Login

Japanese

Materials research by Information Integration" Initiative

IVITI 情報統合型物質・材料開発イニシアティブ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
🛧 Database API	Tools Cluster system Cloud system Usage guide Reference
Tools Fully automatic calculation system of electronic structure by First- principles 	Home > Tools > Fully automatic calculation system of electronic structure by First-principles Fully automatic calculation system of electronic structure by First-principles Overview
 nap (Nagoya Atomistic- simulation Package) 	 A tool of automated first-principles electronic structures calculations for high-throughput computational screening of materials;
Compound Prediction App	 A tool to generate data contents of CompES-X database;
 Specific Heat Prediction App 	• Python language used as runtime environment.

API Tools

MateriApps

Toki no Mori Wiki -Machine learning (Japanese only)

Framework

Template Oriented Atomic Simulation Toolkit (TOAST) is a python-based automated framework for high-throughput electronic structure calculations.

TOAST supports three first-principles (FP) electronic structure calculationspackages. The unified setup of computational environment, job manager, calculation parameters and workflows are predefined in several template files. TOAST implements a customized Python library for the conversion of CIF file to input files of FP calculations, the generation of job script, the job launching and the data parsing and post-processing.

Requirements of runtime environment

- Linux OS system;
- Python 3.x or 2.x, numpy 1.x;
- FP electronic structures calculations packages: VASP (5.3.5 and 5.4.1), Quantum Espresso (6.0) and ABINIT (8.0.8b) Gnuplot for band structure, density of states and Brillouin zone visualization;
- Jmol, VESTA, or Xcrysden for structure, charge density, Brillouin zone and Fermi surface visualization;
- Support PBS Pro/Torque, and GridEngine job scheduling systems

Download

for Python 3.x

- TOAST: Template Oriented Atomic Simulation Toolkit : toast-0.6.0.tar.gz
- toast-0.6.0 usage manual (PDF)

for Python 2.x

- TOAST: Template Oriented Atomic Simulation Toolkit : toast-0.5.4.tar.gz
- toast-0.5.4 usage manual (PDF)

Licence

This software is released under the MIT License, see LICENSE.txt.

