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a b s t r a c t 

The aberrations of the objective lens should be measured and adjusted to realize high spatial resolution 

in scanning transmission electron microscopy (STEM). Here we report a method of measuring low-order 

aberrations using the Fourier transforms of Ronchigrams of an arbitrary crystal such as a specimen of in- 

terest. We have applied this technique to measure first- and second-order geometrical aberrations using 

typical standard specimens. Focus and twofold astigmatism are measured using two Ronchigrams ob- 

tained under different foci. Axial coma and threefold astigmatism are evaluated using the Fourier trans- 

forms of small subareas of a Ronchigram. The time dependences of focus and twofold astigmatism are 

examined using this technique for an aberration-corrected microscope. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The alignment of an objective (probe-forming) lens system

n scanning transmission electron microscopy (STEM) [1] is in-

ispensable for performing high-resolution imaging and analysis,

nd the measurement of the objective-lens aberrations is critical

or the alignment. For instance, a spherical aberration corrector

2] requires the measurement of the following aberrations; focus,

wofold astigmatism, axial coma, threefold astigmatism, star, four-

old astigmatism and third-order spherical aberration. The lowest

first) order geometrical aberrations (i.e., focus and twofold astig-

atism) should be frequently measured and realigned because of

nstrument and specimen instabilities, and the required precision

f their measurement is on the order of nanometers. The second-

rder geometrical aberrations (i.e., axial coma and threefold astig-

atism) are also important, although the required precision in

easurements and their stabilities are relatively moderate com-

ared with those for the first-order aberrations. The rapid mea-

urement of lower-order aberrations using a specimen of interest

s highly needed in actual applications because of the limited pe-

iod of system stability. 

Several aberration measurement methods have been developed

hat use annular dark-field (ADF) images or Ronchigrams. The

ethod used for aberration correctors must measure high-order

berrations with high accuracy, and Ronchigram-based techniques
∗ Corresponding author. 

E-mail address: kimoto.koji@nims.go.jp (K. Kimoto). 

χ

ttp://dx.doi.org/10.1016/j.ultramic.2017.03.021 

304-3991/© 2017 Elsevier B.V. All rights reserved. 

Please cite this article as: K. Kimoto, K. Ishizuka, Rapid measurement

Ronchigrams, Ultramicroscopy (2017), http://dx.doi.org/10.1016/j.ultram
NION [3,4] , JEOL [5] ) and an ADF-image-based techniques (CEOS

6–8] ) have been implemented in commercial products. Other

elatively-rapid methods for measuring aberrations in STEM have

lso been developed [9–15] to meet the requirement for the in-

tantaneous alignment of time-dependent low-order aberrations

uring experiments. The rapid regulation of time-dependent aber-

ations becomes critical for advanced applications, because the

uantitative analyses of atomic ADF images require the values of

berrations at the time of imaging. For example, we reported quan-

itative analyses of graphene ADF images [16,17] , and it was found

hat time-dependent low-order aberrations (e.g., axial coma) pre-

ent advanced quantitative analyses. 

This paper focuses on a rapid method of measuring low-order

berrations without using a specific specimen for alignment. This

ethod is based on the Fourier transforms of Ronchigrams of an

rbitrary crystalline specimen [18] . 

. Outline of method 

.1. Theoretical background 

There are several types of aberration notations in the field of

TEM (e.g., [3,5,6,13] ). Here we use the following notation of wave

berrations χ ( u, v ) in the orthogonal coordinates of angle ( u, v )

13] : 

( u, v ) = 

1 

2 

C 1 
(
u 

2 + v 2 
)

+ 

1 

2 

{
A 1 a 

(
u 

2 − v 2 
)

+ 2 A 1 b u v 
}

+ 

{
B 2 a 

(
u 

3 + u v 2 
)

+ B 2 b 

(
v 3 + u 

2 v 
)}
 of low-order aberrations using Fourier transforms of crystalline 
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3 

{
A 2 a 

(
u 

3 − 3 u v 2 
)

+ A 2 b 

(
3 u 

2 v − v 3 
)}

+ 

1 

4 

{ 

C 3 
(
u 

2 + v 2 
)2 

} 

+ 

1 

4 

{
A 3 a 

(
u 

4 − 6 u 

2 v 2 + v 4 
)

+ 4 A 3 b 

(
u 

3 v − u v 3 
)}

+ 

{
S 3 a 

(
u 

4 − v 4 
)

+ 2 S 3 b 
(
u 

3 v + u v 3 
)}

+ higher order terms, (1)

where C 1 , A 1 , B 2 , A 2 , C 3 , A 3 and S 3 are, respectively, the fo-

cus, twofold astigmatism, axial coma, threefold astigmatism, third-

order spherical aberration, fourfold astigmatism and star aberra-

tion, which is similar to the notation used in CEOS systems [6,7] .

