

Physica B 284-288 (2000) 1424-1425

www.elsevier.com/locate/physb

Physical properties of Ba₂MnZn₂As₂O₂

Akiyuki Matsushita^{a,*}, Tadashi C. Ozawa^b, Jie Tang^a, Susan M. Kauzlarich^b

^aNational Research Institute for Metals, Ibaraki 305-0047, Japan ^bDepartment of Chemistry, University of California, Davis, CA 95616, USA

Abstract

We have measured the specific heat, electrical resistivity, and magnetic susceptibility of $Ba_2MnZn_2As_2O_2$. This phase has a magnetic transition at 30 K, and zero-field-cooled and field-cooled magnetic susceptibilities separate below this transition. The specific heat has a γT term suggesting a spin-glass-like state. The electrical resistivity is semiconducting with an activation energy of 1070 K, which rapidly decreases at the rate of -106 K/GPa. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Electrical resistivity; Magnetic susceptibility; Mn pnictide oxide; Specific heat

1. Introduction

A series of layered Mn pnictide oxide compounds, $A_2 Mn_3 Pn_2 O_2$ (A = Sr,Ba; Pn = P, As, Sb, Bi) have been recently synthesized and their interesting magnetic properies have been revealed [1]. These compounds crystallize in the $Sr_2Mn_3As_2O_2$ structure type (I4/mmm) in which $Mn_2Pn_2^{2-}$ layers and MnO_2^{2-} layers are alternatively stacked along *c*-axis separated by alkaline earth cations [1]. The $Mn_2Pn_2^{2-}$ layers are isostructural to those in ThCr₂Si₂ structure type and the MnO_2^{2-} layers are similar to the CuO_2 planes in high- T_c superconductors. Recently, Ozawa et al. [2] succeeded in synthesizing a new compound in which Zn atoms are substituted for the Mn atoms in $Mn_2As_2^{2-}$ layers; $Zn_2As_2^{2-}$ layers and MnO_2^{2-} layers are stacked in this new compound. In this paper we will report the interesting physical properties of this new compound.

The sample was synthesized by heating a pressed pellet of BaO, Mn, Zn, As (2:1:2:2). Details were described elsewhere [2]. The final product was characterized by X-ray diffraction showing no other phase present. The magnetic susceptibility was measured using SQUID magnetometer (Quantum Design Co.). Specific heat was measured with a quasi-adiabatic method. Electrical resistivity was measured with a conventional four-probe method under pressures. The pressure was applied up to 2 GPa using a piston-cylinder-type pressure cell.

2. Results and discussion

Fig. 1 shows the temperature dependence of inverse magnetic susceptibility measured at 300 G. The susceptibility χ above 140 K can be well fitted with the Curie–Weiss law, $\chi = C/(T - \theta)$ where C and θ are constant parameters. The effective magnetic moment and the value of θ were 5.9 $\mu_{\rm B}$ and -41 K, respectively. The value of effective magnetic moment is close to that of S = 5/2 (5.91 $\mu_{\rm B}$) high spin state of Mn²⁺. The value of magnetic susceptibility gradually deviates from the Curie-Weiss law below 140 K. Ozawa et al. attributed this behavior to the two dimensionality of this compound and showed that it can be fitted with the 2D Heisenberg model [3]. At 30 K a magnetic transition occurs. Below this transition the values of zero-field-cooled (ZFC) magnetic susceptibility and field-cooled (FC) one are different. Spin-glass state has been proposed to explain this behavior [2].

Fig. 2 shows the temperature dependence of specific heat as C/T versus T^2 plot which was well described with an expression $C = \gamma T + \beta T^3$ where γ and β are constant

^{*}Corresponding author. Tel.: + 81-298-59-2729; fax: + 81-298-59-2701.

E-mail address: akiyuki@nrim.go.jp (A. Matsushita)

Fig. 1. Inverse magnetic susceptibility as a function of temperature.

Fig. 2. Specific heat as C/T versus T^2 plot. The data of Ba₂Mn₃As₂O₂ are also plotted.

parameters and the values were 38.7 and 1.414 mJmol⁻¹ K⁻⁴, respectively. Supposing the βT^3 term is a lattice contribution, the Debye temperature estimated from the β value was 111 K. As described later Ba₂MnZn₂As₂O₂ is a semiconductor with an energy gap. Consequently the origin of the γT term is not the same as that observed in metals and is probably related to the spin-glass-like behavior of magnetic susceptibility

Fig. 3. Pressure dependence of electrical resistivity.

below 30 K. It is noted that the γT term was not observed in Ba₂Mn₃As₂O₂ as shown in Fig. 2. In Ba₂Mn₃As₂O₂ the spin-glass-like magnetic transition was not observed either [1]. Thus the γT term and the spin-glass-like magnetic transition are closely related.

In Fig. 3 the electrical resistivity under pressures is displayed in $\log(R)$ versus 1/T plot. The electrical resistivity is semiconducting and the activation energy T_0 in the expression $A \exp(-T_0/T)$ is 1070 K at ambient pressure. The value of T_0 rapidly decreases with increasing pressure at the rate of -106 K/GPa. The cause of this large pressure coefficient is not clear so far.

References

- S.L. Brock, S.M. Kauzlarich, J. Alloys Compounds 241 (1996) 82.
- [2] T. Ozawa, M.M. Olmstead, S.L. Brock, S.M. Kauzlarich, D.M. Young, Chem. Mater. 10 (1998) 392.
- [3] M.E. Lines, J. Phys. Chem. Solids 31 (1970) 101.