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A B S T R A C T

Electron tomography using energy loss and X-ray spectroscopy in the electron microscope continues to develop
in rapidly evolving and diverse directions, enabling new insight into the three-dimensional chemistry and
physics of nanoscale volumes. Progress has been made recently in improving reconstructions from EELS and
EDS signals in electron tomography by applying compressed sensing methods, characterizing new detector
technologies in detail, deriving improved models of signal generation, and exploring machine learning
approaches to signal processing. These disparate threads can be brought together in a cohesive framework in
terms of a model-based approach to analytical electron tomography. Models incorporate information on signal
generation and detection as well as prior knowledge of structures in the spectrum image data. Many recent
examples illustrate the flexibility of this approach and its feasibility for addressing challenges in non-linear or
limited signals in EELS and EDS tomography. Further work in combining multiple imaging and spectroscopy
modalities, developing synergistic data acquisition, processing, and reconstruction approaches, and improving
the precision of quantitative spectroscopic tomography will expand the frontiers of spatial resolution, dose
limits, and maximal information recovery.

1. Introduction

ADF-STEM tomography, introduced in 2001, has grown in popu-
larity and is seen now as a routine tool in the study of 3D nanostructure
[1–3]. Combining electron tomography with energy loss and X-ray
spectroscopy occurred almost concurrently [4–6] but until recently has
proven to be far less popular. However, with milestone improvements
in energy filters, especially the Gatan Imaging Filter (GIF) [7], in whose
development Ondrej Krivanek played such a key role, and, more
recently with the development of new X-ray EDS detectors for the
TEM, the speed and ease with which analytical signals can be acquired
has led to renewed interest among electron tomographers. These
advances enable electron tomography to not just address questions of
predominantly materials structure but of structure and materials
properties simultaneously using EELS and EDS tomography.
Elemental composition [8–13], chemical properties such as oxidation
state and local bonding environments [14,15], and physical properties
such as optical response [16–19] are now measurable in three
dimensions at the nanoscale.

Tomography will always seek to determine the relative arrangement
of matter in space and, as such, tomography specimens are necessarily
“thick” in that they bear some interest due to their three-dimensional
structure. In this context, thickness is a relative term, and atomic

resolution electron tomography of crystalline specimens just a few
nanometers thick is an active ongoing research area in materials
microscopy. Importantly, approximations that hold in the limit of thin
specimens may not be applicable in general for specimens of interest
for tomography. Consequently, linear imaging models underpinning
conventional electron tomography may not be valid, particularly in the
use of EELS and EDS signals for quantitative measurements.

Although research in EELS and EDS tomography is developing
along many fronts, much of the current focus is on making EELS and
EDS tomography quantitative, on applying these methods to new and
challenging specimens and signals, and to developing reconstruction
methods to extract maximal information from a limited number of,
often noisy, spectrum images. Following a brief review and general-
ization of the methods of electron tomography, current progress in
EELS and EDS tomography and future directions are highlighted.
Across the board, tools for handling noisy signals from a limited
number of spectrum images in a tilt-series are being developed,
coupled with the aim of quantitative recovery of structure-property
information at the nanoscale. These developments are unified in a
model-based approach to analytical electron tomography which will see
continued expansion and innovation in future tomography with
electron beam imaging spectroscopies.
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2. A model-based framework for analytical electron
tomography

This section outlines some of the key assumptions and equations
that underpin tomographic reconstructions as applied to EELS and
EDS signals. Traditionally, electron tomography methods can be traced
to the concept of the Radon transform, but reconstruction methods in
electron tomography today, particularly for EELS and EDS, can be
framed within the context of a broader model-based approach,
incorporating knowledge of the signal generation process and of the
object and information sought in the three-dimensional reconstruction.
The relationship between these approaches is outlined to establish
clear connections between conventional and emerging tomographic
methods and to generalize the variety of state-of-the-art model-based
approaches to EELS and EDS tomography.

