Synthesis of graphene from dry ice in flames and its application in supercapacitors

Juan Zhanga,b, Tian Tiana, Youhu Chena, Yufang Niua, Jie Tangc, Lu-Chang Qina,d,*

a Division of Functional Materials and Nano-Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
b School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315201, China
c National Institute for Materials Science, Tsukuba 305-0043, Japan
d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA

\textbf{Article info}

Article history:
Received 10 October 2013
In final form 8 November 2013
Available online 15 November 2013

\textbf{Abstract}

We have synthesized graphene by reducing carbon dioxide in magnesium and calcium metal flames. The as-prepared graphene has been used as conductive additive to improve the electrical conduction of activated carbon-based supercapacitor electrodes. The graphene-activated carbon composite electrode showed an outstanding specific capacitance of 220 and 180 F g-1 at a current density of 0.1 A g-1 in 6 M KOH electrolyte when using graphene obtained in magnesium and calcium flames, respectively.

\textcopyright{} 2013 Elsevier B.V. All rights reserved.

1. Introduction

Supercapacitors based on the electrochemical double-layer capacitance are intermediate systems between electrochemical batteries and dielectric capacitors that utilize the double-layer formed at electrode/electrolyte interface to store and release energy [1,2]. Supercapacitors have been well recognized as important energy storage devices because of their pulse power supply, simple operation, long cycle life (>100,000 cycles), and high dynamics of charge propagation [3,4]. With a high power capability and a relatively high energy density compared to conventional capacitors, supercapacitors have been widely employed in complementing or replacing batteries in many applications involving energy storage and management systems [1,4].

At present, considerable efforts have been dedicated to exploring the high-performance carbon nanomaterials as electrodes of supercapacitors, owing to their excellent properties including stable electrochemical behavior, good cycle performance, and low cost [11]. On the other hand, as a unique carbon nanomaterial, the two-dimensional (2D) graphene with one-atom thickness is becoming a promising electrode material for fabricating high-performance supercapacitors because of its excellent electrical conductivity (>5000 S m-1), mechanical stability and flexibility, and exceptionally large specific surface area (2630 m2 g-1) and supercapacitors based on graphene and its composites have actually been developed recently [5–10].

Various experimental methods for scalable production of graphene have been developed in recent years. Of particular interest are methods including chemical reduction of exfoliated graphite oxide (graphene oxide), electrochemical exfoliation of graphite, chemical vapor deposition, and chemical reduction in metal flames [11–16].

In this Letter, we report the synthesis of graphene by reducing CO\textsubscript{2} in magnesium and calcium flames and the structural and electrochemical characterization of the thus obtained graphene for supercapacitor applications. The graphene structure and physical properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Electrochemical characterization used cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GC) to study and evaluate the electrochemical performance of the as-prepared graphene as conductive additive in assembled carbon supercapacitors.

2. Experimental

2.1. Preparation of carbon materials

Preparation of graphene was carried out using active metals (Mg and Ca) and CO\textsubscript{2} as carbon precursor. By burning Mg and Ca metals in a CO\textsubscript{2} atmosphere, graphene was produced in the following reactions that took place during the process.

\begin{equation}
2\text{Mg(s)} + \text{CO}_2(g) = 2\text{MgO(s)} + \text{C(s)}
\end{equation}

\begin{equation}
2\text{Mg(s)} + \text{O}_2(g) = 2\text{MgO(s)}
\end{equation}
and
\[\text{2Ca(s)} + \text{CO}_2(g) = \text{2CaO(s)} + \text{C(s)} \]
(3)
\[\text{2Ca(s)} + \text{O}_2(g) = \text{2CaO(s)} \]
(4)

After the explosive reactions, we collected the black graphene powders and transferred them to a beaker filled with 10% HCl to remove the metallic oxide and unreacted metal. The mixture was then vacuum filtered using polypropylene membrane with pore size of 0.45 μm and washed with deionized water. The processed graphene material was finally obtained after the resultant residues were dried in vacuum overnight at room temperature.

