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bstract

This review discusses main techniques and methods which use nanoscale materials for construction of electrochemical biosensors. Described
pproaches include nanotube and nanoparticle-based electrodes relying on aligned nanotube arrays, direct electron transfer between biomolecule and

lectrode, novel binding materials and mass production technology; and nanoscale materials as biomolecule tracers, including gold nanoparticles,
uantum dots for DNA and protein multiplexing, novel nanobiolabels as apoferritin, liposomes and enzyme tags loaded carbon nanotubes. Specific
ssues related to electrochemistry of nanoscale materials are discussed. Various applications for genomic and proteomic analysis are described.
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lectrochemical biosensors. Nanotechnology brings new pos-
ibilities for biosensors construction and for developing novel
lectrochemical bioassays. Nanoscale materials have been used
o achieve direct wiring of enzymes to electrode surface, to
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romote electrochemical reaction, to impose nanobarcode for
iomaterials and to amplify signal of biorecognition event. The
lectrochemical nanobiosensors were applied in areas of cancer
iagnostics and detection of infectious organisms. This article
eviews the important achievements in the field of amperometric
nd voltammetric electrochemical nanobiosensors.

The use of nanoscale materials for electrochemical biosens-
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

Nanomaterials are acquiring a big impact on development of
ng have seen explosive growth in the past 5 years, since
iscovery of low-potential detection of NADH on carbon
anotube-modified electrode by Wang and co-workers [1] and
he first use of gold nanoparticles as labels for electrochemical
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mmunosensors by Limoges and co-workers [2]. Hundreds of
esearch articles using nanomaterials for electrochemical bioas-
ays have been published since then. There are several reviews
vailable which partly deal with use of nanomaterials for amper-
metric or voltammetric electrochemical nanobiosensors [3–6],
ore detailed reviews on carbon nanotube-based sensors [7–11]

nd nanoparticles-based biosensing [12–16] can be found.
The aim of this paper is to review important achievements

n the field of amperometric and voltammetric electrochemical
anobiosensors. The review will be divided to following two
arts: nanoscale materials electrodes for bioassays and nanoma-
erials as biomolecule tracers.

. Nanoscale materials electrodes

.1. Enzymatic biosensors

The advantages of carbon nanotubes, such as high sur-
ace area, favorable electronic properties and electrocatalytic
ffect attracted very recently considerable attention for the
onstruction of electrochemical enzyme biosensors. The first
eport of carbon nanotube-modified electrode for biosens-
ng was based on dispersion of CNT and enzyme in Teflon
inder [17]. Wang and Musameh [17] showed that the elec-
rocatalytic activity of CNT toward hydrogen peroxide and
ADH permitted effective low-potential amperometric biosens-

ng of glucose and ethanol in connection with the incorporation
f glucose oxidase and alcohol dehydrogenase/NAD+ within
he three-dimensional CNT/Teflon matrix. The authors found
hat accelerated electron transfer was coupled with mini-

ization of surface fouling. These advantages of CNT-based
omposite devices were illustrated from comparison to their

raphite/Teflon counterparts, which clearly demonstrated higher
ensitivity of CNT/Teflon biocomposite. Electrocatalytic effect
f CNT was explained by Compton’s group, which showed that
he electrochemical behavior of open ends of CNT is similar

o
m
a
l

ig. 1. (A) The enzyme/MWCNT/polysulfone screen-printed thick-film electro
nzyme/MWCNT/polysulfone screen-printed detector. (C) Schematic drawing of sh
b) insulator layer, (c) HRP/MWCNT/polysulfone conducting composite, (d) silver co
29] with permission.
tors B 123 (2007) 1195–1205

o edge plane pyrolytic graphite and the electrochemical behav-
or of CNT walls is similar to basal plane of pyrolytic graphite
18,19].