The Radon transform of an object is defined over all possible line
integrals L along the direction s for an object f:

∫f f θ s dsR{ } = ( ′ ( ), ) .
L

0 (1)

with coordinates in the perpendicular plane ( x yR′ = [ ′, ′]0 ) determined
by the rotation (tilt) angle θ. A single projection Pf can then be written
as the Radon transform at a fixed line L (s=z) in a fixed Cartesian
coordinate system ( x y zR = [ , ],0 ) as the line integral along the beam
direction (z):

∫f f z dzP R= { } = ( , ) .f s z 0= −∞

∞

(2)

Experimentally, the Radon transform is sampled discretely in the
form of projections at many tilt angles. Taken together, the measure-
ments acquired during an experiment can be written collectively in
terms of a projection operator P̂ acting on the three-dimensional
volume to produce the experimentally recorded projections Γexp

f z ΓP Rˆ ( , ) = .exp
0 (3)

This system of equations forms the basis for typical tilt-series
tomography reconstruction algorithms such as the algebraic recon-
struction technique (ART) and the ubiquitous simultaneous iterative
reconstruction technique (SIRT) where a solution for f zR( , )0 is found
that minimizes the difference between the projected solution and the
experimental data. A common way of framing this problem is to
minimize the squared differences, equivalent to minimizing the
squared ℓ2-norm:
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where k denotes the independent beam trajectories contributing to the
complete projection operator and norm notation ( ∙ ) is used to
simplify the equivalent expressions on the right. This expression also
highlights several of the limitations intrinsic to tilt-series tomography.
Eq. (3) shows that the reconstruction problem is ill-posed (i.e., f may
not be a unique solution matching the experimental data-set).
Additionally, in an experimental realization the Radon transform is
highly underdetermined due to the limited number of projections, i.e.,
there are more unknowns than there are equations. Further, the
specific definition of the projection operator in Eq. (2) establishes the
projection requirement, that the experimental data must be adequately
described by the projection operator in the forward model, otherwise
approaches to solving Eq. (4) will not yield reliable results. This final
projection requirement means that the experimental data must be a
monotonic function, and preferably a linear function, of the object
thickness.

Within this framework there are several possibilities for incorpor-
ating additional information about the measurement or the specimen.
Such adjustments alter the reconstruction process but critically open

up new opportunities for non-linear measurements and enable new
algorithms for reconstructing physically significant and quantitative
volumes with rich information on the chemistry and physics of the
electron-specimen interactions. Together, these changes move electron
tomography toward a model-based approach: i.e., that the model can
be considered as a description of the signal generation process and also
as prior information about the specimen. Each of these models can be
incorporated as an amendment to the equations outlined above.
Knowledge of the signal generation process leads to replacing the
linear projection operator P̂ with a measurement-specific model.
Incorporating details of the EELS signal generation in the excitation
of surface plasmons [17], absorption processes in EDS [11], and ADF
signal generation [20] fall into this category. Knowledge of the speci-
men characteristics motivates adding regularization terms to the
function to be minimized. The large family of approaches encompass-
ing compressed sensing [21,22] and total variation minimization as
well as other regularization approaches [17] and approaches such as
discrete tomography (DART), the use of Gaussian atomic model priors
[23], and methods involving dictionary learning [24,25] or neural
network learning [26] procedures form a second category. A third
aspect of a model-based approach, model-fitting of the spectral
dimension itself splits the problem into several independent recon-
structions (f, g, h, …) of separable spectral signatures. Peak fitting,
fitting reference spectra, and machine learning techniques for spectral
decomposition comprise this third category.

Together, these conceptual approaches generalize the approach to
tomographic reconstruction to give:

f z f z Γ λ f zR Φ R Ψ R( , ) = argmin{ ˆ ( , ) − + ˆ ( , ) },exp
0 0 02

2
ℓ (5)

where now the Φ̂ denotes any operator transforming the object into the
experimental signal domain and Ψ̂ denotes any operator transforming
the object into a domain where some property of the object can be
minimized. The factor λ adjusts the weight of the regularization term in
the overall solution and ℓ highlights that different norms could be
applied in this context (e.g., selection of the ℓ1-norm as used in
compressed sensing promotes the sparsest solution in the transform
domain defined by Ψ̂. A signal is said to be k-sparse if it contains k non-
zero values).

This categorization is not necessarily rigid. Refinement of tilt-series
image alignments [23] during the reconstruction process makes use of
knowledge of the specimen, as it relies on using the structure of the
specimen for iterative corrections to the alignment, but the procedure
could be written as modifying the forward-model term f zΦ Rˆ ( , )0 .
However, the general distinction of development of forward models
of signal generation Φ( ˆ ) and specimen-structure models Ψ( ˆ ) serves to
emphasize these two often complementary strands emerging in elec-
tron tomography today, particularly as tomography methods are
increasingly applied to analytical signals in the electron microscope
where model-based approaches become imperative for quantitative
chemical and structural materials characterization.