2.2. Structural characterization

Scanning electron microscopy (SEM, Hitachi S4800) and transmission electron microscopy (TEM, Tecnai F20) were used to examine the morphology of all samples. X-ray diffraction (XRD) was carried out using a DB Advance (Bruker) diffractometer with Cu Kα radiation (\(\lambda = 0.15418 \) nm) to evaluate the crystallization of graphene. Raman spectroscopy (Thermo Scientific DXR) measurement using 532 nm laser was also performed to characterize the graphene. The obtained graphene material was fully analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Figure 1a shows a low magnification TEM image of the as-prepared graphene sample, in which the morphology of the graphene sheets is seen as superimposed squares and their sizes are typically between 50 and 200 nm. The TEM image of graphene sheets shown in Figure 1b reveals a typical sheet-like structure with fewer than five monolayers of graphene. Larger stacks of few-layer graphene sheets are shown in Figure 1c, where the graphene sheets are scrolled and entangled. The selected-area electron diffraction (SAED) pattern of graphene sheets is given as the inset in Figure 1c, where the (100) and (200) Bragg reflections from graphene are clearly shown while the (002) reflection is weak and diffused, attributing to the poor order in stacking and the few-layered structure. Figure 1d shows the TEM image of MgO crystals after the reactions completed. The MgO crystals exhibit cubic morphology with edge length of about 50 nm. As observed in Figure 1a, the similar morphology of the graphene sheets indicates that the graphene was grown on the template MgO crystals [12,18]. From the SEM images of the as-prepared graphene shown in Figure 1e and f, the cubic morphology of graphene was also revealed with length of 50–200 nm in agreement with the TEM observations. Therefore, the MgO crystals served as templates for deposition of carbon and formation of graphene during the reactions.

Figure 2 shows the X-ray diffraction pattern of the graphene material prepared by using Mg as the reductant and CO\(_2\) as the oxidant. A relatively weak and broad graphitic (002) reflection at \(2\theta = 26.4^\circ\), corresponding to an inter-layer spacing of about 0.34 nm, is observed along with two additional peaks attributed largely to the (200) and (220) reflections of MgO appeared at 43.2° and 62.6°, respectively. It should also be noted that the (100) reflection due to graphene coincides with the (200) reflection of MgO. The presence of the graphitic (002) peak in the XRD pattern indicates that multilayer graphene must have also been produced in the process.

Raman spectroscopy is a powerful technique for characterizing graphene material, because it can reveal fine structural and chemical performance of the active electrode material in the constructed supercapacitors. The supercapacitor cells were assembled according to the reported method [3,17]. The electrode material consists of activated carbon matrix material, conductive additive, and polytetrafluoroethylene (PTFE) binder. The carbon paste was painted on current collectors. To construct a symmetric supercapacitor, two identical electrodes were separated by a glass fiber film and sandwiched in a stainless steel cell (CR2016). Electrochemical performance of the supercapacitor was examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GC) using a Zahnerr–zenium electrochemical workstation. The applied potential range for CV measurement was –1 to 0 V with scan rates varying from 10 to 200 mV s\(^{-1}\). EIS measurement was carried out at an open circuit voltage with a sinusoidal signal of 5 mV over the frequency range of 100 mHz–100 kHz. GC measurement at different constant current densities varying from 0.1 to 2.0 A g\(^{-1}\) was performed at charging voltage of 1 V.

3. Results and discussion

3.1. Structural characterization

The obtained graphene material was fully analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Figure 1a shows a low magnification TEM image of the as-prepared graphene sample, in which the morphology of the graphene sheets is seen as superimposed squares and their sizes are typically between 50 and 200 nm. The TEM image of graphene sheets shown in Figure 1b reveals a typical sheet-like structure with fewer than five monolayers of graphene. Larger stacks of few-layer graphene sheets are shown in Figure 1c, where the graphene sheets are scrolled and entangled. The selected-area electron diffraction (SAED) pattern of graphene sheets is given as the inset in Figure 1c, where the (100) and (200) Bragg reflections from graphene are clearly shown while the (002) reflection is weak and diffused, attributing to the poor order in stacking and the few-layered structure. Figure 1d shows the TEM image of MgO crystals after the reactions completed. The MgO crystals exhibit cubic morphology with edge length of about 50 nm. As observed in Figure 1a, the similar morphology of the graphene sheets indicates that the graphene was grown on the template MgO crystals [12,18]. From the SEM images of the as-prepared graphene shown in Figure 1e and f, the cubic morphology of graphene was also revealed with length of 50–200 nm in agreement with the TEM observations. Therefore, the MgO crystals served as templates for deposition of carbon and formation of graphene during the reactions.