CNT and glucose oxidase were also incorporated in paste
lectrodes using oil as binder for glucose biosensing [20]
nd later on the variety of CNT/paste incorporated enzymes
as expanded toward lactate oxidase, polyphenol oxidase and

lcohol dehydrogenase/NAD+ [21]. Construction of CNT/paste
iosensors was extended toward incorporation electrocatalytic
anocrystals to CNT/paste matrix for even lower potential and
igher sensitivity biosensing [22] (for explanation of role of
anoparticles in enhancing electrocatalytic activity of CNT, see
23,24]). Analogous type of biosensor was prepared incorpora-
ion laccase in CNT/chitosan matrix [25].

However, one of the main disadvantages of paste electrodes
s their poor mechanical properties. More rigid carbon nanotube
iosensors were constructed by incorporating carbon nanotubes
nd glucose oxidase in epoxy matrix [26,27]. Screen-printed
NT sensors, based on thick-film fabrication, are mechanically

table with good resistance to mechanical abrasion and they offer
ossibility of large-scale mass production of highly reproducible
ow-cost electrochemical biosensors [28]. CNT matrix also
llows easy incorporation of enzyme in screen-printed electrode,
s it was demonstrated recently on example of horseradish per-
xidase in connection to MWCNT and polysulfone binder [29]
see Fig. 1). The apparent Michaelis–Menten constant Kapp

M was
alculated to be 0.71 mM. This K

app
M indicates that the enzyme

mmobilized in the carbon nanotube/polysulfone biocompos-
te keeps its activity with a very low diffusion barrier. This

app
M value is smaller than others for H2O2 biosensors based on

ol–gel (4.6 mM) [30], on siloxane homopolymer (2.5 mM) [31]
nd other composites (2.0 mM) [32]. This is a great advantage

ver other composites since the carbon nanotube/polysulfone
embrane maintains the conducting properties of MWCNT and

llows the easy and fast incorporation of the enzyme with a very
ow K

app
M and high sensitivity (0.12 �A/mM).

chemical detector, top view. (B) Cross-section of the detection area of
owing structure of HRP/MWCNT/PS composite. (a) Polycarbonate substrate,
ntact for the working electrode and (e) carbon ink contact layer. Modified from
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Fig. 2. Layer-by-layer coating of CNT with enzymes. Schematic illustration of
the procedure for the attachment of choline oxidase (ChO) and horseradish per-
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tion waves showed faster electron transfer on BCNT (versus
xidase (HRP) on carbon nanotube surface through a layer-by-layer technique.
eproduced from [36] with permission.

Elegant way to prepare biosensor is to coat carbon nanotube
ith one or multiple layers of enzyme by layer-by-layer pro-

ess [33,34]. Glucose oxidase (GOx) can be immobilized on
he negatively charged carbon nanotube surface by alternatively
ssembling a cationic poly(diallyldimethylammonium)chloride
PDDA) layer and GOx layer. The sandwich-like layer structure
PDDA/GOx/PDDA/CNT) formed by self-assembly technique
rovided a microenvironment to keep the bioactivity of
Ox and it prevented enzyme molecule leakage. The strong

lectrocatalytic activity toward hydrogen peroxide of the fab-
icated PDDA/GOx/PDDA/CNT electrode indicated that the
olyelectrolyte–protein multilayer did not affect the electrocat-
lytic properties of CNT, enabling sensitive determination of
lucose. For example, of coating process, see Fig. 2. Bi-enzyme
NT nerve agent biosensor was prepared by same group using

his layer-by-layer assembling approach of PDDA, horseradish
eroxidase (HRP) and choline oxidase (ChO). A bioactive
anocomposite film of PDDA/ChO/PDDA/HRP/PDDA/CNT
ChO/HRP/CNT) and PDDA/ChO/PDDA/CNT (ChO/CNT)
as fabricated on the GC surface. Owing to the electrocat-

lytic effect of carbon nanotubes, the measurement of faradic
esponses resulting from enzymatic reactions was realized at
ow potential [35,36]. By using the layer-by-layer method,
omogeneous and stable ChO/polyaniline/MWCNT biosen-
or for choline detection was also prepared [37]. Employing
imilar approach, glucose nanobiosensor was prepared by form-
ng bilayer of the polyelectrolytes PDDA and poly(sodium
-styrenesulfonate) (PSS) on a 3-mercapto-1-propanesulfonic
cid-modified Au electrode and subsequent consecutive layer-

y-layer addition of multiwall carbon nanotubes wrapped by
ositively charged PDDA and negatively charged glucose oxi-
ase onto the PSS-terminated bilayer [38].