3. Recent progress in EELS and EDS tomography

Recent developments of the GIF and large-area EDS detectors in
both speed and efficiency have made EELS and EDS tomography
possible, but both intrinsic problems and technical challenges asso-
ciated with spectroscopy in the TEM present difficulties for tomogra-
phy using EELS and EDS signals. Due to the cross-sections for inelastic
electron scattering and X-ray generation [27], the signal-to-noise ratio
for a given electron dose at the specimen is significantly lower in EELS
and EDS than in ADF-STEM. To compensate, higher electron doses are
often used experimentally either by increasing the beam current,
increasing the dwell time (or exposure time in EFTEM), or some
combination of both. This higher electron dose in turn creates several
significant problems in electron tomography. The time to acquire the
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data is long, placing more stringent requirements on both chemical and
mechanical stability of the specimen, or the specimen may change
during the acquisition introducing artefacts. These artefacts appear as
blurring or streaking in the reconstructed volume due to inconsisten-
cies in the tilt-series data that break the projection requirement for a
monotonic signal response (see also discussion in Ref. [28]). The data
is often still noisier for EELS and EDS than that acquired in ADF-
STEM, and often spectrum images are acquired at fewer tilt angles due
to specimen stability and time constraints. Moreover, for EELS and
EDS the spectrum imaging conditions for meeting the projection
requirement are rigorously satisfied only within a narrow range of
specimen thicknesses (and the projected specimen thickness may
change significantly during a tilt-series acquisition), or the projection
requirement is valid only for certain types of spectroscopic signals (e.g.,
low-loss EELS signals such as surface plasmon excitations do not in
general satisfy the projection requirement). Coherent elastic scattering
effects, including electron channeling in atomic resolution imaging and
dynamical scattering in strongly diffracting samples, modify the
inelastic scattering signals recorded in analytical tilt-series experi-
ments, introducing further deviations from linear projection-based
tomography. Additionally, technical challenges appear in that data-sets
are increasingly large in terms of computational memory requirements
for processing, reconstruction, and visualization, and the information
content is more challenging to interpret due to its multi-dimension-
ality.

Recent progress in electron tomography using EELS and EDS
signals has provided a number of different strategies for addressing
these obstacles to quantitative analytical electron tomography. While
these developments have so far often been applied as tailor-made
solutions for particular materials applications or for technique demon-
strations, several common themes suggest a generalized suite of
approaches to developing quantitative tomography and for applying
these techniques to a wider set of materials.

3.1. Compressed sensing tomography

Compressed sensing and related TV minimization approaches have
offered substantial advancements to electron tomography using ADF-
STEM, particularly in enabling the acquisition of fewer projections for
robust reconstructions. These reconstruction techniques find natural
application in EELS and EDS tomography as specimen and signal-to-
noise requirements often result in spectrum images acquired at fewer
tilts and correspondingly larger tilt angle increments. As alluded to in
Section 2, compressed sensing makes use of the inherent sparsity of
many objects in one or more transform domains. For example, some
objects may inherently consist of only a few non-zero voxels and are
therefore sparse in the image domain (identity matrix as the transform
operator). Many objects are approximately piece-wise smooth, and are
described well by only a few non-zero voxels in the gradient domain
(TV minimization). By incorporating this prior knowledge, compressed
sensing algorithms identify solutions consistent with the experimental
data that also exhibit these characteristic properties of common speci-
men structures. Compressed sensing electron tomography in this form
has been applied to a number of problems in EELS and EDS
tomography, including qualitative EELS tomography of surface plas-
mons in a silver nanocube [16], combined EELS and EDS tomography
of an Al-Si alloy [8], and three-dimensional EELS oxidation state
mapping in iron oxide nanoparticles [15], see Fig. 1.

The application of compressed sensing to analytical signals must be
done with care. For example, in the case of EELS tomography of
surface plasmons the transform domain for the surface plasmon EELS
signal was selected as a wavelet transform domain to allow for the
continuous characteristics of the slowly decaying surface plasmon
signal extending into vacuum from the nanoparticle surface, a signal
that is not particularly sparse in the image or TV domains [16]. The
question of the appropriate transform domain has been offered as a

potential limitation in other applications of compressed sensing to
electron tomography, such as in the case of biological structures whose
images may not be sufficiently sparse in many of the conventionally
applied transform domains [29].