Overfocus is positive in this notation. Focus and third-order spher-

ical aberration are scalar, but the other aberrations represented by

bold characters are two-dimensional vectors, and thus have sub-

scripts a and b . Note that the axial coma coefficient B 2 is equal to

one-third of the coefficients in the notation reported by Krivanek

et al. [3] , Sawada et al. [5] and Lupini [13] . 

It is known that the divergence of the wave aberration ∇χ ( u,

v ) is the geometrical aberration, which is the ray deviation on the

specimen plane ( x, y ), (
x 
y 

)
= ∇χ( u, v ) . (2)

Here we consider a Ronchigram in which the focus C 1 is larger

than the ray deviation due to other aberrations in order to observe

projected images (i.e., shadow imaging). Under such a focus condi-

tion (e.g. 300 nm), lattice distances projected on Ronchigram cor-

respond to a small angle (e.g. less than 1 mrad). A small angular

change ( du, dv ) on a Ronchigram causes a small displacement ( dx,

dy ) of the ray on the specimen plane. Since the angular change

( du, dv ) is sufficiently small, we can use the Taylor expansion of

Eq. (2) as follows [13] : 

(
dx 
dy 

)
∼= 

H 

(
du 

dv 

)
, H = 

⎛ 

⎜ ⎝ 

∂ 2 χ

∂ u∂ u 

∂ 2 χ

∂ u∂ v 
∂ 2 χ

∂ v ∂ u 

∂ 2 χ

∂ v ∂ v 

⎞ 

⎟ ⎠ 

. (3)

Here H is the Hessian matrix, which is a square matrix of the

second-order partial derivatives of a scalar-valued function. Note

that Eq. (3) is valid for a small angular change ( du, dv ); thus rela-

tively large focus, which depends on residual aberrations, is indis-

pensable. The Hessian matrix up to the second-order geometrical

aberrations can be written as follows: 

H = H C 1 A 1 + H B 2 A 2 , 

H C 1 A 1 = 

(
C 1 + A 1 a A 1 b 

A 1 b C 1 − A 1 a 

)
, 

H B 2 A 2 

= 2 

(
( A 2 a + 3 B 2 a ) u + ( A 2 b + B 2 b ) v ( A 2 b + B 2 b ) u − ( A 2 a − B 2 a ) v 
( A 2 b + B 2 b ) u − ( A 2 a − B 2 a ) v ( −A 2 a + B 2 a ) u − ( A 2 b −3 B 2 b ) v 

)
. 

(4)

Eq. (3) can be rewritten as (
du 

dv 

)
= H 

−1 

(
dx 
dy 

)
. (5)

This equation indicates that a small displacement ( dx, dy ) on

the specimen is projected on a small angular change ( du, dv ) on

the Ronchigram multiplied by the inverse Hessian matrix H 

−1 ,
Please cite this article as: K. Kimoto, K. Ishizuka, Rapid measurement
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hich describes the local magnification of the Ronchigram. Most

onchigram-based methods [3–5] utilize H 

−1 based on Eq. (5) . 

Here we consider the two-dimensional lattice of a crystalline

pecimen whose lattice vectors are a = 

(a x 
a y 

)
and b = 

(b x 
b y 

)
and

hose distorted lattices observed on a Ronchigram are given by

p = 

(p x 
p y 

)
and q = 

(q x 
q y 

)
, respectively. Since the distorted lattice vec-

ors ( p and q ) on a defocused Ronchigram are very small, we can

se Eq. (3) as follows: 

 = H p and b = Hq . (6)

Using a sample lattice matrix A = 

(a x b x 
a y b y 

)
= ( a b ) and a dis-

orted lattice matrix P = 

(p x q x 
p y q y 

)
= ( p q ) , Eq. (6) can be com-

ined to give 

 = HP . (7)

An easy way to determine the distorted lattice parameters in

 Ronchigram is to take a Fourier transform of the Ronchigram

11,13,14,18–20] and determine the two-dimensional reciprocal lat-

ice. From the definition of the reciprocal lattice, the corresponding

eciprocal-lattice matrix P 

∗ satisfies 

 = 

(
p q 

)T (
p 

∗ q 

∗) = P T P ∗ = ( P ∗) T P 

 

−1 = ( P ∗) T 

here E is an identity matrix. Namely, the inverse of the lat-

ice matrix P 

−1 is equal to the transposed reciprocal-lattice matrix

 P 

∗) T . Thus, Eq. (7) becomes 

 = A ( P ∗) T . (8)

Eq. (8) is the basic equation of our method. It should be empha-

ized that the Fourier transform of a Ronchigram is a direct way to

easure the distorted reciprocal-lattice matrix P 

∗ in Eq. (8) . 

