties either 

for arbitrary value combinations of explanatory variables for which the simulation is still missing, or for 

their possible value combinations obtained by the simulation only based on energy stability without 

calculating functional properties [2, 3]. 

It is not always possible to mathematically model the total system with all the physicochemical and 

structural parameters taken into account as explanatory variables for estimating some functional properties 

of our concern. The original idea of machine learning was to give a solution to this problem. Instead of 

assuming the knowledge about the underlying mechanism of the total system, it uses the observation records 

of the relation between a sufficiently large set of aspects and each functional property of the system as its 

learning data set to estimate this functional property value for an arbitrary new value combination of aspects. 

The success of machine learning heavily depends on the quality and the quantity of such aspects of the 

target system. Each aspect defines explanatory variables as parameters of its mathematical modeling [4]. 

In the simplest case, an aspect defines a single explanatory variable. 

Aspect modeling is different from the total-system modeling. It may use a simple model that may explain 

the specified aspect of the system [4]. In naive application of machine learning to materials data, some 

material properties become difficult to estimate accurately. Material properties such as lattice constant and 

magnetic moment can be accurately estimated from simple descriptors, i.e., explanatory variable, using 

basic machine learning methods. However, in the experiments, machine learning did not work well to 



estimate the material bulk modulus (the resistance to compression of the material). After adding new 

explanatory variables such as bond type, energy difference in compression and expansion, and density for 

the aspect modeling of the material bulk modulus, and calculating, for each record in the learning data set, 

the values of these added explanatory variables through the simulation of this aspect modelling, the bulk 

modulus could be well estimated [4, 5]. The energy difference in compression and expansion is the dynamic 

behavior aspect of the material, which was not considered in the original simulation data focusing on 

energy-stable structures. The density can be calculated after analyzing the geometrical structure of each 

simulation result, and is not used as a parameter variable of the simulation. Here we introduce new 

terminology, genotypic and phenotypic explanatory variables. Genotypic variables are simulation 

parameter variables, while phenotypic variables are explanatory variables characterizing the phenotypic 

structures or behaviors of the simulated results. Examples of phenotypic variables include density, fractal 

dimension, and persistent homology indices. We need to find out much more different types of phenotypic 

variables. 

Some aspect of our concern may be defined as a function of already defined explanatory variables. 

Depending on the types of machine learning, such an aspect may require the explicit introduction of a new 

explanatory variable as a derived variable, i.e., a function of other variables. In support vector machine 

regression, derived variables defined as polynomials of other explanatory variables need not be explicitly 

introduced as new explanatory variables. They are implicitly considered by the algorithm if necessary. 

However, such a derived variable as x/y or log x should be explicitly introduced as a new explanatory 

variable. Some indices obtained as analysis results such as cluster ids or pattern ids may sometime work as 

new explanatory variables for further segmentation and analysis. We call such explanatory variables marker 

variables or, simply, markers [1]. 

It should be noticed that the design of appropriate explanatory variables and the process of segmentation 

and analysis are both by their nature exploratory processes. This implies the importance of the development 

of an integrated exploratory visual analytics platform for data-driven sciences [1]. A further shift toward 

open science requires not only the sharing of platform systems, but also a shared repository of data sets, 

analysis and visualization tools and services, analysis scenarios, and meta knowledge about them in 

reusable forms. Meme media and meme pool architectures as well as their web-based implementation 

Webble World will be able to answer these requirements, and provides a potential middleware framework 

for end-to-end in-silico exploratory material science and engineering.    
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