A promising development in the field of compressed sensing that
holds substantial promise for analytical tomography is the extension of
the sparsifying operator to the third dimension. In applications of
spectroscopic tomography where each spectral channel is used for a
reconstruction [14,30] parallelization of reconstructions has often been
prioritized using SIRT algorithms. These parallelized reconstructions
rely on ‘slice-by-slice’ tomography where each row perpendicular to the
tilt-axis in the projection image stack is handled as an independent
reconstruction. However, if parallelization is sacrificed in favor of
sparsity models that incorporate the sparsity of the fully three-
dimensional object, arguably the true sparsity of the object, then
reconstructions taking into account the information in the dimension
running parallel to the tilt axis will be promoted, improving the overall
self-consistency of the reconstructed volume. Such a three-dimensional
TV approach has been applied for combined EELS and EDS tomo-
graphy [8] and has also shown progress in ADF-STEM for improved
reconstructions from data suffering artefacts due to diffraction contrast
and wide tilt angle increments [28]. This approach, particularly in
combination with signal dimension reduction approaches such as
machine learning techniques or peak fitting, offers a complementary
strategy to massively parallel independent reconstructions which may
otherwise be noise-limited. Other potential developments of interest to
analytical electron tomography have arisen in the combination of TV
minimization and DART [31] which may enable high quality recon-
structions of materials consisting of a few discrete chemical phases.
While not necessarily always the best choice for a particular tomo-
graphy problem, compressed sensing techniques hold significant
promise for improving analytical electron tomography using limited
projections.

3.2. EELS tomography

Electron tomography with EELS signals was originally developed in
the context of energy-filtered TEM (EFTEM) for tomography [4,5].
Recent developments in EELS tomography have emerged in two
principle directions: (1) tomography using low energy signals such as
those arising from surface plasmon excitations in low-loss EELS of
metal nanoparticles and in cathodoluminescence (CL) spectroscopy
and (2) tomography using core-loss EELS with increased focus on the
near edge fine structure for valency and chemical phase mapping
available at moderate to high spectral energy resolution. The increased
experimental energy resolution at low- and high-energy losses can be
directly linked to improvements in the GIF and related spectrometers,
both in energy resolution and acquisition speed, as well as a drive for
high resolution monochromators for the incident electron probe.
Efforts were previously largely focused on EFTEM tomography using
low-energy losses at bulk plasmon energies, particularly as a means of
achieving chemical contrast with short exposure times [32–35]. And
while a variety of low-loss signals have been explored through EELS
studies in general, the low-loss spectral range is rich with opportunities
for further tomographic EELS studies. Core-loss EELS tomography is a
natural extension of elemental and chemical phase mapping in EFTEM,
but presents distinct challenges for data pre-processing and recon-
struction. Tomography using low energy signals like surface plasmon
EELS and CL raises entirely new questions about meeting the projec-
tion requirement for tomography.

Initial work in EELS tomography of surface plasmons successfully
applied a projection-based approach to reconstruction of the major
surface plasmon modes of a silver nanocube [16]. The integral
determining the EELS signal for a given trajectory includes a complex
exponential factor due to the frequency-domain properties of the
incident electron beam. This complex exponential approaches unity
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Fig. 1. (a) Compressed sensing electron tomography (CS-ET) reconstruction of five surface plasmon modes of a 100 nm silver nanocube using a wavelet transform for the sparsity
domain [16]. (b) 3D total variation (TV) voxel tomography reconstructions of EELS and EDS signals in an Al-Si alloy. Adapted from Ref. [8] with permission of The Royal Society of
Chemistry. (c) CS-ET reconstruction of the EELS signatures of Fe2+ and Fe3+ using independent component analysis (ICA) maps as tilt-series input. Adapted with permission from Ref.
[15]. Copyright 2016 American Chemical Society.
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Fig. 2. (a) Cathodoluminescence tomography of surface plasmon modes of gold nanocrescents. Adapted by permission from Macmillan Publishers Ltd: Nature Nanotechnology Ref.
[19], copyright 2016. (b) A proposed EELS reconstruction approach for tomography of the photonic LDOS [38]. (c) Simulated and experimentally reconstructed surface plasmon
eigenmodes of a silver right bipyramid using combined CS ADF-STEM tomography and a regularized non-linear EELS reconstruction algorithm [17].
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for small arguments, approximating a line integral projection.
However, this projection-based method relies on a set of approxima-
tions of the surface plasmon EELS signal which, while suitably satisfied
in the case of the nanocube, are unlikely to hold generally. A similar
linear projection-based reconstruction was subsequently applied using
a multi-particle approach rather than a tilt-series protocol for CL
tomography of gold plasmonic crescents [19], see Fig. 2(a). A further
projection-based approach has also been reported on dimer particle
structures [18]. For quantitative EELS excitations of surface plasmons,
the non-linear details of the signal generation mechanism should be
taken into account. Moreover, in terms of a useful signal for under-
standing optical properties, the EELS signal does not directly record
the essential information for optical characterization. In the loss
function formalism, EELS signals are related to the complex dielectric
constant of a material, but such approaches require additional proces-
sing steps such as carefully considered Kramers-Kronig analysis and
complete modelling of surface and relativistic effects [36]. Accessing
the underlying information about the specimen that is of particular
relevance to understanding the property of interest needs to be the aim
of the tomography experiment.