To measure aberrations in H using Eq. (8) , the sample lattice

atrix A of the observed specimen should be known. The proce-

ure used to measure aberrations without knowing the sample lat-

ice matrix A is described in Appendix B . The sample lattice ma-

rix A can be experimentally determined using two Ronchigrams

hose difference in focus dC 1 is known. Note that the difference

n H is simply dC 1 E from Eq. (4) because other aberrations are the

ame. Furthermore, we evaluate the difference in H for the two

onchigrams using Eq. (8) as follows: 

 C 1 = C − H C 1 = C+ d C 1 = d C 1 E 

 A 

(
P ∗C 1 = C 

)T − A 

(
P ∗C 1 = C+ d C 1 

)T = A ( �P ∗) T , 

here �P 

∗ is the difference between the two deformed recipro-

al lattice matrices. It should be noted that this relation is valid

ven if higher-order aberrations exist. Thus, the sample lattice ma-

rix A can be precisely obtained using the difference between two

istorted lattice matrices �P and the difference in focus dC 1 as fol-

ows: 

 = d C 1 
(
( �P ∗) T 

)−1 = d C 1 �P . (9)

Using the determined matrix A , we can evaluate aberrations on

he basis of Eq. (8) . Since we need not to know the crystal lattice

arameters in advance, the method can be used even with a spec-

men of interest. Ronchigram distortions caused by various post-

pecimen lenses are not problematic because they are similar to

he static distortion of the specimen lattice. Even if the focus step

f the instrument has a systematic deviation from the actual focus

tep, we can recalibrate the estimated aberration coefficients and

eciprocal lattice vectors by multiplying by the factor of the devia-

ion. 
 of low-order aberrations using Fourier transforms of crystalline 
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Even after the determination of the sample lattice matrix A ,

here may be various approaches to calculating aberration coeffi-

ients in H , depending on the order of the aberrations to be eval-

ated. If the first-order geometrical aberrations are of interest, the

egmentation of a Ronchigram is not very effective in terms of pre-

ision because it reduces the sampling resolution in the Fourier

ransforms. In the present study, we estimate the first-order ge-

metrical aberrations from a whole Ronchigram and the second-

rder geometrical aberrations from several subareas. 

.2. Measurement of aberrations C 1 , A 1 , B 2 and A 2 

In the present study, we measure the following geometrical

berration coefficients up to the second order: focus C 1 , twofold

stigmatism A 1a,b , axial coma B 2a,b and threefold astigmatism A 2a,b .

irst, we determine a sample lattice matrix A from Eq. (9) . The

rerequisite calibrated parameters are the focus step and camera

ength of Ronchigrams. 

Using the sample lattice matrix A , we determine the first-order

berration coefficients on the basis of Eq. (8) as follows: 

 ≈ H C 1 A 1 = A ( P ∗) T . (10) 

Here, we ignore geometrical aberrations higher than the first

rder. Full details of the equations used to calculate C 1 and A 1 are

iven in Appendix A . 

Next, we determine the second-order aberration coefficients.

rom Eq. (8) , the difference between the Hessian matrices expected

t two small subareas of a Ronchigram is given by 

 ( k 2 ) − H ( k 1 ) = A ( P ∗2 ) 
T − A ( P ∗1 ) 

T = A ( �P ∗) T , 

here P 1 
∗ and P 2 

∗ are the distorted reciprocal-lattice matrices of

wo small subareas in the Ronchigram whose centers are given

y k 1 and k 2 , respectively. Since the Hessian matrix for the first-

rder aberrations does not depend on the Ronchigram coordi-

ates, the difference between the Hessian matrices for the second-

rder aberrations is given by the difference between the deformed

eciprocal-lattice matrices �P 

∗ as shown below: 

 ( k 1 ) − H ( k 2 ) = { H C 1 A 1 + H B 2 A 2 ( k 1 ) + · · ·} 
−{ H C 1 A 1 + H B 2 A 2 ( k 2 ) + · · ·} 
H B 2 A 2 ( k 1 ) − H B 2 A 2 ( k 2 ) = A ( �P ∗) T (11) 

Thus, the second-order geometrical aberrations can be evalu-

ted using a single Ronchigram based on Eq. (11) using a sample

atrix A when we ignore geometrical aberrations higher than the

econd order. The equations for calculating B 2a , B 2b , A 2a and A 2b are

lso given in Appendix A . 

