First Principles Study on Effects of Substitutionally and Interstitially Doped Elements in NdFe\textsubscript{11}MA

Yosuke Harashima1,3,* Kiyoyuki Terakura1,4, Hiori Kino2,3, Shoji Ishibashi1 and Takashi Miyake1,3

1Nanosystem Research Institute, “RICS”, AIST, Umezono, Tsukuba 305-8568, Japan, 2MANA, National Institute for Materials Science, Namiki, Tsukuba 305-0044, Japan, 3ESICMM, National Institute for Materials Science, Sengen, Tsukuba 305-0047, Japan, 4National Institute for Materials Science, Namiki, Tsukuba 305-0044

The $RT_{12-x}M_x$ compounds and their nitrides, having the ThMn\textsubscript{12} structure, are candidates for high-performance permanent magnets, since they have large iron content and thus large magnetization. Although RFe_{12} is thermodynamically unstable, substitution of a part of iron atoms by other elements, e.g. titanium, stabilizes the compound. It is known that interstitial nitrogenation of the neodymium 1-12 type materials exhibits strong uniaxial anisotropy [1]. However, effects of substitution and interstitially doped elements on magnetic properties are still to be understood from microscopic viewpoint.

We study magnetic properties of NdFe\textsubscript{11}MA (M is, ex. 3d transition metal and A is N, B, C, O and F) that are related to strong ferromagnets containing rare-earth elements. The crystal electric field parameter A_{20} at the Nd site is calculated using the density functional theory in the generalized gradient approximation and the open-core treatment for the Nd-f states. We found that substitution of the iron atom at the 8i site with titanium is preferable as observed in the experiments. Titanium substitution affects both magnetization and magnetocrystalline anisotropy. The magnetization is substantially suppressed by the substitution. The system substituted at the 8i site shows positive value for A_{20} i.e. uniaxial anisotropy while a calculation of NdFe\textsubscript{12} gives negative A_{20}. We found that the anisotropy depends on distribution of titanium atoms. Interstitial nitrogenation also affects the magnetic properties. The magnetization is increased and the uniaxial anisotropy is enhanced by interstitial nitrogenation as observed in the experiments. We apply the analysis to other elements. Detailed analysis on the substitutional and interstitially doped element dependence will be presented.

References:

Keywords: permanent magnet, magnetocrystalline anisotropy, first-principles calculation

Corresponding author*: yosuke-harashima@aist.go.jp