Using theoretical developments for modelling the EELS signal of
surface plasmons, Hörl et al. proposed two alternative approaches to
EELS tomography of surface plasmons [37,38]. Both of these ap-
proaches rely on a model-based reconstruction method, incorporating
detailed, and critically non-linear, forward models of signal generation
for comparison with experimental data. In the first approach, the
forward model consists of an eigenmode description of the surface
plasmon EELS signal which reduces the forward model to an integral
over surface charges distributed across the two-dimensional boundary
of the particle [37] in contrast to line integrals through the particle
volume. Iterative equation solvers can then be applied to refine the
surface charges. An alternative method with fewer approximations
limiting applicable particle sizes was proposed using a function basis
set to further model the response of the particle, likewise making use of
iterative refinements to match experimental data [38], see Fig. 2(b).
Similar theoretical developments in CL of surface plasmons suggest
these tomographic approaches could be extended to CL [39].

The first approach derived from an eigenmode decomposition of the
EELS signal has been realized in the experimental case of a silver right
bipyramid [17], see Fig. 2(c). In the case of the silver right bipyramid
reconstructions, surface charges were reconstructed giving a quantita-
tive signal recovered during tomographic reconstruction for simulating
the optical response characteristics of the bipyramid particle for any
plane wave or other incident electromagnetic excitation. An additional
regularization term incorporating prior knowledge of the distribution
of surface charge magnitudes in the bipyramid surface plasmons was
also shown to improve reconstructions in the context of noisy experi-
mental signals. These developments illustrate progress in the use of
forward-models of signal generation and the incorporation of prior
knowledge of properties of the signal undergoing reconstruction.

The issues raised in surface plasmon EELS tomography and some
of the means of addressing them also suggest further opportunities for
development of other low-loss EELS signals for tomography. Three-
dimensional measurements of band gaps and interband transitions,
excitons, and other low-energy signals will provide new insight into the
physical properties of specimens. Many of these low-loss signals are
emerging as areas of active exploration in two-dimensional analyses by
EELS with the use of new electron beam monochromators [40,41].
Further developments in EELS at infrared energies may also offer new
signals, though issues of signal localization will be critical for examin-
ing any application to tomography [42]. Complementary research in CL
of semiconductors [43] and single-photon emitters [44] have also
broadened the frontiers of spectroscopy in the TEM. Each of these
applications may require consideration of the information sought for
recovery in a tomographic reconstruction and of the forward models
needed to replicate the signal generation from the physical properties

of interest, but these measurements offer a wealth of new opportunities
for quantitative measurement of physical properties of nanoscale
volumes.