.3. Example of procedure to measure aberrations 

Here, we give an example of a procedure to measure the first-

rder aberration coefficients C 1 and A 1 and the second-order aber-

ation coefficients B 2 and A 2 . 

(a) A Ronchigram is acquired, and two spots p 

∗ and q ∗ in the

Fourier transform of the Ronchigram are selected. A dis-

torted reciprocal-lattice matrix P 1 
∗ is constructed. A nomi-

nal focus value is obtained from the microscope control soft-

ware. 

(b) The focus of the microscope is changed by dC 1 . The two

spots selected in (a) are tracked, and another distorted

reciprocal-lattice matrix P 2 
∗ is constructed. 

(c) From the values of the focus change dC 1 and the difference

�P 

∗ between the two distorted reciprocal-lattice matrices

P 1 
∗ and P 2 

∗, the sample lattice matrix A is determined using

Eq. (9) . 
Please cite this article as: K. Kimoto, K. Ishizuka, Rapid measurement
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(d) The first-order aberrations C 1 and A 1 are calculated on the

basis of Eq. (10) . The equations used in the calculations are

described in Appendix A . The difference between the actual

focus and the nominal focus obtained in (a) defines the C 1 
offset. 

(e) (Optional) The measured A 1 is corrected using a stigmator.

The C 1 offset is corrected to adjust the nominal microscope

focus to the actual focus. 

(f) The second-order aberrations B 2 and A 2 are evaluated on

the basis of Eq. (11) , in which several subareas (e.g., | k 1 |,

| k 2 | ∼20 mrad) of one Ronchigram are selected. The aberra-

tions B 2 and A 2 can be evaluated from another Ronchigram,

and we can take an average of them. The equations used in

the calculations are described in Appendix A . 

(g) (Optional) The measured B 2 and A 2 are corrected using an

aberration corrector. 

(h) (Optional) If necessary, return to step (a) for continuous

aberration monitoring. 

As mentioned above, the only experimental data required in

his method are two Ronchigrams acquired at different foci. The

ypical processing time of steps (a)–(g) is less than 10 s, most of

hich comprises the exposure time and the intentional delay to

tabilize the focus. 

Note that these evaluated aberrations may differ from those

easured by the aberration corrector because of the rotation and

istortion of Ronchigrams due to post-specimen lenses. The evalu-

ted aberrations using the present method can be converted to the

berrations in the aberration corrector system by measuring inten-

ional aberration changes. 

. Experimental 

We used an aberration-corrected microscope (FEI, Titan 

3 ) at an

cceleration voltage of 300 and 80 kV. Ronchigrams were acquired

sing a charge coupled device (CCD) camera attached in an energy

lter (Gatan, GIF Quantum) without energy filtering. The proce-

ures were performed using an in-house DigitalMicrograph (Gatan)

cript that can be applied with various Gatan cameras. A few typi-

al TEM specimens were used: polycrystalline AuPd particles on an

morphous carbon film (Agar, Cross Grating Replica S106), a sin-

le crystal of SrTiO 3 prepared by Ar ion milling and a single-layer

raphene. 

. Results and discussion 

.1. Experimental results 

Fig. 1 a and b show Ronchigrams of polycrystalline AuPd

articles obtained at nominal foci of 213.7 nm (overfocus) and

213.7 nm (underfocus), respectively. The convergence semiangle

s 42 mrad. The Fourier transforms of the Ronchigrams are shown

n Fig. 1 c and d, in which the brightness corresponds to each mod-

lus. The positions of the distorted reciprocal lattices p 

∗ and q ∗,

hown as open circles, are evaluated with subpixel accuracy after

onvoluting a smoothing kernel (e.g., 7 × 7 pixels). The estimated

wofold astigmatism A 1 ( A 1a , A 1b ) is (1.1, 1.3) nm. The actual foci

f the Ronchigrams ( Fig. 1 a and b) are found to be 217.2 nm and

210.2 nm, and thus the C 1 offset is 3.5 nm. It is worth mentioning

hat a single-crystal specimen is not necessary for the measure-

ent of the first-order geometrical aberrations. Namely, the spots

 