Figure 2 shows the X-ray diffraction pattern of the graphene material prepared by using Mg as the reductant and CO\(_2\) as the oxidant. A relatively weak and broad graphitic (002) reflection at \(2\theta = 26.4^\circ\), corresponding to an inter-layer spacing of about 0.34 nm, is observed along with two additional peaks attributed largely to the (200) and (220) reflections of MgO appeared at 43.2° and 62.6°, respectively. It should also be noted that the (100) reflection due to graphene coincides with the (200) reflection of MgO. The presence of the graphitic (002) peak in the XRD pattern indicates that multilayer graphene must have also been produced in the process.

Raman spectroscopy is a powerful technique for characterizing graphene material, because it can reveal fine structural and chemical performance of the active electrode material in the constructed supercapacitors. The supercapacitor cells were assembled according to the reported method [3,17]. The electrode material consists of activated carbon matrix material, conductive additive, and polytetrafluoroethylene (PTFE) binder. The carbon paste was painted on current collectors. To construct a symmetric supercapacitor, two identical electrodes were separated by a glass fiber film and sandwiched in a stainless steel cell (CR2016). Electrochemical performance of the supercapacitor was examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GC) using a Zahnerr–zenium electrochemical workstation. The applied potential range for CV measurement was –1 to 0 V with scan rates varying from 10 to 200 mV s\(^{-1}\). EIS measurement was carried out at an open circuit voltage with a sinusoidal signal of 5 mV over the frequency range of 100 mHz–100 kHz. GC measurement at different constant current densities varying from 0.1 to 2.0 A g\(^{-1}\) was performed at charging voltage of 1 V.

3. Results and discussion

3.1. Structural characterization

The obtained graphene material was fully analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Figure 1a shows a low magnification TEM image of the as-prepared graphene sample, in which the morphology of the graphene sheets is seen as superimposed squares and their sizes are typically between 50 and 200 nm. The TEM image of graphene sheets shown in Figure 1b reveals a typical sheet-like structure with fewer than five monolayers of graphene. Larger stacks of few-layer graphene sheets are shown in Figure 1c, where the graphene sheets are scrolled and entangled. The selected-area electron diffraction (SAED) pattern of graphene sheets is given as the inset in Figure 1c, where the (100) and (200) Bragg reflections from graphene are clearly shown while the (002) reflection is weak and diffused, attributing to the poor order in stacking and the few-layered structure. Figure 1d shows the TEM image of MgO crystals after the reactions completed. The MgO crystals exhibit cubic morphology with edge length of about 50 nm. As observed in Figure 1a, the similar morphology of the graphene sheets indicates that the graphene was grown on the template MgO crystals [12,18]. From the SEM images of the as-prepared graphene shown in Figure 1e and f, the cubic morphology of graphene was also revealed with length of 50–200 nm in agreement with the TEM observations. Therefore, the MgO crystals served as templates for deposition of carbon and formation of graphene during the reactions.

Figure 2 shows the X-ray diffraction pattern of the graphene material prepared by using Mg as the reductant and CO\(_2\) as the oxidant. A relatively weak and broad graphitic (002) reflection at \(2\theta = 26.4^\circ\), corresponding to an inter-layer spacing of about 0.34 nm, is observed along with two additional peaks attributed largely to the (200) and (220) reflections of MgO appeared at 43.2° and 62.6°, respectively. It should also be noted that the (100) reflection due to graphene coincides with the (200) reflection of MgO. The presence of the graphitic (002) peak in the XRD pattern indicates that multilayer graphene must have also been produced in the process.