Core-loss EELS tomography has also seen recent progress in
revealing detailed chemical information from a variety of materials
from catalyst materials [13–15] to organic polymer blends [30].
Several new thrusts in EELS tomography research have been based
around new reconstruction algorithms, including massively paralle-
lized GPU-accelerated reconstructions [14] and three-dimensional TV
minimization strategies [8], as well as in the advancement of data pre-
processing strategies. Data pre-processing methods for noise reduction
and dimensionality reduction of the spectrum image tilt-series data,
while preserving the spectral features of interest, is a common feature
in low-loss and core-loss EELS. It is possible to perform ‘voxel-
spectroscopy’ [8,14] where the EELS signal is reconstructed in three
spatial dimensions at every energy channel, but this approach requires
sufficiently high-quality signal at every energy channel. Noisy spectral
data may introduce artefacts in tomographic reconstructions which
complicate post-processing. At the opposite extreme, using elemental
maps based on background-subtracted ionization edge intensities, the
STEM-EELS analog of EFTEM tomography, very little information
other than the elemental composition can be extracted. Peak fitting and
machine learning approaches offer a middle-ground that has the
potential to embed chemical phase analysis and chemical composition
quantification simultaneously. In specimens that contain a variety of
phases with shared elemental constituents, the information of interest
is in fact the composition and properties of separate phases. By
grouping EELS signals using a model-fitting technique like peak fitting,
fitting of reference spectra, or machine learning, the tomographic
reconstruction is simplified into a small number of reconstructions
matching the number of chemical phases rather than the number of
energy channels. Moreover, the desired information of chemical
speciation is contained within the reconstruction from data with noise
substantially lower than the noise present in the originally acquired
data.

Model-based approaches in data pre-processing can take a number
of different forms. Perhaps in its simplest incarnation, principal
component analysis (PCA) can be used for noise-reduction prior to
elemental map-based reconstructions [13]. Alternatively, any number
of machine learning decomposition strategies can be applied to EELS
data to generate component maps, plots of the intensity of particular
spectral signal components at each pixel in the image. PCA has been
used to directly extract chemical phase-specific information in organic
solar cell mixtures to determine suitable energy-windows in EFTEM
tomography [45]. Non-negative matrix factorization (NMF) was ap-
plied on the entire tilt-series spectrum image data-set in surface
plasmon EELS tomography experiments to extract tilt-series maps of
separable surface plasmon modes [16,17]. Independent component
analysis (ICA) of core-loss EELS has also been applied to extract
component maps corresponding to different valency states in iron
oxide nanoparticles for tomography [15]. These machine learning
algorithms extract useful chemical information with reduced noise as
input for tomography. One of their shortcomings, however, is the
quantitative physical interpretation of spatial map intensities. In
principle, peak fitting or fitting of reference spectra presents an
alternative strategy, but multi-dimensional peak fitting is not a trivial
task in the context of experimental noise and the many data-points in a
spectrum image tilt-series. Peak fitting approaches also require a great
deal of prior knowledge of the chemical composition of the specimen.
Further progress in validating the physical interpretation of machine
learning results and the development of peak fitting strategies for such
data-sets will foster wider application of these methods.

In the core-loss EELS tomography examples presented here, the
forward model for signal generation has generally been a linear
projection model. The use of non-linear models in low-loss EELS
suggests similar approaches might be used in core-loss EELS tomo-
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graphy as well. The motivation for using non-linear forward models lies
in the fact that EELS through volumes is not strictly a projection,
particularly at core-loss energies. Inelastic scattering consists of the
single scattering distribution as well as plural scattering contributions
which may be expressed as a convolution with the low-loss EELS
signal. EELS tomography necessarily examines specimens with infor-
mation of interest located in the volume of the specimen and is of
primary interest in specimens with mixed chemical composition.
Consequently, thickness-dependent plural scattering must be ac-
counted for in generalized, quantitative EELS tomography. One
approach may lie in recovering the single-scattering distribution during
data pre-processing through deconvolution steps, possibly making use
of simultaneously recorded low-loss and core-loss spectra
(“dualEELS”). Alternatively, forward models that account for plural
scattering effects may make better use of the total data-set during the
reconstruction. The success of machine learning techniques suggests
that there are substantial benefits to be gained from the redundancy of
information present in spectrum image data-sets, particularly in cases
of tilt-series data-sets. Model-based pre-processing and forward mod-
els that incorporate plural scattering effects offer new approaches that
take full advantage of the available EELS data. As the trend toward
using fewer projections continues, it will become increasingly impera-
tive that all available signals are used as efficiently as possible in EELS
tomography.

3.3. EDS tomography

Early work in EDS tomography identified severe limitations in tilt-
range and signal-to-noise with Si(Li) detectors [46]. More recently, the
prospects for EDS tomography have been revolutionized by the
development of large-area silicon drift detectors (SDDs) for STEM-
EDS. Current-generation SDD systems typically place multiple detec-
tors in the TEM pole-piece gap for much higher X-ray collection rates
than previously achievable with Si(Li) detectors and an overall
substantial increase in solid angle subtended by the multiple detectors.
Qualitative EDS tomography results have been reported with these
systems including work on mixed-metal nanoparticles [9,10] and Ni-
based superalloys [12]. However, detector shadowing [47,48] and X-
ray absorption [11,49,50] effects have emerged as two key challenges
requiring various corrections for quantitative EDS tomography.
Shadowing can in principle be avoided completely by using a needle-
shaped specimen as prepared by FIB milling [12], see Fig. 3(a), but
such preparation is not a viable approach for all specimens.