S
w
d

tors B 123 (2007) 1195–1205 1197

Single-wall carbon nanotubes were employed as long-range
ires connecting surface of electrode with redox center of

nzyme [39,40]. Yu et al. [39] attached enzymes covalently
nto the ends of vertically oriented single-wall carbon nanotube
SWCNT) forest arrays, which were used as nanoelectrodes.
uasi-reversible FeIII/FeII voltammetry was observed for the

ron heme enzymes myoglobin and horseradish peroxidase cou-
led to carboxylated ends of the nanotube forests by amide
inkages. Authors suggested that the “trees” in the nanotube for-
st behaved electrically similar to a metal, conducting electrons
rom the external circuit to the redox sites of the enzymes. In
ther work, SWCNT was covalently linked to gold electrode
urface and to glucose oxidase redox center [40]. Authors esti-
ated the turnover rate of electrons transferred via SWCNT to

he electrode surface to be about 4100 s−1, which is about six-
old higher than the turnover rate of electrons from the active
ite of GOx to its natural O2 electron acceptor (700 s−1). Such
ast electron transfer makes this glucose sensor oxygen indepen-
ent. Even faster electron turnover rate (about 5000 s−1) was
rovided by gold nanoparticles covalently linked to electrode
urface and to GOx redox center [41]. See Fig. 3 to elucidate
ovalent pluging GOx redox center to electrode surface via Au
anoparticle.

Fullerene C60 was used as an electron mediator for elec-
rocatalyzed biotransformations [42]. A fullerene carboxylic
erivative was covalently attached to a cystamine-monolayer-
unctionalized Au electrode. C60 provided electrical commu-
ication between the electrode and a soluble glucose oxidase
without covalent link between C60 and GOx redox center).
dS quantum dots were also used as an electron mediator

or glucose oxidase (without covalent link between CdS and
nzyme) [43]. The enzyme demonstrated significantly enhanced
lectron-transfer reactivity and glucose oxidase adsorbed on
dS nanoparticles maintained its bioactivity and structure.

.2. Genosensors

Carbon nanotube and nanoparticle electrodes play important
ole in DNA electrochemical sensing for reasons similar to their
ole in enzyme biosensors: high surface area, fast heterogenous
lectron transfer and long-range electron transfer.

MWCNT electrode was used for label-free detection of DNA
ybridization [44,45]. Enhanced guanine signal was attributed to
CNT-induced interfacial accumulation, rather than to an elec-

rocatalytic reaction. Increase of guanine and adenine oxidation
eaks (versus glassy carbon electrode) was also observed by
ther group and applied to label-free analysis of calf thymus
NA [46]. Having in mind that bamboo-like multiwall car-
on nanotubes (BCNT) provide more edge planes of graphene
han SWCNT, Gooding’s group investigated their application
o indicator-free DNA detection [47]. It was found that BCNT
ave superior electrochemical performance over SWCNT from
ollowing aspects: (a) peak separation of oxidation and reduc-
WCNT) and (b) greater number of electroactive sites along the
alls of BCNT resulted in larger current signals and more broad
ynamic range for oxidation of DNA bases (versus SWCNT).
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ig. 3. Assembly of gold-nanoparticle-reconstituted GOx electrode by the ads
lectrode followed by the reconstitution of apo-GOx on the functional gold nan

Carbon nanotubes can also promote electron transfer between
he electroactive centers of biological cells and electrode [48].
eukemia K562 cells exhibited well-defined anodic peak of gua-
ine. This was used for monitoring of efficiency of anti-tumor
rugs on the Leukemia K562 cells.

