54th GREEN Open Seminar 2016 / 12 / 20 (Tue) 13 : 00 ~ 14 : 30 Venue : Seminar Room #409,410 (4F), Collaborative Research Bldg., Namiki Site

Oxidation Dynamics of Vanadium Thin Film via Ambient Pressure XPS

Dr. Bongjin Simon Mun Department of Physics and Photon Science Gwangju Institute of Science and Technology, Korea

Abstract

As its oxidation states vary, vanadium oxides display dynamic physical and chemical characteristics. Most well-known case is VO_2 (V⁴⁺), exhibiting dramatic metal-insulator transition near room temperature, i.e. ~340 K. While many research groups have made the efforts to utilize the characteristics of vanadium oxides in industrial applications, the fabrication process of high-quality vanadium oxides has not been clearly identified, as the oxidation state of vanadium is extremely sensitive to the oxygen pressure and temperature during fabrication processes.

In this presentation, I will discuss how ambient pressure X-ray photoelectron spectroscopy (AP- XPS) can be applied to identity the ideal fabrication conditions of vanadium oxides, i.e. ideal oxygen pressure and temperature. With the application of AP-XPS, The evolution of oxidation/reduction states of vanadium oxide thin film are monitored *in-situ* as a function of oxygen pressure and temperature. As the pressure of oxygen gas and annealing temperature change, various oxidation states of vanadium are formed on surface. Upon the fabrication of VO₂ oxide film, Raman spectroscopy and transport properties measurements are carried out to confirm the presence of VO₂ formation. Interestingly, it is found that VO₂ films can be fabricated at a much lower temperature, i.e. 523 K, than the conventional VO₂ growth temperature, ~700 K.