One approach has been to measure as much as possible about the
particular experimental configuration [47], akin to the requirements
for quantitative STEM aimed at assessing the significance of the many
parameters contributing to an atomic-resolution ADF image. In this
approach to EDS, detailed analysis of the holder and detector geometry
can be used to assess shadowing as a function of tilt angle. However, as
in quantitative STEM imaging, models with only a few parameters that
incorporate the most significant contributing factors are attractive for
widespread application of corrections for detector shadowing [48] or
X-ray absorption [49].

Absorption corrections have been proposed within both the Cliff-
Lorimer [50] and the ζ-factor [49] approaches. In fact, absorption
effects appear in both models in the same form [11]. It has been
proposed that the ζ-factor approach enables the incorporation of both
shadowing and absorption effects for a particular experimental system
[49] when the ζ-factors are determined for the same system using
single element reference specimens measured by ADF tomography
[51]. In this approach, absorption corrections are applied to individual
EDS maps at each tilt angle. Consequently, ADF data must be used to
supplement the EDS maps to incorporate thickness information at each
tilt [49]. This method presents an efficient multi-modal approach to
using available EDS and ADF-STEM data. However, these absorption
corrections cannot account for the path-dependent absorption effects

from within the volume unless the chemical phase distribution is
determined already, e.g. from ADF-STEM tomography. A more com-
prehensive approach has been developed to iteratively adjust absorp-
tion corrections using the intermediate tomogram to correct for the
path-dependent absorption of X-rays reaching a particular detector
[11], see Fig. 3(b). With more constrained prior information on the
structure of the specimen, it is even possible to use a highly limited
number of tilt angles and fit EDS data, including measured ζ-factors, to
a structural-chemical model [52], see Fig. 3(c). There is almost
certainly always a trade-off in these approaches between constraining
the reconstruction with a rigid model, allowing for the use of very few
tilt angles, and reducing the prior information but consequently
requiring more experimental data to perform the reconstruction.

In any case, it is clear that quantitative EDS tomography will
require corrections for absorption and detector shadowing effects
either in data pre-processing or during the tomographic reconstruction
procedure. Additional effects such as X-ray fluorescence may also
become more prominent in thicker specimens. Machine learning
techniques will likely continue to play a significant role in EDS data
handling, as in EELS tomography, and have already shown substantial
results in two- [53] and three-dimensional [12] EDS of complex
materials.

4. Challenges and future prospects

The goal of EELS and EDS tomography ultimately lies in achieving
precise, quantitative measurements of chemical and physical properties
of nanoscale volumes. Tomography presents particular opportunities
as well as obstacles to quantitative spectral analysis. Model-based
tomographic approaches can enable the extraction of new or improved
spectroscopic measurements in comparison to two-dimensional mea-
surements alone: surface charge reconstructions of plasmonic excita-
tions [17] and ζ-factor determination from ADF tomography [51] both
use tomography and analytical signals to advance spectral analysis
questions in addition to three-dimensional signal recovery. However,
EELS and EDS tomography results for quantification are also plagued
by artefacts in reconstructed volumes. Grey-levels with significant
intensity outside of the specimen structure may appear in recon-
structed volumes due to the limited number of tilt-angles, mis-
alignments in the tilt-series, changes in the specimen over the course
of the data acquisition, or noise in the experimental data. These non-
physical grey-levels still contribute to the match between experimental
data and re-projections of the volume, but are not accounted for in
individual ‘voxel spectra’ or voxel composition data in elemental
reconstructions. In these cases, there will be a certain amount of
information that has been smeared throughout the reconstruction
volume, resulting in ‘missing’ intensity in the sub-volume of the
reconstructed object relative to the re-projected tilt-series (and the
corresponding original data). Spectral model-fitting may avoid these
issues because any quantification can be achieved separately on the
spectral components of the model and the reconstruction operates only
on the spatial distribution of a particular component.

