ホーム > 研究活動 > 口頭発表(2018) > A combined computational and machine-learning study of rare-earth-lean magnet compounds

研究活動

A combined computational and machine-learning study of rare-earth-lean magnet compounds

Future Perspectives on Novel Magnetic Materials(Santorini)

2018年5月31日(木)

Takashi Miyake

Abstract

RFe12-type compounds are attracting renewed interest as possible strong permanent magnetcompounds because of their high iron content. Recently synthesized NdFe12Nx film showshigher saturation magnetization and anisotropy field than Nd2Fe14B, although its bulk phase isthermodynamically unstable. I will present first-principles study on the effect of chemicalsubstitution on magnetism and structural stability. I will also discuss how machine learningaccelerates magnetic-materials discovery. Application to RFe12-type compounds shows thatBayesian optimization offers an efficient method to find optimal chemical composition. Kernelmethod using orbital-field matrix as a descriptor reproduces the magnetic moment andformation energy of thousands of transition-metal compounds in reasonable accuracy, whichcan be utilized for virtual screening of new magnetic compounds.


研究活動

文部科学省

文部科学省
元素戦略プロジェクト(活動紹介)
NIMS磁石パートナーシップ

元素戦略拠点

触媒・電池元素戦略拠点
触媒・電池元素戦略研究拠点 (京都大学)
東工大元素戦略拠点
東工大元素戦略拠点 (東京工業大学)
構造材料元素戦略研究拠点
構造材料元素戦略研究拠点 (京都大学)
高効率モーター用磁性材料技術研究組合
高効率モーター用 磁性材料技術研究組合