∗ and q ∗ and the corresponding lattice fringes may come from

ifferent domains of the Ronchigram. For example, we can use two

pots p 

∗ and q ∗ corresponding to differently oriented (100) fringes

f independent domains. This is because the Hessian matrix for the

rst-order aberration does not depend on the position in a Ronchi-

ram. 
 of low-order aberrations using Fourier transforms of crystalline 
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Fig. 1. Example of aberration measurement using polycrystalline AuPd grains. (a) 

and (b) Ronchigrams observed at nominal foci of 213.7 (overfocus) and −213.7 nm 

(underfocus), respectively. (c) and (d) Fourier transforms of Ronchigrams (a) and (b), 

respectively. Twofold astigmatism and focus offset are measured. The acceleration 

voltage was 300 kV. 
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The measurement of higher-order aberrations, however, re-

quires a single crystal, which covers the areas where we deter-

mine the distorted lattices. This is because we use (or assume as in

Appendix B ) the same sample lattice matrix A for all the differently

distorted lattices. Fig. 2 a and b respectively show a Ronchigram

and its Fourier transform obtained using a single-crystal SrTiO 3 

specimen. The focus measured by the current method is 554.3 nm

(overfocus). The open circles in Fig. 2 a indicate the four subareas

used to estimate the second-order geometric aberrations. The in-

set in Fig. 2 b shows an enlarged −110 spot, whose intensity pro-

file shown in Fig. 2 c will be discussed in the Section 4.3 . The

estimated A 1 , B 2 and A 2 values in nanometers are (2.2, −0.3),

(0.5 ± 2.7, 7.3 ± 0.2) and ( −4.9 ± 0.5, 5.4 ± 0.1), respectively. Here, B 2 

and A are the averages of the values calculated from both Ronchi-
2 

Fig. 2. (a) Ronchigram and (b) its Fourier transform for the assessment of aberrations C 1 , 

semiangle was 28 mrad. The open circles in (a) show the subareas used for the measure

The intensity profile across the −110 spot is given in Fig. 2c. The acceleration voltage was

Please cite this article as: K. Kimoto, K. Ishizuka, Rapid measurement

Ronchigrams, Ultramicroscopy (2017), http://dx.doi.org/10.1016/j.ultram
rams obtained at the overfocus shown here and an underfocus

f −548.5 nm (not shown). Because the present experiments were

erformed with an aberration corrector, the third-order aberrations

ere corrected. Further studies for accuracy in A 2 and B 2 mea-

urements are necessary particularly for the effects of higher-order

berrations. 

One advantage of our method is its short processing time, and

e can measure the stability of the low-order aberrations A 1 and

 1 offset as shown in Fig. 3 a. We have also plotted the measured

ample lattice parameters in Fig. 3 b. The measurement was per-

ormed using Ronchigrams of a single-crystal SrTiO 3 specimen as

hown in the inset of Fig. 3 a. The defocus in the Ronchigram ob-

ervation was about ±577 nm, and the 110 and −110 spots were

sed for the measurement of P 

∗. As shown in Fig. 3 a and b, the

xperimental results showing high reproducibility suggest the high

recision of our method. 

Fig. 3 a shows the changes in the twofold astigmatism A 1 , which

ere introduced using a spherical aberration corrector (i.e., so-

alled A 1 coarse) during the stability measurement. An unexpected

pike of the lattice angle was observed at about 5 min, which prob-

bly resulted from the change in the twofold astigmatism between

he acquisitions of two Ronchigrams. Although we changed the

wofold astigmatism by 10 nm using the aberration corrector, the

easured astigmatisms are different from the target values. One of

he reasons for this discrepancy is considered to be image distor-

ion by the post-specimen lenses and the post-column energy fil-

er. This is deduced from Fig. 3 b, which indicates considerable dis-

ortion of the lattice parameters. Here, | a | and | b | are not equal and

heir angle is not 90 °, although the −110 and 110 spots of SrTiO 3 

ere selected for p 

∗ and q ∗. 

Fig. 3 a also indicates the high stability of first-order geometrical

berrations, which is on the order of 1 nm per minute. The aberra-

ion stability of TEM image correctors has been reported by Barthel

nd Thust [21] , who pointed out the importance of low-order aber-

ation stability. The stability shown in Fig. 3 a is comparable to that

f their advanced image corrector. In the case of TEM aberration

easurement, the first-order geometrical aberrations can be esti-

ated using a Fourier transform of one TEM image, while STEM

berration measurement requires at least two Ronchigrams (or a

ew ADF images), making STEM measurement time-consuming. It

s worth mentioning that we can estimate aberrations using only

 single Ronchigram if we know the sample lattice matrix A and

ther distortion factors due to post-specimen lenses. 

This method can be used with ultrathin specimens such as a

ingle-layer graphene. Fig. 4 shows the Ronchigrams of a single-
A 1 , B 2 and A 2 . The specimen was a SrTiO 3 (001) single crystal and the convergence 

ments of B 2 and A 2 . Inset of Fig. 2b shows the enlarged portion of the −110 spot. 