It is known that performance of electrodes with respect to

peed and spatial resolution increases when electrode radius
ecreases. In this sense, the array of vertically aligned, SiO2
nsulated MWCNT electrodes was constructed and used for
ltrasensitive detection of DNA [49]. The open ends of aligned,

m

D
o

ig. 4. MWCNT electrode array for DNA detection. SEM images of (a) 3 × 3 elect
) array of MWCNTs at UV-lithography and e-beam patterned Ni spots, respective
�m and 200 nm spots, respectively. Panels (a–d) are 45◦ perspective views and p

espectively. (A) The functionalization process of the amine-terminated ferrocene der
f Ru(bpy)3

2+-mediated guanine oxidation. Reproduced from [49] with permission.
n of gold nanoparticles functionalized with FAD on the dithiol-modified Au
icles. Based on [41] with permission.

nsulated multiwall carbon nanotube electrodes were deriva-
ized by carbodiimide chemistry and probe DNA was attached.
u(bpy)3

2+ was used as mediator of guanine base oxidation of
arget molecules (for scheme, see Fig. 4). The detection limit
as found to be very low (few attomoles) and authors expect it

o be lowered after assay optimization down to thousands DNA

olecules.
CNT-modified transducers showed also amplification role in

NA hybridization detection using enzyme label [50]. Signal
f enzymatic reaction product (�-naphtol) showed about 30-

rode array, (b) array of MWCNT bundles on one of the electrode pads, (c and
ly, and (e and f) the surface of polished MWCNT array electrodes grown on
anels (e and f) are top views. The scale bars are 200, 50, 2, 5, 2 and 2 �m,
ivative to CNT ends by carbodiimide chemistry. (B) The schematic mechanism
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old increase versus glassy carbon electrode. This was attributed
o strong adsorptive accumulation of �-naphtol on the CNT
ayer.

Platinum nanoparticles were used in combination with
WCNTs for improving detection limits of electrochemical
NA biosensor [51]. Multiwalled carbon nanotubes and plat-

num nanoparticles were dispersed in Nafion, which were used
o fabricate the modification of the glassy carbon electrode (GC)
urface. Oligonucleotides with amino groups at the 5′ end were
ovalently linked onto carboxylic groups of MWCNTs on the
lectrode. The hybridization events were monitored by differen-
ial pulse voltammetry (DPV) measurement of the intercalated
aunomycin. Due to the ability of carbon nanotubes to pro-
ote electron-transfer reactions, the high catalytic activities of

latinum nanoparticles for chemical reactions, the sensitivity
f presented electrochemical DNA biosensors was high. The
etection limit of the method for target DNA was 1 × 10−11 M.

Gold-nanoparticle-modified electrodes were used to enhance
he amount of immobilized probe DNA [52]. Hybridization was
nduced by exposure of the ssDNA-containing gold electrode to
errocenecarboxaldehyde-labeled complementary DNA in solu-
ion. The detection limit was 5 × 10−10 M of complementary
NA.

.3. Immunosensors

CNT can act as both an electrode and an immobilization phase
n an electrochemiluminescence (ECL)-based sensing device
53]. The poly(ethylene vinylacetate) (EVA) was used as binder
o produce a carbon nanotube–EVA–antibody (specific to �-
etoprotein) composite sheets. The immunoassay was carried out
n sandwich design by exposing CNT–EVA sheets to a sample
ontaining �-fetoprotein (AFP) and anti-AFP antibodies conju-
ated with colloidal gold or Ru(bpy)3

2+. The SEM observations
nd ECL measurements verified that sandwich immunoassays
omplexes formed on the surface of the nanotube–EVA compos-
tes and that the formation of these complexes was biospecific.
he ECL signal was linearly dependent on the concentration of
FP up to AFP concentrations of 30 nM and limit of detection
as about 0.1 nM.
A carbon nanotube thick-film composite screen-printed

mmunosensor was constructed using polysulfone (PS) as binder
54]. This matrix retained the RIgG antibody at the surface of
creen-printed electrode. The combination of MWCNT, poly-
ulfone and antibodies resulted into a novel composite material,
onsisting of an interconnected CNT–polymer network, and
ossessing mechanical flexibility, high toughness and high
orosity. SEM proved the significant difference in porosity
etween MWCNT/PS and graphite/PS nanocomposites. The
mperometric measurements showed a six times higher sen-
itivity for MWCNT biocomposite comparing with graphite
iocomposite. MWCNT/PS biocomposite retains electrochemi-
al behavior of MWCNT electrodes, the biocompatibility of PS

inder and acts as integration matrix for all elements needed for
he production of a complex biocomposite.