Model-based approaches present their own challenges, however.
Key issues include (a) avoiding designs that determine too many model
parameters from insufficient data, (b) determining the optimal reg-
ularization parameters, number of model components, and number of
iterations, (c) identifying appropriate initializations for iterative algo-
rithms, and (d) finding the best match for sampling and sensing
schemes during an experiment. Validation and testing with phantom
data-sets may provide some guide to these questions, but in some cases
additional theoretical developments in compressed sensing and related
sampling theories will be required to provide a robust foundation for
experimental choices.

Computational requirements for increasingly complex models for
signal generation and for increasingly large data-sets, in terms of
spectral channel depth and image size at each tilt angle, are likewise
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Fig. 3. (a) EDS tomography of the γ’ strengthening phase of a Ni-based superalloy using ICA decomposition techniques for pre-processing and ellipsoid fitting for post-processing [12].
(b) EDS tomography of carbon and oxygen in a multi-element core-shell nanowire using (left) a conventional reconstruction approach and (right) an iterative model-based approach to
absorption correction [11]. (c) A structural model-based approach to 3D EDS quantification of core-shell semiconductor nanowires from limited projection data using ζ-factor
absorption correction methods. Adapted with permission from Ref. [52]. Copyright 2016 American Chemical Society.
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growing. New approaches such as three-dimensional regularization in
compressed sensing also require larger amounts of memory for each
reconstruction. While hardware needs may be surmountable, efficient
software will become an increasingly vital part of EELS and EDS
tomography. Efficient algorithm implementations that are portable
across platforms and accessible to users worldwide will likely reap the
most benefit. Open source projects like the Astra Toolbox [54] for
tomography and Hyperspy [55] for EELS and EDS processing are key
examples advancing this research area.

Experimentally, advances in instrumentation will continue to have
a crucial role in moving the frontiers of EELS and EDS tomography.
Electron beam monochromators and fast-acquisition GIF and SDD
technologies for EELS and EDS, respectively, have substantially
enabled progress. New monochromator designs by Nion are opening
further possibilities in vibrational EELS and core-loss spectroscopy at
high energy and spatial resolution. The limited flexibility of acquisition
software and the underlying hardware platforms, however, remains a
significant obstacle for exploring new experimental possibilities for
analytical tomography. Free control of beam scanning and blanking,
independent read-out of multiple EDS detectors, and moving from
CCDs to low-noise direct electron detectors, among other develop-
ments, will enable the next set of advances in this burgeoning field.

Analytical electron tomography will also grow with application of
these techniques to new materials and new signals. Low-energy signals
below 50 eV in EELS offer a wealth of information on chemical and
physical properties, but are often used only to remove plural scattering
from core-loss spectra. These EELS signals are in many cases suffi-
ciently intense to acquire at or near ADF-STEM imaging rates, offering
new prospects for tomographic chemical analysis. Additional signals
like CL spectroscopy as well as the use of spectroscopic signals in
tandem with scanning diffraction data will offer new materials insights
into chemical, optical, and crystallographic microstructure.
Comparative measurements with other techniques like atom probe
tomography merit further study for improved quantification and cross-
validation of microanalysis results. Radiation-sensitive materials, con-
ventionally deemed inaccessible to the high beam currents or long
exposure times required for analytical tomography, are becoming
accessible through careful experimental design and dose-rationing
enabled by model-based approaches. In addition to compressed sen-
sing and similar approaches to tomography which may reduce the total
dose required for a satisfactory reconstruction by reducing the number
of projections, machine learning approaches which reduce the required
dose rate by enabling the use of signals with higher noise levels or
machine learning approaches which enable reconstruction of time-
dependent sample changes throughout a tilt-series due to electron
beam-induced damage promise to substantially reduce dose require-
ments for analytical electron tomography.

5. Summary and outlook

Recent progress in EELS and EDS tomography has advanced three-
dimensional chemical imaging at high spatial resolution in a variety of
exciting new directions. More than simply elemental mapping, EELS
tomography is now demonstrating the possibility of mapping physical
and chemical behaviour through nanoscale mapping of optical proper-
ties to valence states with nanometer resolution. EDS tomography has
also progressed to the point where quantitative three-dimensional
elemental X-ray mapping is possible in the STEM. These advances
open new questions for developing improved models, models for signal
generation, models for incorporating prior knowledge for physical
reconstructions, and models for spectral processing. Theoretical and
algorithmic developments alongside further progress in spectrometer
and microscope technologies will pave the way for making possible
new, precise measurements of nanoscale three-dimensional chemistry
and physics.
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