 300 kV. 

 of low-order aberrations using Fourier transforms of crystalline 

ic.2017.03.021 

http://dx.doi.org/10.1016/j.ultramic.2017.03.021


K. Kimoto, K. Ishizuka / Ultramicroscopy 0 0 0 (2017) 1–7 5 

ARTICLE IN PRESS 

JID: ULTRAM [m5G; March 23, 2017;14:17 ] 

Fig. 3. Time dependences of measured C 1 , A 1 (a) and measured lattice vectors a, b (b). The inset of Fig. 3a shows a typical Ronchigram observed in these series of measure- 

ments. The specimen was a SrTiO 3 (001) single crystal and the acceleration voltage was 300 kV. 

Fig. 4. Measurement of first-order aberrations using single-layer graphene speci- 

men. Ronchigrams and their Fourier transforms observed under underfocus (a) and 

underfocus (b) conditions are shown. The acceleration voltage and the probe cur- 

rent were 80 kV and 27 pA, respectively. Fourier transforms of the Ronchigrams 

(lower figures) show hexagonal spots. Open circles are drawn at the same positions 

to clarify the difference in the spot positions between the two Fourier transforms 

(see off-centering of the spots in Fig. 4b). 
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ayer graphene obtained at an acceleration voltage of 80 kV. An in-

ident probe current and an exposure time were 27 pA and 1 s,

espectively. The nominal foci of the two Ronchigrams are 301 and

301 nm. Although the Ronchigrams show intense contrast of sur-

ace contaminations, Fourier transforms (lower figures) show clear

exagonal spots. The C 1 offset and twofold astigmatism are found

o be −1.0 nm and (3.3, −4.0) nm, respectively. Twofold astigma-

ism of a few nanometers has been detected as the difference

f the hexagonal spot positions. Note that ADF image signal of
Please cite this article as: K. Kimoto, K. Ishizuka, Rapid measurement

Ronchigrams, Ultramicroscopy (2017), http://dx.doi.org/10.1016/j.ultram
 single-layer graphene is low (e.g., 0.05% using an ADF detector

ith an inner angle of 48 mrad [16,17] ). The averaged ADF signal

s estimated to be less than 4 electrons per pixel using a typi-

al dwell time of 0.04 ms and an incident probe current of 27 pA.

his means that the aberration measurement using such a low-

ntensity ADF image is not practical. Contrary, our method of low-

rder aberration measurement can be applicable even for various

wo-dimensional materials. 

.2. Comparison with other techniques and advantages of our method

We have proposed a rapid method for measuring low-order

berrations in STEM. The fundamental strategy of the present

ethod [18] is similar to the segmented Ronchigram analysis re-

orted by Lupini et al. [11] , although the segmentation is opti-

ized for the aberrations of interest. Since our method requires

nly two Ronchigrams, whose acquisition time is less than sev-

ral seconds, it is relatively rapid in comparison with the technique

ased on ADF imaging. Our method theoretically relies on the Hes-

ian matrix H , while other methods based on the Ronchigram used

y manufacturers (NION [3,4] and JEOL [5] ) utilize the inverse Hes-

ian matrix H 

−1 . We may note that the optimum type of specimen

s different for each method. For instance, a specimen that shows

igh contrast is preferable for the methods developed for CEOS and

ION systems, and a homogeneous amorphous film is preferable

or the method used in JEOL system. The present method uses a

rystalline region, which often exists in a specimen of interest. 

In general, the accuracy of aberration measurements depends

n the response of the measured objects (e.g., the spots of Fourier

ransforms in our method) to the target aberrations. In the present

ethod, the change in the first-order geometrical aberrations is

inearly related to the position of the spots in the Fourier transform

f a Ronchigram. The effects of the second-order geometrical aber-

ations are observed in the angular dependence of the deformed

eciprocal-lattice matrices �P 

∗, in which the differences are pro-

ortional to the angle. These linear dependences make the evalua-

ions reliable and simple. 
 of low-order aberrations using Fourier transforms of crystalline 
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An atomic-resolved ADF image is highly affected by aberrations;

however, the shape of the probe (e.g., full width at half maxi-

mum) does not linearly depend on aberrations C 1 and A 1 , mainly

due to the effects of diffraction aberration near the in-focus con-

dition. Furthermore, the ADF image of a crystalline specimen de-

pends not only on the probe shape but also on other factors, such

as electron channeling (dechanneling), cross talk between adja-

cent atomic columns, dynamical diffraction (e.g., [22] ) and incident

probe tilting [23] . Thus, it is not always easy to deduce the effects

of aberrations from the atomic-resolved ADF image. In contrast

to atomic-resolved ADF imaging, which requires small first-order

aberrations (e.g., less than 10 nm order), Ronchigram observation

can be performed with large first-order aberrations (e.g., 100 nm

order). This is because the first-order geometrical aberrations do

not reduce the visibility of interference fringes but they distort the

fringes. Thus, Ronchigram observation is relatively robust, and our

method can be used for rough alignment in which the large aber-

rations smear the contrast of high-resolution ADF images. 