Amperometric immunosensor based on the adsorption of
ntibodies onto perpendicularly oriented assemblies of single-

f
a
l
v

tors B 123 (2007) 1195–1205 1199

all carbon nanotubes called SWCNT forests was developed
55]. The forests were self-assembled from oxidatively short-
ned SWCNTs onto Nafion/iron oxide-coated pyrolytic graphite
lectrodes. Anti-biotin antibody was strongly adsorbed to the
WCNT forests. In the presence of a soluble mediator, the detec-

ion limit for horseradish peroxidase-labeled biotin was 2.5 nM.
nlabeled biotin was detected in a competitive approach with
detection limit of 16 �M. Improved fabrication of SWCNT

orests utilizing aged nanotube dispersions provided higher
anotube density and conductivity [56]. Unmediated sandwich
mmunosensors achieved a detection limit of 75 nM using HRP
abels. However, mediation dramatically lowered the detection
imit to 1 nM (for scheme of CNT forest-based immunoassay,
ee Fig. 5A). Authors concluded that the difference between
ediated and unmediated assays is due to the fact that the aver-

ge distance between HRP labels and nanotube ends is too large
or efficient direct electron exchange, which can be overcome
y electron mediation.

Electrochemical immunosensor for cholera toxin was devel-
ped based on poly(3,4-ethylenedioxythiophene)-coated carbon
anotubes [57]. The sensing interface consists of monoclonal
ntibody against the B subunit of cholera toxin that is linked to
oly(3,4-ethylenedioxythiophene) coated on Nafion-supported
ultiwalled carbon nanotube casted film on a glassy carbon

lectrode. The cholera toxin (CT) was detected by a “sandwich-
ype” assay on the electronic transducers, where the toxin is
rst bound to the anti-CT antibody and then to the ganglioside-
unctionalized liposome loaded with potassium ferrocyanide for
mplification. For schematic depiction of the assay, see Fig. 5B.

It was also demonstrated that CNT can play a dual role
n recognition and transduction events, acting as carriers for
nzymes and for accumulating the products released from the
nzymatic reaction involved in antigen–antibody recognition, in
nalogous matter as in DNA recognition event [50,58].

The gold nanoparticles have been also used for construction
f electrochemical immunosensors. Amperometric and poten-
iometric immunosensors based on gold nanoparticles/tris(2,2′-
ipyridyl)cobalt(III) multilayer films for hepatitis B surface
ntigen determination were constructed [59]. Layer of
lasma-polymerized Nafion film (PPF) was deposited on the
latinum electrode surface, then positively charged tris(2,2-
ipyridyl)cobalt(III) (Co(bpy)3

3+) and negatively charged gold
anoparticles were assembled on the PPF-modified Pt electrode
y layer-by-layer technique and hepatitis B surface antibody
HBsAb) was electrostatically adsorbed on the gold nanoparti-
les surface (for scheme of multilayer construction, see Fig. 6).
he immunosensors were used to analyze HBsAg in human
erum samples and the results were comparable to those obtained
rom standard ELISA method.

. Nanomaterials as biomolecule tracers

Nanomaterials have been widely used as biomolecule tracers

or electrochemical biosensing since year 2000, when Limoges
nd co-workers published their work on gold nanoparticle-
abeled electrochemical immunoassay [2]. Nanoparticles are
ery stable (comparing to enzyme labels), they offer high sensi-
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ig. 5. (A) Schematic diagram of carbon nanotube forest sandwich immunoass
oxin based on poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes with

ivity (thousands of atoms can be released from one nanoparticle)
nd wide variety of nanoparticles opens doors for multiplexing.
anoparticles are used nowadays as electrochemical label or as
ehicles containing several hundreds or thousands of electroac-
ive labels, pushing detection limits down to several hundreds of
iomolecules.