Raman spectroscopy is a powerful technique for characterizing graphene material, because it can reveal fine structural and
the specific capacitance of the electrode is calculated from the galvanostatic discharge curve using the following equation [17]

\[
C_{\text{spec}}^{\text{2f}} = \frac{4l_{\text{cons}}}{\text{MdV/dt}}
\]

where \(C_{\text{spec}}^{\text{2f}}\) is the specific capacitance of the electrode, \(l_{\text{cons}}\) is the constant current, \(\text{MdV/dt}\) is the slope of discharge curve obtained through linear fitting, and \(M\) is the total weight of two symmetrical electrodes. At the constant current density of 0.1 A g\(^{-1}\), the specific capacitance of \(G(\text{Mg})/\text{AC}\) and \(G(\text{Ca})/\text{AC}\) was 220 and 185 F g\(^{-1}\), respectively. When the constant current density was increased to 2.0 A g\(^{-1}\), the specific capacitance was 186 and 147 F g\(^{-1}\) for \(G(\text{Mg})/\text{AC}\) and \(G(\text{Ca})/\text{AC}\), respectively. The apparent difference in specific capacitance of \(G(\text{Mg})/\text{AC}\) and \(G(\text{Ca})/\text{AC}\) is attributed to their structural differences. \(G(\text{Ca})/\text{AC}\) is structurally closer to graphite - it contains more graphene layers and fewer defects. The rate performance of the supercapacitor electrode was also evaluated by galvanostatic charge–discharge under increased current density and the result is shown in Figure 4c. As shown in Figure 4c, the \(G(\text{Mg})/\text{AC}\) composite electrode preserved 85% of its specific capacitance when the charging current increased from 0.1 to 2.0 A g\(^{-1}\), which is slightly higher than that of the \(G(\text{Ca})/\text{AC}\) composite electrode. The fact that the specific capacitance will decrease with increasing current density is attributed to higher internal resistance and slower electrolyte diffusion in the electrode [25]. This is also confirmed by the Nyquist plots obtained from the EIS data given in Figure 4d. At low frequency, the straight line is nearly perpendicular to the real axis \(Z'\), indicating a pure capacitive behavior and that the electrolyte ions had completely diffused into the interior of the electrode material [3]. As the frequency increased, the influence of the electrode porosity was observed. When the frequency decreases, starting from very high frequency, the signal penetrates
deeper and deeper into the porous structure of electrode, and then more and more electrode surface becomes approachable for ion adsorption [17]. There is also a domain in a small frequency range, where a straight line with a 45°/C176 angle is observed, resulting from the diffusion of electrolyte ions (Warburg impedance) [3,17,25]. It is well known that the higher frequency the Warburg curve starts, the more easily the electrolyte penetrates into the porous structure of the electrode. From the inset given in Figure 4d, it can be seen that the starting frequency of the Warburg curve for G(Mg)/AC electrode is 1332 Hz, which is higher than that for G(Ca)/AC (674 Hz). This result also confirms that the G(Mg)/AC electrode has better rate capability. Moreover, the charge transfer resistance \(R_t \) of G(Mg)/AC electrode, which reflected the inter-granular contact resistance between AC particles and graphene sheets, is smaller, also implying easier diffusion of the electrolyte ions [17]. The semi-circle observed in the high frequency range where the equivalent series resistance (ESR) is obtained by extrapolating the straight line to intercept the real axis \(Z' \) [25]. The ESR of G(Mg)/AC and G(Ca)/AC are 0.366 and 0.478 \(\Omega \), respectively, indicating a smaller intrinsic resistance of G(Mg)/AC and also a lower contact resistance at the interface between the active material and current collector [3].

4. Conclusions

We have synthesized graphene by the chemical reactions between Mg/Ca metal and dry ice (\(\text{CO}_2 \)) and have characterized and improved the electrochemical performance of carbon supercapacitors when the graphene was used as conductive additive. High specific capacitance of 220 F g\(^{-1}\) in activated carbon electrode incorporating with the as-prepared graphene has been obtained at the constant current density of 0.1 A g\(^{-1}\), which is much higher than that of electrodes made of activated carbon incorporated with carbon blacks or graphite powders.

Acknowledgement

J.T. wishes to thank the JST ALCA Program (Japan) for financial support.

References