Finally, we note additional advantages of our method for prac-

tical use. 1) The Ronchigram-based method is useful for reducing

beam damage or contamination, since a defocused probe used for

Ronchigram acquisition is similar to the beam shower setting. 2)

We can perform the alignment using faint interference fringes in

Ronchigrams, even when the specimen suffers serious contamina-

tion. 3) Specimen misalignment from the zone axis and/or lateral

specimen drift is not critical in Ronchigram observations, in con-

trast to ADF imaging. 4) The time dependence of the sample lat-

tice matrix A (e.g., Fig. 3 b) allows us to monitor changes in the

specimen or fluctuations in the measurement technique. 

4.3. Practical limitation of our method 

We have recognized a few technical difficulties in the applica-

tion of this method. One major difficulty lies in three-beam (- g ,

0 and g ) interference effect. This problematic interference effect

yields intensity modulation at the spots as shown by arrows in

Fig. 3 b and c. This modulation has been explained as three-beam

coherent convergent electron diffraction [20] . Due to the local-

magnification dependence of the Ronchigram, the Fourier trans-

form of a Ronchigram shows elongated spots whose intensity is

modulated as shown in Fig. 3 c. This intensity modulation is un-

avoidable even in the case of weak phase objects, although an ac-

ceptable measurement can be performed by the convolution of a

kernel for smoothing, as demonstrated in the present study. 

Other difficulty occurs owing to the dynamical diffraction effect

in the case of thick specimens. The dynamical diffraction will re-

sult in a relative phase change in the diffracted waves as a function

of the angle, and thus the position of the interference fringes will

be shifted. If the angle that causes the relative phase change be-

comes comparable to the lattice fringe spacing in the Ronchigram,

the observed fringe in the Ronchigram is no longer the expected

distance based on the Bragg angle and the aberrations. Under such

a strong diffraction condition, the Fourier transform of the Ronchi-

gram shows broadened spots, and the precise determination of the

spot positions becomes difficult. Intentional tilting of the crystal

from the zone axis may be effective for reducing such a dynamical

diffraction effect. Nevertheless, we have to avoid a thick sample for

high-resolution studies. 

5. Conclusion 

We have reported an aberration measurement method based on

the Fourier transforms of Ronchigrams. The method can be applied

to any specimen that includes a crystalline domain. We demon-

strated measurements of geometrical aberrations up to the sec-

ond order, i.e., focus, twofold astigmatism, axial coma and three-
Please cite this article as: K. Kimoto, K. Ishizuka, Rapid measurement
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old astigmatism. We also evaluated the time dependence of fo-

us and twofold astigmatism, and high stability of about 1 nm/min

as observed for twofold astigmatism on our microscope. As a fi-

al note, we are indebted to Ondrej Krivanek for the CCD camera

24] of the post-column energy filter [25,26] and the DigitalMicro-

raph script, which become indispensable tools for advanced elec-

ron microscopy. 
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ppendix A. Examples of equations for calculating aberrations 

The first-order geometrical aberrations C 1 and A 1 are calculated

sing the following equations derived from Eqs. (4) and ( 10 ): 

 1 = 

1 

2 

( a x p u + b x q u + a y p v + b y q v ) , 

 1 a = 

1 

2 

( a x p u + b x q u − a y p v − b y q v ) , 

 1 b = a y p u + b y q u . (A.1)

The second-order geometrical aberrations B 2 and A 2 are calcu-

ated from Eqs. (4) and ( 11 ) using the angular dependence of a dis-

orted reciprocal-lattice matrix. Using the difference between the

istorted reciprocal-lattice matrices �P u 
∗ measured from two sub-

reas separated by 2 u 0 along the u direction, we have the follow-

ng equation: 

 (�P u 
∗) T = 

(
u 1 u 3 

u 2 u 4 

)
, 

here the right-hand side is the difference between the corre-

ponding Hessian matrices. Then B 2a and A 2a are calculated using

he following equations: 