.1. Genosensors

Gold nanoparticles for DNA electrochemical sensing were
ntroduced independently by Limoges’ group [60] and Wang et
l. [61] in year 2001. In Wang’s protocol, hybridization of a
arget oligonucleotide to magnetic bead-linked oligonucleotide
robes was followed by binding of the streptavidin-coated
etal nanoparticles to the captured DNA, dissolution of the

anometer-sized gold tag by HBr/Br2 solution, and poten-
iometric stripping measurements of the dissolved metal
ag at single-use thick-film carbon electrodes [61]. Limoges
nd co-workers immobilized amplified 406-base pair human
ytomegalovirus DNA sequence (HCMV DNA) to polystyrene
icrowell by passive adsorption. The assay relied on the

ybridization of the single-stranded target HCMV DNA with

n oligonucleotide-modified Au nanoparticle probe (using thiol-
odified probe DNA), followed by the release of the gold metal

toms anchored on the hybrids by oxidative metal dissolution,
nd the indirect determination of the HBr solubilized AuIII ions

s
d

o

ocedure. (B) Schematic outlines of electrochemical immunosensor for cholera
ome amplification. Reproduced from [56] (A) and [57] (B) with permission.

y anodic stripping voltammetry [60]. Similar assay using Ag
anoparticle was also developed, relying on hybridization of
he target DNA with the silver nanoparticle–oligonucleotide
NA probe, followed by the release of the silver metal atoms

nchored on the hybrids by oxidative (using nitric acid) metal
issolution and the indirect determination of the solubilized
gI ions by anodic stripping voltammetry (ASV) at a carbon
ber ultramicroelectrode [62]. However, the HBr/Br2 or HNO3
olution is highly toxic and therefore method based on direct
lectrochemical detection of nanoparticle tags, which would
eplace the chemical oxidation agent, was developed [63,64].
robe DNA was immobilized on the paramagnetic beads surface
ia biotin–streptavidin interaction and target DNA was labeled
ith Au67 nanoparticle in ratio 1:1 preventing multiple DNA

inks between paramagnetic bead and nanoparticle (typical for
bove described Au nanoparticle-based assays), thus enhanc-
ng achievable detection limits. The hybridized paramagnetic
eads were accumulated on the surface of a magnetic electrode
nd enabled the magnetically triggered direct electrochemical
etection of gold quantum dot tracers without prior chemi-
al dissolution of the Au quantum dots. For scheme of above
escribed assay, see Fig. 7. Electrochemical magnetogenosen-

ors for biomedical applications based on above described direct
etection of gold nanoparticles was recently developed [65].

In need of further improvement of detection limits, meth-
ds based on the precipitation of silver on gold nanoparticle
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Fig. 6. Gold-nanoparticle-based immunosensor: schematic illustration of the assembly of antibody/{nanogold/Co(bpy)3
3+}n/Nafion multilayers on the platinum
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lectrode surface to core–shell particles. The first stage involves the formation
equential adsorption of Nafion, Co(bpy)3

3+ and Au nanoparticles under conditio
harged, aids the adsorption of negatively charged Au nanoparticles and Nafion

ags and a subsequent electrochemical stripping detection of
he dissolved (by nitric acid) silver were developed [66–68].
irect solid-state electrochemical detection of DNA hybridiza-

ion based on direct voltammetric determination of precipitated
ilver on gold nanoparticles avoiding acid-based dissolution was
lso reported [69].