 2 a = 

1 

16 u 0 

( u 1 + u 4 ) , A 2 a = 

1 

16 u 0 
( u 1 − 3 u 4 ) (A.2)

Similarly, from the difference between the distorted reciprocal-

attice matrices �P v 
∗ measured from two subareas separated by

 v 0 along the v direction, B 2b and A 2b are calculated using the fol-

owing equations: 

 (�P v 
∗) T = 

(
v 1 v 3 
v 2 v 4 

)
, 

B 2 b = 

1 

16 v 0 
( v 1 + v 4 ) , A 2 b = 

1 

16 v 0 
( 3 v 1 − v 4 ) . (A.3)

Because the second-order geometrical aberrations B 2 and A 2 

an be measured using each Ronchigram observed at overfocus or

nderfocus, we take the average of values measured from the two

onchigrams. 
 of low-order aberrations using Fourier transforms of crystalline 
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ppendix B. Procedure for measuring aberrations without 

alculating sample lattice matrix 

Without determining a sample lattice matrix A , we can derive

 single equation from Eq. (6) for each distorted lattice parameter.

ere, we obtain the distorted lattice parameters from the distorted

eciprocal-lattice parameters. Therefore, we can use Eq. (7) to de-

ive a simultaneous equation, where the aberration coefficients are

he unknowns. In this Appendix, we describe calculation method

ithout determining a sample lattice matrix. 

The first-order aberration coefficients C 1 and A 1 are deter-

ined using two Ronchigrams. From Eq. (7) we have the follow-

ng equation between two distorted lattice matrices P 1 and P 2 de-

ermined from two Ronchigrams respectively observed at foci of C

nd C + dC : 

 ≈ H C 1 A 1 ( C 1 = C ) P 1 ≈ H C 1 A 1 ( C 1 = C + dC ) P 2 , (A.4) 

here the second and higher-order aberrations are ignored. The

econd equality between the 2 × 2 matrices gives four simultane-

us equations with three unknowns: C 1 , A 1a and A 1b . Thus, we can

etermine these parameters from Eq. (A.4) in the sense of least

quare error. We have only a single equation, Eq. (A.4) , for the

air of Ronchigrams taken at different foci since the Hessian ma-

rix does not depend on the position of the Ronchigram. However,

f we observe more than two Ronchigrams, we can derive a simi-

ar equation to Eq. (A.4) for each independent pair of Ronchigrams

nd solve them simultaneously with high accuracy using the least-

quares technique. 

The second-order aberration coefficients B 2 and A 2 are deter-

ined using several small subareas of a Ronchigram. From Eq. (7)

e have the following equation for two distorted lattice matrices

 i and P j obtained from two small areas i and j of a single Ronchi-

ram: 

 = H B 2 A 2 ( k i ) P i + H C 1 A 1 P i ≈ H B 2 A 2 

(
k j 

)
P j + H C 1 A 1 P j , (A.5)

here the third and higher-order geometrical aberrations are ig-

ored. Here, k i and k j denote the center positions of the two small

ubareas in the Ronchigram. If we use the first-order aberration

oefficients determined above, the two distorted lattice matrices

rom the two small subareas give four simultaneous equations with

our unknowns ( B 2a , B 2b , A 2a and A 2b ). Thus, we can determine

hese parameters uniquely from Eq. (A.5) . 

If we measure the distorted lattice matrices from more than

wo different subareas of the Ronchigram, we can derive similar

quations to Eq. (A.5) for independent pairs of the distorted lattice

atrices. For example, if we measure three distorted lattice matri-

es from three small subareas, we have the following two equa-

ions: 
Please cite this article as: K. Kimoto, K. Ishizuka, Rapid measurement
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 B 2 A 2 ( k 1 ) P 1 + H C 1 A 1 P 1 = H B 2 A 2 ( k 2 ) P 2 + H C 1 A 1 P 2 , 

H B 2 A 2 ( k 1 ) P 1 + H C 1 A 1 P 1 = H B 2 A 2 ( k 3 ) P 3 + H C 1 A 1 P 3 , (A.6) 

hich give eight simultaneous equations with seven or four

nknowns if we include or exclude the first-order aberrations,

espectively. Thus, we can determine all these parameters from

q. (A.6) in the sense of least square error. We can easily perform

xtra measurements of the distorted lattice matrices from different

ubareas of a single Ronchigram, and derive similar equations to

q. (A.6) for independent pairs of different subareas. Note that

e can derive Eq. (A.6) for each Ronchigram. By solving these

quations simultaneously using the least-squares technique, we

an determine the first- and second-order aberration coefficients

imultaneously with high accuracy. 
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