It is important for multiple DNA strand detection to have
ide variety nanoparticle tags with different electrochemical
roperties. Addition to an arsenal nanoparticles for electro-
hemical detection is the use of core–shell Cu@Au (Cu core
nd thin Au shell) for DNA hybridization detection. Hybridiza-

ion events between probe and target were monitored by the
elease of the copper metal atoms anchored on the hybrids by
cidic oxidative metal dissolution and the indirect determination

w
t
w
i

ig. 7. Gold nanoparticles as labels for DNA sensing. Schematic representation of
aramagnetic beads; (B) immobilization of the biotinylated probe onto the paramagn
irect DPV electrochemical detection of gold quantum dot tag in Au67–DNA/DNA–p
ultiplayer film (antibody/{nanogold/Co(bpy)3
3+}n/Nafion/Pt), formed by the

ere they are oppositely charged (step 2) and (step 3). The Co(bpy)3
3+, positively

2) and (step 3). Based on [59] with permission.

f the solubilized Cu2+ ions by anodic stripping voltammetry
70]. CdS quantum dots are another addition to the spectrum
f nanoparticle tags for DNA hybridization detection [71,72].
bS nanoparticles also offer different voltammetric detection
otential for following DNA hybridization [73].

Recent activity has focused on the development of hybridiza-
ion assays that permit simultaneous determination of multiple
NA targets. Three encoding nanoparticles (zinc sulfide, cad-
ium sulfide and lead sulfide) have been used to differentiate

he signals of three DNA targets in connection with a sand-

ich DNA hybridization assay and stripping voltammetry of

he corresponding heavy metals [74]. The potential window over
hich heavy metals (principal constituents of QDs) are stripped

s ∼1.2 V, therefore five metals can be measured simultaneously

the analytical protocol (not in scale): (A) introduction of streptavidin-coated
etic beads; (C) addition of the 1:1 Au67–DNA target; (D) magnetically trigged
aramagnetic bead conjugate. Based on [63] with permission.
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way for highly multiplexed assays. These novel nanobioparticles
brings new possibilities for electrochemical sensing of proteins
and potentially also for DNA biosensing.

Fig. 8. Multiprotein electrical detection protocol based on different inorganic
202 M. Pumera et al. / Sensors and

ith minimal peak overlap (theoretical peak widths of 75.5/n
mV), where n is number electrons transferred). Particularly
ttractive for future development (in addition to CdS, ZnS and
bS, developed previously [74]) are InAs and GaAs quantum
ots.

Carbon nanotubes can play an important role as load carri-
rs of electrochemical tags, offering the possibility of pushing
own the limit of detection by several orders of magnitude.
nchoring of the monolayer-protected CdS quantum dots to

he acetone-activated CNT was accomplished via hydropho-
ic interactions [75]. Such loaded CNT was attached to probe
NA and CdS QDs were determined by stripping voltamme-

ry. SEM images showed that the nanocrystals were attached
long the CNT sidewall, with a loading of around 500 particles
er CNT. A substantial 500-fold lowering of the detection limit
as therefore obtained compared to conventional single-particle

tripping hybridization assays, reflecting the CdS loading on the
NT carrier. Further lowering of detection limits was achieved
y loading CNT with enzymatic tag [50]. In such loading, up
o 9600 alkaline phosphatase molecules were found to cover
ne CNT. Limit of detection was found to be 820 DNA copies.
urther lowering of the detection limit to 80 DNA copies
as achieved by increasing the ratio of loaded enzymes by

lectrostatic layer-by-layer techniques [76]. SWCNT was func-
ionalized with carboxy groups and in basic buffer (to keep
egative net charge of carboxy groups) coated with layer of
oly(diallyldimethylammonium)chloride. After washing proce-
ure, a layer of the negatively charged protein was adsorbed
lternately with the positively charged PDDA polyelectrolyte.
fter repeating this procedure four times, layer of streptavidin
as deposited on the CNT–multilayer–PDDA/alkaline phos-
hatase composite, allowing binding of biotinylated DNA with
uch CNT/enzyme-loaded marker.

.2. Immunosensors

A metal nanoparticle-based electrochemical magnetic
mmunosensor was developed by using magnetic beads and gold
anoparticle labels [77]. Anti-IgG antibody-modified magnetic
eads were attached to a carbon paste transducer surface by mag-
et that was fixed inside the sensor. Gold nanoparticle labels
ere capsulated to the surface of magnetic beads by sandwich

mmunoassay. Highly sensitive electrochemical stripping anal-
sis offered a simple and fast method to quantify the captured
old nanoparticle tracers. The stripping signal of gold nanopar-
icles was found to be proportionally related to the concentration
f target IgG in the sample solution.

Multiplexing capabilities of quantum dots were also
emonstrated in connection to immunoassay. Electrochemical
mmunoassay protocol for the simultaneous measurements of
roteins, based on the use of different inorganic nanocrystal
racers was described [78]. The multiprotein electrical detec-
ion capability was coupled to the amplification feature of

lectrochemical stripping transduction (to yield fmol detection
imits) and with an efficient magnetic separation (to minimize
on-specific adsorption effects). The multianalyte electrical
andwich immunoassay involved a dual binding event, based on

c
b
(
o
w

tors B 123 (2007) 1195–1205

ntibodies linked to the nanocrystal tags and magnetic beads.
arbamate linkage was used for conjugating the hydroxyl-

erminated nanocrystals with the secondary antibodies. Each
iorecognition event provided a distinct voltammetric peak,
hose position and size reflected the identity and concentration
f the corresponding antigen. The concept was demonstrated for
simultaneous immunoassay of �2-microglobulin, IgG, bovine

erum albumin and C-reactive protein in connection with ZnS,
dS, PbS and CuS colloidal crystals, respectively (for schemat-

cs of the protocol, see Fig. 8).
Effort toward ultrasensitive electrochemical immunosensing

analogous to ultrasensitive DNA sensing) using carbon nan-
tube loaded with enzyme was carried out with sensitivity down
o 160 zmol of IgG [50] and 1 amol for prostate specific antigen
58]. Further lowering detection limits were achieved by multi-
ayer coverage of SWCNT with alkaline phosphatase with limit
f detection of 2000 protein molecules (3.3 zmol) [76].

Very recently, there have been substantial research activity
n development nanoparticle labels which are easy to synthesize
nd easy to detect by electrochemical means. Liu et al. devel-
ped apoferritin-templated phosphate nanoparticle labels and
sed them for electrochemical immunoassay [79,80]. Apofer-
itin is a native protein composed of 24 polypeptide subunits that
nteract to form a hollow cage-like structure 12.5 nm in diameter;
he interior cavity of apoferritin is about 8 nm in diameter and
as an interior volume that can store several thousands of metal
ons in form of phosphate salt. There is wide variability of metals
hich can be introduced in apoferriting cavity which paves the
olloid nanocrystal tracers. (A) Introduction of antibody-modified magnetic
eads. (B) Binding of the antigens to the antibodies on the magnetic beads.
C) Capture of the nanocrystal-labeled secondary antibodies. (D) Dissolution
f nanocrystals and electrochemical stripping detection. Reproduced from [78]
ith permission.
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. Conclusion and outlook

Electrochemical nanobiosensors offer without doubts an
mportant step toward development of selective, down to few
arget molecules sensitive biorecognition device for medical and
ecurity applications. In addition to described approaches, there
re many other, yet unexplored, strategies. Very high ampli-
cation of signal could be reached, i.e. using high diameter
arbon nanotubes filled with nanoparticles [81] and their follow-
ng electrochemical stripping. Electrochemical nanobiosensors
onsisting from single carbon nanotube are another future path
f biosensor development. These strategies are waiting to be
xplored. There is high expectation that such devices will
evelop toward reliable point-of-care diagnostics of cancer and
ther diseases, and as tools for intra-operation pathological test-
ng, proteomics and systems biology.
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26] B. Peréz, M. Pumera, M. Valle, A. Merkoci, S. Alegret, Glucose biosensor
based on carbon nanotube epoxy composites, J. Nanosci. Nanotechnol. 5
(2005) 1694–1698.

27] M. Pumera, A. Merkoci, S. Alegret, Carbon nanotube–epoxy composites
for electrochemical sensing, Sens. Actuators B 113 (2006) 617–622.

28] J. Wang, M. Musameh, Carbon nanotube screen-printed electrochemical
sensors, Analyst 129 (2004) 1–2.

29] S. Sánchez, M. Pumera, E. Cabruja, E. Fàbregas, Carbon nan-
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